用户名: 密码: 验证码:
激光相干探测中声光器件特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对激光相干探测中声光器件的衍射效率及其对外差效率的影响进行了理论和实验研究。在光外差探测中利用声光调制器产生频移时,衍射光斑存在裂化,即衍射光束存在质量下降现象。利用逐点扫描法对声光器件的衍射效率进行测量,发现超声场在声光介质中分布不均匀,同时指出衍射光斑不均匀是由声场分布不均匀造成的。对此,通过对声场分布进行仿真和建立非均匀光栅衬度模型两种方法,描述了衍射不均匀现象。经实验表明,用光阑法限制光束尺寸可有效改善非均匀声场对衍射光束质量的影响。基于对声光器件声场特性进行的研究,建立了换能器简化声场分布模型,分析了在非均匀声场中影响衍射效率的因素,提出了声光器件最佳衍射效率区域。为进一步提高声光器件的工作效率,本文对声光器件的非互易效应进行了研究,实验表明利用该效应可有效提高声光器件的衍射效率。主要研究工作包括:
     1、由参量互作用观点出发推导声光耦合波方程的一般形式,利用动量匹配和动量失配分析了介质中的声光互作用规律。通过声光衍射实验发现了衍射光束质量下降的现象,研究了导致衍射光束质量下降的主要原因。针对在声光晶体不同位置的衍射效率分布提出逐点测试方案,进行实验测量,并对测试数据进行了处理和分析,得出衍射光束质量变差、效率下降是由空间声场的不均匀分布造成的。
     2、首先,通过有限元分析结合有限差分法,对声场分布进行了仿真。通过对这种非均匀声场的理论分析,验证了衍射光斑不均匀是由声场不均匀造成的,分析了在非均匀声场中影响衍射效率的因素。其次,根据体光栅衬度对衍射光效率的影响,建立非均匀光栅衬度模型。通过仿真再次验证了衍射光束质量下降由声场不均匀造成。最后,在不改变声光设备的情况下,用限制光束直径的方法,改善非均匀声场对衍射光束质量带来的影响。光外差实验中,通过光阑限制光束尺寸,消除了之前衍射光斑中心存在的暗纹,改善了光斑中心不呈现光强极大值和光强分布不均匀的现象,克服了之前衍射光束旁瓣多、噪声大的缺点。实验证明利用光阑法可以有效地改善非均匀声场对衍射光束质量的影响,达到提高激光外差效率的目的。
     3、基于对声光器件压电换能器的特性研究,针对目前器件常用双电极压电换能器的情况,从瑞利积分出发,利用椭圆高斯分布描述压电换能器声场分布,建立了在各向异性介质中矩形活塞换能器的简化声场分布模型,对声源辐射的空间声场分布进行了分析、仿真和计算。通过这种构造的声场分布研究,结合声场分布与衍射效率分布的关系,计算出多个压电换能器声光器件的衍射效率分布曲线。针对氧化碲作为声光介质的双压电换能器声光器件进行仿真和实验研究,得出实际声光衍射效率特性曲线,证明理论仿真与实验结果吻合。最后得出在晶体中均匀声场分布范围的表达式,提出了声光器件最佳衍射效率区域。
     4、根据光束相对声光器件正向、反向传播时,存在不同衍射效率的非互易现象,探讨了衍射光强衰减影响衍射效率的问题,分析了RF信号100MHz驱动下声光器件的非互易工作特性。借助信号发生器和光功率计结合光束衍射实验,对氧化碲介质的声光器件进行非互易程度测量,利用光功率计计量在不同驱动频率下的衍射效率分布情况。通过比较声光器件传输带宽,确定非互易效应造成的频移。实验证明氧化碲介质的声光器件存在非互易效应,并发现声波矢方向不仅影响光衍射方向,还伴随传输带宽的偏移。再通过激光外差干涉实验,判断声光器件的这种非互易效应对外差中频信号的影响,同时利用非互易效应提高激光外差中频信号的增益。实验结果表明,采用非互易特性可以提高声光调制器有效工作效率,增加其实用性。
This work focuses on the influence of acousto-optic devices on heterodyneefficiency in the laser heterodyne interference detection. The features and applicationsof acousto-optic devices and encountered problems are discussed. The sound fielddistribution can influence the diffraction efficiency of the acousto-optic modulator andthe beam quality of the diffracted beam. In this research, the ultrasonic sound fielddistribution model generated from ultrasonic transducer is investigated, the factors ofnon-uniform sound field that affect the diffraction efficiency are analyzed, thenon-reciprocal effects of acousto-optic devices and its influence on the laser heterodyneinterference effects are also discussed. A summary of the development and applicationof acousto-optic devices and its operating characteristics is given.
