用户名: 密码: 验证码:
液氦温区多级斯特林型脉管制冷机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液氦温区小型低温制冷机在空间探测、国防军事、医疗、交通运输、低温物理等领域有着重要应用。斯特林型脉管制冷机具有可靠、高效、紧凑、轻质等突出优点,可望满足苛刻的空间制冷要求,因此逐渐成为研究热点。与液氦温区GM型脉管制冷机相比,在高频条件下工作的斯特林型脉管制冷机,其工作机理更加复杂,尚未得到充分研究,限制了其制冷性能的提高。因此,本文旨在探索液氦温区斯特林型脉管制冷机的工作机理,主要开展了以下三方面的研究工作:
     1.多级斯特林型脉管制冷机结构形式研究
     首次系统开展多级斯特林型脉管制冷机的耦合方式与边界布置形式研究。重点研究了耦合方式对回热器效率和气流分配的影响,以及边界布置形式对调相能力、脉管效率以及预冷负荷等方面的影响。研究发现:气耦合型比热耦合型回热器损失更小,但同时气流分配受运行参数、结构参数影响更大。采用低温边界可显著增强惯性管的调相能力,提高脉管的绝热膨胀效率和制冷机压比,但同时增大了预冷负荷。结构形式研究可为多级斯特林型脉管制冷机的设计提供参考。
     2.液氦温区多级斯特林型脉管制冷机设计方法研究
     本文提出了采用确定结构形式、运行参数、温度分布、结构参数、最后进行匹配校核的一套多级斯特林型脉管制冷机设计方法。以一台液氦温区多级斯特林型脉管制冷机为例,首先选定三级热耦合的结构形式,其中第三级采用低温边界的形式。通过工质物性分析与各级匹配分析确定各级的基本运行参数,即工作频率与充气压力,进而依据制冷性能预估各级温度分布并依据温度分布选择回热材料。采用数值计算软件Sage与REGEGN及其他程序进行结构尺寸计算,其中回热器的结构尺寸根据回热效率与制冷量计算,脉管的体积与长径比根据膨胀效率、相位跨度与层流化要求而定,惯性管的结构尺寸基于简化的热声理论计算。最后对多级制冷机进行阻抗匹配校核。该设计方法可为多级斯特林型脉管制冷机的设计提供有效依据。
     3.三级斯特林型脉管制冷机实验研究
     本文自行设计搭建了三级斯特林型脉管制冷机实验装置,初步验证了多级斯特林型脉管制冷机理论设计方法的有效性。三级制冷机的频率与充气压力与设计值相近,第二级在设计频率与充气压力下获得纯惯性管型最低的无负荷温度之一,第三级最佳频率、充气压力为与设计值偏差分别小于0.1Hz、0.1MPa。三级制冷机的温度分布与设计值相近,一、二、三级的偏差仅为0.5K、0.7K、0.07K,并在各温区获得了与设计值相近的制冷效率。第一、二级分别获得35.1K、14.9K的无负荷温度,接近于单级、二级斯特林型脉管制冷机的世界最低温度,第三级获得4.97K的无负荷温度,首次以三级斯特林型脉管脉管制冷机结构进入液氦温区。理论结合实验研究了液氦温区运行参数的影响,研究发现频率、充气压力、输入功、预冷温度等四参数对制冷机各个部件的影响显著不同,据此提出提高制冷效率的方向并通过实验加以验证,获得了4.76K的无负荷制冷温度,低于国外采用四级结构(氦-4工质)所获得的最低制冷温度。以上实验与理论研究推动了液氦温区斯特林型脉管制冷机机理研究。
Cryocoolers working at liquid helium temperatures have many important applications in the fields of space exploration, military, medicine, transportion, and low-temperature physics. The Stirling pulse tube cryocooler (SPTC) is a potential candidate in space applications because of the advantages of high reliability, high efficiency, compactness, and low mass, and has become a hot topic these years. However, the working mechanism of a4K SPTC that operates at relatively high frequency is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of1-2Hz, and has not yet been well understood. In this study, theoretical and experimental investigation has been carried out to explore the refrigeration mechanism of the multistage SPTC working at liquid helium temperatures. The following content are included:
     1. Structure investigation of multistage SPTCs
     The characteristics of coupling methods and arrangement of the hot end of the pulse tube (short as pulse tube arrangement) are systematically investigated at the first time. The influence of coupling methods on regenerator efficiency and mass flow distribution and the influence of pulse tube arrangement on phase shift capability, pulse tube efficiency and precooling heat load are mainly investigated. The investigation reveals that the regenerator efficiency of gas-coupling method is higher that of thermal-coupling method, that the gas distribution of gas-coupling method is more apt to be influenced by working parameters and geometry parameters than that of thermal-coupling method. The investigation also reveals that phase shifting capability is enhanced by placing the pulse tube hot end at cold, meanwhile the expansion efficiency of the pulse tube is improved and the pressure ratio also improved. However, the precooling heat load increases. The structure investigation of multistage SPTC is the first step for the design of multistage SPTCs working at liquid helium temperatures.