     The first part of the paper, the general form of the sound and light coupled waveequations are derived from the parametric interactive point of view, and the interactionof the sound and light is analyzed by using the momentum matching and momentummismatch. The properties of the tellurium oxide acousto-optic devices are studiedthrough simulation and experiment, and then the acousto-optic diffraction efficiencycurves are obtained, the experimental results agree well with the theory. Based on thekind of non-uniform sound field theoretical analysis is made, and the result that thedecline in beam quality of the diffraction beam caused by the uneven sound field isexamined. The main reasons of the decline of diffraction beam quality led byacousto-optic crystal are studied. The experimental test measurement of theacousto-optic diffraction efficiency is made, and the measured data are processed andanalyzed. Through the comparison with the theoretical analysis, we can see that thediffraction beam quality deterioration and reduced efficiency was caused by the unevendistribution of spatial sound field.
     The second part of the paper, because of the fact that sound reflection leads touneven distribution of sound field in the crystal, a light beam diaphragm method isproposed. First of all, the non-uniform grating contrast model is proposed from theinfluence on volume grating contrast and diffraction efficiency. By use of the theoreticalsimulation and experimental measurements, proof of the transmission performance ofthe aperture method is examined. In addition, through the beam diaphragm method thecenter dark lines in spot of the diffracted beam is eliminated in the heterodyneinterferometer experiments, and the beam spot shows much more uniform. This methodcan improve the diffraction beam quality and improve heterodyne interferometer performance.
     The third part of the paper, based on the Rayleigh integral, the axisymmetricultrasonic transducer of sound field distribution characteristics is analysed. By use of anelliptical Gaussian modeling the piezoelectric transducer sound field distribution isdescribed, the radiation distribution for spatial sound field is analyzed, and numericalcomputation is also made. Through analysis and simulation modeling, the sound fielddistributions are discussed for different crystal location and attenuation. Then therelationship between the sound field distribution and the diffraction efficiencydistribution is derived, and the optical field distributions are computed for severaldiffraction conditions. At the end of this part, the condition under which the sound fieldin the crystal is uniform, and the diffraction efficiency on the acoustic axis are given.
     The fourth part of the paper, according to the beam forward and back transmissionin the acousto-optic devices, there exist different diffraction efficiency. From this kindof non-reciprocal phenomenon in the acousto-optic device, the consideration of thefactors to influence the diffraction efficiency and the laser heterodyne interferometerefficiency owing to the diffracted light attenuation are discussed. By use of thenon-reciprocal theory the acousto-optic device operating characteristics which havedriven by100MHz are analysed. The frequency shift resulted from non-reciprocal effectcan be determined by help of comparison of the transmission bandwidth of theacousto-optic device. Experimental results indicate that in tellurium oxide acoustic-opticdevices there exist non-reciprocal effect, it is shown that the direction of acoustic wavepropagation effects not only the light diffraction’s direction also the change oftransmission bandwidth. In tellurium oxide crystal such change can be as high as50~60%of the total bandwidth.
     In the research of laser heterodyne interferometer for coherent detection technology,the non-reciprocal effect in acousto-optic device can be used to determine the impactson heterodyne IF signal. And by use of the non-reciprocal effect the gain of laserheterodyne IF signal could be improved. The experiment shows: when the radiofrequency is tuned to a working range from100to105MHz for the acoustic opticmodulator (AOM), the diffraction efficiency reaches the maximum value of98%. Byuse of the non-reciprocal effect, a7.7dB voltage gain of diffraction efficiency can beobtained and heterodyne signal power increases by+13dBm to+21dBm.
引文
[1]徐介平.声光器件的原理、设计和应用[M].北京:科学出版社,1982.4-54,73-82.
    [2]俞宽新,丁晓红,庞兆广.声光原理与声光器件[M].第一版.北京:科学出版社,2011. Ⅴ-Ⅵ.
    [3]周炳琨,高以智,陈倜嵘等.激光原理[M].第四版.北京:国防工业出版社,2002.223-224.
    [4] Kein W R, Cook B D. Umified approach to ultrasonic light diffraction[J]. IEEETrans. Sonics Ultrasonic,1967,14(3):123-140.
    [5]崔志超,过振,徐银新等.二维声光调Q开关近场衍射效率分布[J].电子科技.2010,23(7):36-39.
    [6]俞宽新,丁晓红,庞兆广.声光原理与声光器件[M].第一版.北京:科学出版社,2011.328-336.
    [7] Akiyama. Y., SaSaki M., Yuasa H. et al.. Efficient high-power diode-pumpedNd:YAG rod laser[J]. Conference on Lasers and Electro-Optics, CLEO/PacificRim, the4th Pacific Rim.200l,558-559.
    [8]石顺祥,张海兴,刘劲松,物理光学与应用光学[M].西安:西安电子科技大学出版社.2005.262-268.
    [9] Machan J. P., Long W. H., Zamel Jr. et a1..5.4kW diode-pumped,2.4×diffraction-limited Nd:YAG laser for material processing[J]. OSA/ASSL.2002:549-551.
    [10]王刚,李武军,王石语等.声光调Q激光器所需最小衍射效率的研究[J].光子学报.2005,34(10):1445-1447.
    [11]于晓芳,王博,李兵斌等.声光调Q DPL衍射效率延迟速率对脉冲特性的影响[J].红外与激光工程.2007,36(1):73-76.
    [12]叶艳,王石语,文建国等.声光Q开关衍射特性的空间分布[J].西安电子科技大学学报(自然科学版).2003,30(3):391-393.
    [13] Goodno G. D., Komine H.,McNaught S. J. et a1.. Coherent combination ofhigh-power, zigzag slab lasers[J]. Opt. Lett.2006,3l(9):1247-1249.
    [14]任宁,刘敬民,秦凤英.美国高能激光武器发展现状及远景规划[J].红外与激光工程.2008,37(9):375-378.
    [15]李晋闽.高功率全固态激光器研究及应用[J].红外与激光工程.2007,36(6):1-3.
    [16]姬寒珊,秦致远,赵东新.国外激光武器发展的经验与前景[J].激光与光电子学进展.2006,43(5):14-19.
    [17]李源,陈治平,王鹏华.高能激光武器现状及发展趋势[J].红外与激光工程,2008,37(9):371-374.
    [18]戈平. DPL中声光调Q开关衍射效率的角度匹配问题研究[D].西安电子科技大学学位论文.2011,34-36.
    [19]刘唤唤.布拉格声光衍射场光强空间分布不均匀的研究[D].西安电子科技大学学位论文.2010,32-42.
    [20] Hall R. N., Fenner G. E., Kingsley J. D. et al.. Coherent light Emission FromGaAs Junctions[J]. Phys. ReV. Lett.1962,9(9):366-368.
    [21] R. Newman. Excitation of the Nd3+fluorescence in CaWO4by recombinationradiation in GaAs[J]. Appl. Phys.1963,34:437-438.
    [22] Ostermayer F. W., Allen Jr. R. B., Dierschke E. G.. Room-temperature CWoperation of a GaAs1-xPx diode-pumped YAG:Nd laser[J]. Appl. Phys. Letts.1971,(19):289-295.
    [23] Ross M..YAG laser operation by semiconductor laser pumping[J]. Proc. IEEE.1968,56:196-197.
    [24] Vetrovec J.. Conceptual design of a100kW-class solid state1aser. FouneenthAnnual on Solid-State and Diode[J].Laser Technology Review.2001,100-103.
    [25] Beach R. J., Freitas B. L.. Practical100-kW-class diode arrays energy[J]. LaserFocus World.2001,103-107.
    [26]马品仲,马劲峰,张金艳.半导体激光在医疗中应用研究[J].应用激光.2007,27(3):254-259.
    [27]周复正,陈有明,胡文涛等.半导体激光泵浦固体激光器的新进展和应用前景[J].中国激光.1994,21(5):354-360.
    [28]李强,姜梦华,雷訇.工业用大功率固体激光加工系统[J].中国激光,2008,35(11):1847-1852.
    [29]王恺宜.激光加工技术在汽车工业中的未来应用[J].激光技术与应用.2006,(7):23-25.
    [30]阎吉祥,崔小虹,王茜蒨.激光原理技术及应用[M].北京:北京理工大学出版社.2006.173-175.
    [31] Koechner W..固体激光工程[M].第一版.北京:科学出版社.2002.410-438.
    [32]徐介平.声光器件的原理、设计和应用[M].北京:科学出版社.1982.73-90.
    [33]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社.2001.27-36.
    [34]金长善.超声工程[M].哈尔滨工业大学出版社.1989.18-30.
    [35] CHANG Ling-ying, ZHAO Bao-chang, QIU Yue-hong, et al. Eliminatechromatic aberrations for acousto-optic tunable filter[J]. Acta Photonica Sinica,2009,38(11):2895-2899.
    [36]常凌颖,赵葆常,邱跃洪,等.声光可调谐滤波器(AOTF)消色散设计[J].光子学报,2009,38(11):2895-2899.
    [37] LU Min, CUI Jian-min, LIU Wei, et al. Performance analysis and design ofquasi-collinear acousto-optic mode converter[J]. Acta Photonica Sinica,2005,34(5):662-665.