     2. Design method investigation of multistage SPTCs working at liquid helium temperatures
     A new method of designing multistage SPTCs working at liquid helium temperatures is proposed in this paper, a series of steps including determining the structure, working parameters, temperature profile, geometry parameters are carried out and matching between stages is finally checked. A4K multistage SPTC is designed based on this method. The thermal coupling structure is fixed first, with the third-stage pulse tube hot end placed at cold. Secondly, the basic working parameters of frequency and charge pressure of each stage are determined based on the analysis of gas and material properties and also between-stage matching. The temperature profile is determined based on the summary of the performance of multistage SPTCs. Regenerator material is selected based on the temperature profile. Geometry parameters are determined based on the numerical calculation of Sage, REGEN and some other code. The length and diameter of regenerators are mainly fixed concerning regenerator efficiency and cooling power, the volume and aspect ratio of the pulse tubes are mainly fixed concerning the expansion efficiency, the phase span and the requirement of gas strengthening, the geometry of the inertance tubes are fixed based on the calculation of simplified thermoacoustic theory. Finally, the impedance matching between stages is checked. This method provides a reliable design method for multi-stage SPTCs.
     3. Experimental investigation of the three stage SPTC
     A three stage SPTC is designed and constructed. The experimental Investigation of this cooler has verified the design method of multistage SPTCs. The optimum frequency and charge pressure of three stages are close to the designed value. The second stage working at designed condition reached a no load temperature which is among the best results of inertance-phasing two stage SPTCs. The optimum frequency and charge pressure of the third stage are less than0.1Hz and0.1MPa of differences from the design values. The temperature distribution of the three stages is close to the design value, the difference is only0.5K,0.7K, and0.07K of three stages. The efficiency of the three stages are close to the designed value. The first stage and second stage reaches a no-load temperature of35.1K and14.9K, which is close to the lowest no-load temperature of single stage and two stage SPTCs. The three-stage SPTC reaches4.97K, which is the first time a three-stage SPTC reaches liquid helium temperatures. The influence of working parameters at liquid helium temperatures is investigated theoretically and experimentally. The investigation reveals that the influence of frequency, charge pressure, input power and precooling temperature is different on regenerators, pulse tubes and inertance tubes, and a new method for improving the cooling efficiency is proposed. This method is verified experimentally, and a no-load temperature of4.76K has been achieved, which is lower than that reached by a four-stage SPTC working with He-4. The experimental and theoritical investigation improves the refrigeration mechanism investigation of SPTCs working at liquid helium temperatures.
引文
1 Walker G. Cryocoolers (Part 1:Fundamentals & Part 2:Applications). New York and London: Plenum Press; 1983.
    2 Timmerhaus KD, Reed RP. Cryogenic Engineering:Fifty Years of Progress:Springer Science+Business Media, LLC; 2007.
    3 Orsini R, Nguyen T, Colbert R, Raab J. Characterization of a two-stage pulse tube cooler for space applications. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering. Tucson, AZ:Melville:Amer Inst Physics; 2010. p.410-7.