    [38]吕敏,崔建民,刘维,等.准共线集成声光模式转换器的性能分析与设计[J].光子学报,2005,34(5):662-665.
    [39]胡鸿璋,戴和义,赵慈,等.共线声光耦合的集成光学TE/TM模转换器[J].光子学报,1997,26(4):340-344.
    [40] HUO Lei. Inhomogeneous spatial distribution of scattering light intensity basedon Bragg acousto-optic diffraction field[J]. Journal of Applied Optics,2010,31(1):161-163.
    [41] DOBROLENSKIY Y S, VOLOSHINOV V B. Nonreciprocity of acousto-opticinteraction in collinear tunable acousto-optic filters[J]. Applied Optics,2009,48(7):67-73.
    [42]钱勋学.声场分布分析及高速声光相关系统研究[D].电子科技大学硕士学位论文.2009,24-28.
    [43] SUZUKI K, OKAMOTO A. Apodization method by non-uniform spatialdistribution of diffraction gratings for photorefractive wavelength filter[J]. AsiaCommunications and Photonics Conference and Exhibition,2009:14-15.
    [44] MAAK P, LENK S. Optimization of transducer configuration for bulkacousto-optic tunable filters[J]. Optics Communications,2004,241(1-3):87-98.
    [45] BALAKSHY V I, BOGUMIL B J. Acousto-optic interaction in a nonhomogeneous acoustic field excited by a wedge-shaped transducer[J].Ultrasonics,2008,48(5):351-356.
    [46] BALAKSHY V I, BOGUMIL B L. Light diffraction in an inhomogeneousacoustic field[J]. Molecular and QuantumAcoustics,2006,27(2006):7-16.
    [47] BALAKSHY V I, REVENKO A V. Acousto optic cells with wedge-shapedpiezoelectric transducers excited at high-order harmonics[J]. Journal ofCommunications Technology and Electronics,2010,55(7):831-837.
    [48] BALAKSHY V I, BOGUMIL B J. Light diffraction in an inhomogeneousacoustic field excited by wedge-shaped and parabolic transducers[J]. TheEuropean Physical Journal Special Topics,2008,154(1):1-5.
    [49] VOLOSHINOV V B, BALAKSHY V I. Acousto-optic properties of telluriumthat are useful in anisotropic diffraction[J]. Journal of Optics A: Pure andApplied Optics.2008,10(9):95002-95010.
    [50]张山,谭久彬,王雷.激光直写中误差校正迭代方法的改进(英文)[J].光学精密工程,2010,18(2):317-325.
    [51]谢冀江,李殿军,张传胜.声光调QCO_2激光器[J].光学精密工程,2009,17(5):1008-1013.
    [52]李玉斌.高效389.5MHz声光调制器研究及应用[J].光学精密工程,1996,4(2):78-82.
    [53] BALAKSHY V I, BOGUMIL B J. Acousto-optic interaction in anon-homogeneous acoustic field excited by a wedge-shaped transducer[J].Ultrasonics,2008,48(5):351-356.
    [54] BALAKSHY V I, BOGUMIL B L. Light diffraction in an inhomogeneousacoustic field[J]. Molecular and QuantumAcoustics,2006,27(2006):7-16.
    [55]龚育良,李红卫,白世武,等.激光外差探测超声位移的原理、方法和实验[J].声学学报,1996,21(3):259-264.
    [56]杨薇,刘迎,肖立峰,等.两级串联声光可调谐滤波器旁瓣抑制的研究[J].物理学报,2009,58(1):328-332.
    [57] K.Suzuki, A.Okamoto. Apodization method by nonuniform spatial distributionof diffraction gratings for photorefractive wavelength filter [J].ACP,2009.
    [58] J.A.Kusters, D.A.Wilson and D.L.Hammond. Optimum crystal orientation foracoustically tuned optical filters[J]. Journal of the optical society of America,1974,64(4):434-440.
    [59] Pal Maak, Sandor Lenk. Optimization of transducer configuration for bulkacousto-optic tunable filters[J]. Optics Communications,(2004),241(1-3):87-98.
    [60]安毓英,曾晓东.光电探测原理[M].西安:西安电子科技大学出版社,2004.
    [61]钟志,谭久彬.激光外差干涉快速超精密测量模型研究[J].光学学报,2005,25(6):791~794.
    [62]贺岩,王文奎,夏文兵,等。激光多普勒振动计用于水下声光通信[J].中国激光,2007,34(5):703~706.
    [63]张玉存,刘彬.一种新的信号分析方法在激光多普勒信号检测中的应用[J].中国激光,2005,32(12):1673~1677.
    [64] Partha P. Banerjee, Ting-Chung Poon. Principles of Applied Optics[M]. UnitedStates ofAmerica: Richard D. Irwin, Inc., and Aksen Associates, Inc.,1991.
    [65] A.雅里夫著.李宗琦译.光电子学导论[M].北京:科学出版社,1983.
    [66]胡健伟,汤怀民著.微分方程数值方法[M].北京:科学出版社,1999.
    [67] I.C.Chang.Acoustoopic devices and application[J].IEEE Trans.Sonics andUltransonics,1976,23(1):2-22.
    [68] L.D.Dickson.Optical considerations for an acoustooptic deflector[J].Appl.Opt.,1972,11(10):2196-2202.
    [69] D.Maydan.Micromachining and image recording on thin film by laserbeams[J].Bell Sys.Tech.J.,1971,50(6):1761-1789.
    [70]史锦珊,郑绳楦.光电子学及其应用[M].北京:机械工业出版社,1991.
    [71]杨经国,冉瑞江,杜定旭,等,光电子技术[M].四川:四川大学出版社,1990.
    [72]丁俊华,崔砚生,吴美娟,等.激光原理及应用[M].北京:清华大学出版社,1987.
    [73] W.R.Klein, Bill.D.Cook. Unified approach to ultrasonic light diffraction[J].IEEETrans.Sonics and Ultrasonics,1967,14(3):123-134.
    [74] A.亚里夫.量子电子学[M].上海:上海科学出版社,1982.
    [75]朱京平,等.多重散射理论声光祸合波方程的龙格一库塔法数值分析[J].光子学报,2005,34(2):284-287.
    [76] Appel R K, Somekh M O. Series solution for two-frequency Bragg interactionusing the Kopel-Poon multiple scattering model[J]. JOSA,1993,10(2):466-498.
    [77]林书玉.超声换能器的原理与设计[M].北京:科学出版社,2004.36-49.
    [78] A.H.Meitzler.超声换能器材料[M]林仲茂、施仲坚、孙承平等译.北京:科学出版社,1979.134-185.
    [79] Pal Maak. Optimization of transducer configuration for bulk acousto-optictunable filters[J]. Optics Communications,2004,241(3):87-98.
    [80] Aaron Fleischman, Rushabh Modi. Miniature high frequency focusedultrasonictransducers for minmally invasive imaging procedures[J]. Sensors andActuators,2003,103(1):76-82.
    [81] J.J. Chen, F.Zeng, D. M.Li, J.B.Niu, Fpan. Deposition of high-quality zinc oxidethin films on diamond substrates for hing-frequency surface acoustic wave filterapplications[J]. Thin Solid Films,2005,485(1):257-261.
    [82]赵伟,李公羽,汪贤秀.导波器件的宽带声光叉指换能器[J].高技术通讯,1994,1(1):13-15.
    [83] A.Sliwinski. Acousto-optics and its perspctives in research and applications[J].Ultrasonics,1990,28(4):195-213.
    [84]李晓惠,杨亚培.基于LiNbo4波导的共线集成声光器件[J].激光技术,2004,28(4):355-358.
    [85] V.B.Voloshinov, V.Ya.Molchanov, J.C.Mosquera. Spectral and polarizationanalysis of opticalimages by means of acousto-optics[J]. Optical&LaserTechnogogy,1996,28(2):119-127.
    [86]曹跃祖.声光效应原理及应用[J].物理与工程,2000,10(5):46-52.
    [87] Nabeel A.Riza, Acousto-optically switched Optical delaylines[J].Optics,Communicztions,1998,145(1-6):15-20.
    [88] X.Z.Xie,G.Y.Chen,L.J.Li.Dressing of resin-bonded superabrasive grindingwheels by means ofacousto-optic Q-switched Pulsed Nd: YAG laser[J].Optical&Laser Technology,2004,36(3):409-419.
    [89] I.Abdulhalim, C.N.Pannell, L.Reekie. High power, sbortPulse acousto-opticallyQ-switchedfiber laser[J]. Optics Communications,1993,99(5):355-359.
    [90] Yuan Tian, Liwei Zhao, Daqian Song. Acousto-Optic tunable filter-based surfacePlasmonresonance biosensor for determination of human factor B[J]. AnalytiaChimicaActa,2004,511(2):97-104.
    [91] Ling Bei, Glenn I.I.Dennis. Acousto-optic tunable filters:fundamentals andapplications asapplied to chemical analysis techulques[J]. Progress in QuantumElectronics,2004,28:67-87.
    [92]李志云,黄广伦,杨毅生等.高频带低损耗声表面波滤波器[J].压电与声光,1999,21(1):4-7.
    [93]王德芳.美国声光器件的研究动向及其应用[J].压电与声光,1984,(3):3-13.