    4 Nast T, Olson J, Champagne P, Evtimov B, Frank D, Roth E, et al. Overview of Lockheed Martin cryocoolers. Cryogenics.2006;46 (2-3):164-8.
    5 Radebaugh R, Huang Y, O'Gallagher A, Gary J. Calculated regenerator performance at 4 K with helium-4 and helium-3. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering 52. Chattanooga, TN:Melville:Amer Inst Physics; 2008. p. 225-34.
    6 Olson J, Nast TC, Evtimov B, Roth E. Development of a 10 K pulse tube cryocooler for space applications. In:Ross RG, Jr., editor. Cryocoolers 12. Kluwer Academic/Plenum Publishers; 2003. p. 241-6.
    7 Olson JR, Davis T. Development of a 3-stage pulse tube cryocooler for cooling at 10k and 75k. In: Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 51A and B. Melville:Amer lnst Physics; 2006. p.1885-92.
    8 Olson JR, Moore M, Champagne P, Roth E, Evtimov B, Jensen J, et al. Development of a space-type 4-stage pulse tube cryocooler for very low temperature. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 51A and B 823. Melville: Amer Inst Physics; 2006. p.623-31.
    9 Nast T, Olson J, Champagne P, Mix J, Evtimov B, Roth E, et al. Development of a 4.5 K pulse tube cryocooler for superconducting electronics, hattanooga, TN2008. p.881-6.
    10 Nguyen T, Colbert R, Durand D.1 OK Pulse Tube Cooler.2007. p.27-31.
    11 Gifford WE, Longsworth RC. Pulse tube refrigeration. Journal of Engineering for Industry-Transactions of the ASME (J Eng Ind Trans ASME).1964;86264-70.
    12 Gifford WE, Kyanka GH. Reversible pulse tube refrigeration. AdvCryoEng. New Yorkl967. p. 619-30.
    13 Gifford WE, Longsworth RC. Surface Heat Pumping. Adv Cryo Eng.1966; 11171-9.
    14 Mikulin El, Tarasov AA, Shkrebyonock MP. Low-temperature expansion pulse tubes. Adv Cryo Eng 1984;29629-37.
    15 Radebaugh R, Zimmerman J, Smith DR, Louie B. A comparison of three types of pulse tube refrigerators-New methods for reaching 60 K. IN:Advances in cryogenic engineering.1986.
    16 Storch PJ, Radebaugh R. Development and experimental test of an analytical model of the orifice pulse tube refrigerator. St. Charles, IL, USA:Publ by Plenum Pub1 Corp; 1988. p.851-9.
    17 Radebaugh R. Review of pulse tube refrigeration. Proceedings of the 1989 Cryogenic Engineering Conference Part 2 (of 2) 35. Los Angeles, CA, USA:Publ by Plenum Publ Corp; 1990. p.1191-205.
    18 Zhou Y, Zhu W, Sun Y. Pulse tube with axial curvature. St. Charles, IL, USA:Publ by Plenum Publ Corp; 1988. p.861-8.
    19 Liang J, Zhou Y, Zhu W. Development of a single-stage pulse tube refrigerator capable of reaching 49 K. Cryogenics.1990;30 (1):49-51.
    20 Zhou Y, Zhu W, Liang J. Two stage pulse tube refrigerator. Proceeding of Fifth International Cryocooler Conference 1988. p.137.
    21 Tward E, Chan CK, Burt WW. Pulse tube refrigerator performance. Los Angeles, CA, USA:Publ by Plenum Publ Corp; 1990.
    22 Raab J, Tward E. Northrop Grumman Aerospace Systems cryocooler overview. Cryogenics.2010;50 (9):572-81.
    23 Wu P, Zhu S. Mechanism and numerical analysis of orifice pulse tube refrigeration with a valveless compressor. Proc Int Conf Cryogenics and Refrigeration Hangzhou, China:International Academic Publishers, Beijing, China; 1989. p.22-6.