    [94] Le Nguyen Binh. Lithium niobate Optical modulators: Devices andapplications[J]. Journal of Crystal Growth,2006,288(1):180-187.
    [95] Yimin Wang Norihito Saito,Hideo Tashiro.Unidirectional opcration of a ringlascr by means of anisotropic acousto-optic device[J]. Optics Communications,2002,207(4):279-285.
    [96] V.I. Baiakshy. Application of acousto-optic interaction for holographicconversion of light fields[J]. Optics&Laser Technology,1996,28(2):109-117.
    [97]程乃平,江修富,邵定蓉. Bragg声光器件在现代军事领域的应用[J].遥测遥控,1999,20(2):59-6367.
    [98]程乃平,邵定蓉.声光信号处理-频谱分析与相关处理[J].遥测遥控,1994,15(4):16-22.
    [99]程乃平,李暑坚,邵定蓉.用于数字信号处理的空间积分声光相关器[J].电子学报,1996,24(6):42-46.
    [100]王丹志,邵定蓉,李署坚.声光自适应信号处理技术在扩频通信中的应用[J].光学技术,2005,31(5):776-778.
    [101]彭江得.光电子技术基础[M].北京:清华大学出版社,1988:4-48.
    [102] Waag R C, Campbell J A, Ridderet J, et al. Cross-sectional measurements andextrapolations of ultrasonic fields[J].IEEE Trans. Sonics Ultrasonics,1985,32(1):26-35.
    [103] Schafer M E, Lewin P A. Transducer characterizaion usion the angularapectrum method[J]. JAcoust Soc.Am.,1989,85(5):2202-2214.
    [104] Pedersen P C, Orofino D P. Modeling of received ultrasound signals fromfinite planar target[J]. IEEE Trans Ultrason Ferroelec Freq.Control,1996,43(2):303-311.
    [105] Earl G William, Maynard J D. Numerical evaluation of the Rayleigh integralfor planar radiators using the FFT[J]. J Acoust Soc.Am.,1982,72(6):2020-2030.
    [106] Christopher P T, Parker KJ. New approaches to the linear propagation ofacoustic field[J]. JAcoust Soc.Am.,1991,90(1):507-521.
    [107] Orofino D P, Pedersen P C. Efficient angular spectrum decomposition ofacoustic sources Part.I.Theory[J]. IEEE Trans Ultrason ferroelec freqControl,1993,40(3):238-249.
    [108] Orofino D P, Pedersen P C. Efficient angular spectrum decomposition ofacoustic sources Part.II.Result[J]. IEEE Trans Ultrason ferroelecfreq.Control,1993,40(3):250-257.
    [109] Ping Wu,Rymantas Kazys,Tadeusz Stepinski.Analysis of the numericallyimplemented angular spectrum approach based on the evaluation oftwo-dimensional acoustic field.Part.I.Errors due the discrete fourier transfornand discretization[J]. JAcoust Soc.Am.,1996,99(3):1339-1348.
    [110]金长善.超声工程[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [111]布利茨J.超声技术及其应用[M].北京:海洋出版社,1992.
    [112]韩鹏,王召巴,陈友兴.多元高斯声束模型相控阵超声传感器声场仿真[J].传感器与微系统,2010,29(2):22-25.
    [113] Casasent D. A coustooptict ransducers in iterative optical vector matrixprocessors[J]. Appl. Opt.,1982,21(10):1859-1865.
    [114] Pochap sky E, Casasent D P. A coustoop t ic linear heterodyned complexvalued matrix-vector processor[J]. Appl. Opt.,1990,29(17):2532-2543.
    [115] Caro line J, Perlee, Casasent D P. Effects of error sources on the parallelism ofopticalmat rix-vector processor[J]. Appl. Opt.1990,29(17):2544-2555.
    [116]广州安特激光技术有限公司声光Q开关选型说明.
    [117] Le Nguyen Binh. Lithium niboate Optiacle modulatosr: Deviecs andApplications. Journal of Cyrstal Growth,2006,288(1):180-187.
    [118] Yimin Wang, Norihito Saito, Hideo Tsahiro. Unidirectional operation of a ringlaser by means of anisotropic acousooptic device. Optics Communiactions,2002,207:279-285.
    [119]陈洪芳,丁雪梅,钟志,等.高加速度超精密激光外差干涉测量模型[J].光电工程,2007,34(8):72-75.
    [120]陈洪芳,钟志,丁雪梅.激光外差干涉的非线性误差补偿[J].光学精密工程,2010,18(5):1043-1047.
    [121]高晓萍.高空间频率光栅的制作[J].光机电信息,2000,17(12):25-29.
    [122]赵小红.一类非线性偏微分方程的若干有限差分格式[D].燕山大学:燕山大学,2008.
    [123]冯平,王尔智,王维俊.唯一稳态冻结系数消谐法在铁磁谐振中的应用[J].南通职业大学学报,2011,25(1):76-78+100.
    [124]张春光.基于超光谱成像系统的声光可调滤波技术研究[D].哈尔滨工业大学:哈尔滨工业大学,2008.
    [125]黄宗军.针对声光布拉格衍射的脉冲幅度分析技术的研究[D].哈尔滨工程大学:哈尔滨工程大学,2008.
    [126]刘骏跃.声表面波惯性器件传感检测技术研究[D].西北工业大学:西北工业大学,2007.
    [127]刘彪,王晓新,吴冉,等.宽带声光布拉格器件及应用[J].红外与激光工程,2006,35(4):523-527.
    [128]刘彪,王晓新,吴冉,等.宽带声光布拉格器件及应用[C].红外与激光工程,2006,35:523-527.
    [129]刘韬,俞宽新,安伟,等.表面波布拉格声光互作用耦合波方程的研究[J].光学与光电技术,2008,6(2):40-42.
    [130]张秀峰.基于FPGA的超短脉冲激光调制系统驱动器的研究[J].光电子技术,2011,31(1):42-45.
    [131]斯德谊,刘荣科,李暑坚,等.宽带微弱扩频信号声光相关解调解扩方法[J].电子学报,2000,4(4):46-48+68.
    [132]何大伟,许承杰,徐叙瑢.空间积分声光相关处理的研究[J].光学学报,2000,20(11):1514-1517.
    [133]邵忍平,薛腾,马杰.减速器系统振动与声辐射特性研究[J].计算机测量与控制,2011,19(9):2230-2233.
    [134]李娜,贺西平,宁景锋.纵振-方形声源辐射声场的计算[J].井冈山大学学报(自然科学版),2011,32(3):28-31.
    [135]韩伟.基于高斯声束模型的超声检测仿真技术研究[D].中北大学:中北大学,2011.
    [136]刘志永.中厚盘弯曲振动特性及指向性研究[D].陕西师范大学:陕西师范大学,2011.
    [137]李娜.纵振—方形声源辐射特性研究[D].陕西师范大学:陕西师范大学,2011.
    [138]陈伟.基于G-S算法的治疗超声相控阵声场调控研究[D].重庆医科大学:重庆医科大学,2011.
    [139]孟贇,白景峰,陈亚珠.双层组织中相控聚焦超声声场分布的建模与计算[J].中国医学物理学杂志,2011,28(2):2567-2570.
    [140]孟贇.双层组织中聚焦超声声、热场分布及其物性分析[D].上海交通大学:上海交通大学,2011.
    [141]张勇,贺西平,李伟,等.自由边界矩形薄板弯曲振动辐射声场指向性研究[J].陕西师范大学学报(自然科学版),2010,38(4):36-39+45.
    [142]刘从光,于德介,姚凌云,等.利用附加质量载荷降低薄板声辐射[J].噪声与振动控制,2010,30(3):64-66+90.
    [143]臧献国,于德介,姚凌云,等.基于模态振型形状优化的结构声辐射控制[J].机械工程学报,2010,46(9):73-78.
    [144]张勇.弯曲振动矩形板声特性研究[D].陕西师范大学:陕西师范大学,2010.
    [145]韩鹏.环形阵列超声检测仿真技术研究[D].中北大学:中北大学,2010.
    [146]高希才,董孝义.第六讲声光器件的应用[J].压电与声光,1990,9(2):49-60.
    [147]安毓英,刘继芳,李庆辉.光电子技术[M].北京:电子工业出版社,2002.
    [148]蔡伯荣.集成光学[M].成都:电子科技大学出版社,1990.
    [149]陈根祥.光波技术基础[M].北京:中国铁道出版社,2000.
    [150]丁么明,宋立新,余华清,等.光波导与光纤通信基础[M].北京:高等教育出版社,2003.
    [151]苟杰,陈伟中.静态声空化泡内外的质量交换[J].中国科学:物理学力学天文学,2012,42(3):217-223.
    [152]任群言,朴胜春.一种宽带声场干涉图案处理的方法及其应用[J].哈尔滨工程大学学报,2012,33(3):1-6.
    [153]杨德森,郭小霞,时胜国,胡博.基于亥姆霍兹方程最小二乘法的运动声源识别研究[J].振动与冲击,2012,31(4):13-17.
    [154]焦映厚,孔霞,蔡云龙,张介禄,周亚政.基于FEM和BEM法的大型立式齿轮箱振动噪声计算及测试分析[J].振动与冲击,2012,31(4):123-127.
    [155]高飞,夏禾,曹艳梅,安宁.城市轨道交通高架结构振动与声辐射研究[J].振动与冲击,2012,31(4):72-76.
    [156]王学林,凌玲,胡于进.中耳正向与逆向压力增益模拟[J].华中科技大学学报(自然科学版),2012,40(2):5-8+17.
    [157]熊伟,崔鹏,印美娟,等.声强对板式陶瓷膜微滤超细TiO2悬浆液过程的影响[J].高校化学工程学报,2012,(2):1-6.
    [158]陈二云,赵改平,杨爱玲,等.计算气动声学中的高阶Nodal-DG方法研究[J].振动与冲击,2012,31(3):168-171.
    [159]陈燕燕,张宇坤,戴巍,等.交变流动中突变截面局部损失特性分析[J].工程热物理学报,2012,33(2):186-190.
    [160]高大治,王宁,王好忠,等.声强干涉结构监测浅海温跃层深度起伏[J].中国科学:物理学力学天文学,2012,42(2):107-115.
    [161]张文成,周穗华,蒋安林.敷设粘弹性材料的多层吸声模型阻抗匹配[J].高分子材料科学与工程,2012,28(2):157-160.
    [162]俞孟萨,刘延利,廖彬彬.腔室内部声场与结构振动耦合特性及噪声控制研究综述[J].船舶力学,2012,16(1):191-201.
    [163]范军,汤渭霖,卓琳凯.声呐目标回声特性预报的板块元方法[J].船舶力学,2012,16(1):171-180.
    [164]韩志会,彭虎,沈民奋.基于有限衍射波的合成孔径三维超声成像[J].中国科学技术大学学报,2012,42(2):119-123.
    [165]曹辉,封子阳,魏阿妮.声带振动产生的声场的远声场研究[J].压电与声光,2012,34(1):15-17.
    [166]张春光.基于超光谱成像系统的声光可调滤波技术研究[D].哈尔滨工业大学:哈尔滨工业大学,2008.
    [167]厉群,刘小明,李佟,彭江得,周炳琨.单模光纤声光滤波器带宽特性的研究[J].中国激光,2001,(9):829-832.
    [168] Vitaly B V, Yury S D. Nonreciprocity of acousto-optic interaction in collineartunable acousto-optic filters [J].Applied Optics,2009,48(7):67-73.
    [169]厉群,刘小明,李佟,金韬,周炳琨.单模光纤中声波传输的衰减及其对光纤声光滤波器工作特性的影响[J].中国激光,2001,(5):463-466.
    [170] Ebeling K J. Integrated optoelectronics: Waveguide optics, Photonics,Semiconductors. New York: Springer-Verlag,1992.
    [171] Hunsperger R G. Integrated optoelectronics: theory and technology. New York:Springer-Verlag,2009.
    [172] L Kuhn, M L Dakss, P F Heidrich et al. Appl. Phys. Lett.1970,17(6),265~26.
    [173] Marcuse D. Theory of dielectric optical waveguides. New York: AcademicPress,1974.
    [174] Marcuse D.介质光波导理论[M].北京:人民邮电出版社,1989.
    [175] Shoji Kakio, Shiji Uotani, Motoki Kitamura. Japanese Journal of Appl. Phys.2007,46(7B):4608~4612.
    [176]刘彤,马旭青,张晓平.岩石声谱特征值与强度关系研究[J].西部探矿工程,2003,85(6):64-66.
    [177]宋维琪,陈伟.测井声波时差反演重构技术研究及应用[J].地震地质,2009,31(1)133-140.
    [178]付兴龙.基于盲源分离的管道泄漏声波预警检测技术的研究[D].东北大学:东北大学,2009.
    [179]李锦.基于声波的运动车辆行驶状态辨识理论研究[D].南昌航空大学:南昌航空大学,2010.
    [180]赵言诚.二维声子晶体结构设计及其特性研究[D].哈尔滨工程大学:哈尔滨工程大学,2006.
    [181]王亚雄.声光互作用特性研究[D].陕西师范大学学位论文.2006,9-16.
    [182]俞宽新.使用一个双通道器件的声光相关器及其设计方法[J].压电与声光,1994,16(4):10-14.
    [183]张化福,胡光辉.声光效应的实验研究[J].山东理工大学学报(自然科学版),2008,22(1):52-54.
    [184]俞宽新,赵启大.空间积分双反向通道反常声光相关器[J].光学学报,1995,15(3):381-384.
    [185]赵启大.多维声光调制光学矩阵运算系统[Z].北京市:北京工业大学,.
    [186]严浩达.偏航报警仪的设计[J].电子工程师,2008,34(3):4-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700