    24 Shaowei Z, Peiyi W, Zhongqi C. Double inlet pulse tube refrigerators:an important improvement. Cryogenics.1990;30 (6):514-20.
    25 Zhu SW, Wu PY, Chen ZQ, Zhu WX, Zhou YA. A Single Stage Double Inlet Pulse Tube Refrigerator Capable of Reaching 42k. Cryogenics.1990;30257-61.
    26 David M, Marechal J-C, Encrenaz P. Measurements of instantaneous gas velocity and temperature in a pulse tube refrigerator. Huntsville, AL, USA:Publ by Plenum Pub1 Corp; 1991.
    27 Ravex A, Rolland P, Liang J. Experimental study and modelisation of a pulse tube refrigerator. Cryogenics.1992;32 (SUPPL.1):9-12.
    28 Zhou B, Wu P, Hu S, Chen G. Experimental results of the internal process of a double inlet pulse tube refrigerator. Cryogenics.1992;32 (SUPPL. 1):24-7.
    29 Net S. Temperature stability of a pulse tube refreigerators. Proceedings of the Sixteenth International Cryogenic Engineering Conference 1996.
    30 Gedeon D. DC gas flows in stirling and pulse tube cryocoolers. In:Ross RG, editor. Cryocoolers 9. New York:Plenum Press Div Plenum Publishing Corp:1997. p.385-92.
    31 Chen G, Qiu L, Zheng J, Yan P, Gan Z, Bai X, et al. Experimental study on a double-orifice two-stage pulse tube refrigerator. Cryogenics.1997;37 (5):271-3.
    32 Zhang LM, Hu JY, Luo EC, Dai W. A novel effective suppression of natural convection in pulse tube coolers. Cryogenics.2011;51 (2):85-9.
    33 Cai JH, Wang JJ, Zhu WX, Zhou Y. Experimental analysis of the multi-bypass principle in pulse tube refrigerators. Cryogenics.1994;34 (9):713-5.
    34 Ju YL, Wang C, Zhou Y. Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics.1997;37 (7):357-61.
    35 Ladner DR, Radebaugh R, Bradley PE, Lewis M, Kittel P, Xiao JH. On-Orbit Cooling Performance of a Miniature Pulse Tube Flight Cryocooler. Cryocoolers 12.2003. p.777-86.
    36 Kanao K, Watanabe N, Kanazawa Y. A miniature pulse tube refrigerator for temperatures below 100K. Cryogenics.1994;34 (SUPPL.1):167-70.
    37 Godshalk KM, Jin C, Kwong YK, Hershberg EL, Swift GW, Radebaugh R. Characterization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. In:Kittel P, editor. Advances in Cryogenic Engineering, Vol 41, Pts a and B. New York:Plenum Press Div Plenum Publishing Corp; 1996. p.1411-8.
    38 Zhu SW, Zhou SL, Yoshimura N, Matsubara Y. Phase shift effect of the long neck tube for the pulse tube refrigerator. In:Ross RG, editor. Cryocoolers 9. New York:Plenum Press Div Plenum Publishing Corp; 1997. p.269-78.
    39 Gardner DL, Swift GW. Use of inertance in orifice pulse tube refrigerators. Cryogenics.1997;37 (2):117-21.
    40 Roach PR, Kashani A. Pulse tube coolers with an inertance tube:Theory, modeling, and practice. In: Kittel P, editor. Advances in Cryogenic Engineering, Vol 43 Pts a and B. New York:Plenum Press Div Plenum Publishing Corp; 1998. p.1895-902.
    41 Radebaugh R, Lewis M, Luo E, Pfotenhauer JM, Nellis GF, Schunk LA. Inertance tube optimization for pulse tube refrigerators. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 51a and B. Melville:Amer Inst Physics; 2006. p. 59-67.
    42 Matsubara Y, Miyake A. Alternative methods of the orifice pulse tube refrigerator. Cryocooler 5. 1989. p.127-35.
    43 Matsubara. Four-valve pulse tube refrigerator. Proc of JSJS-IV.199354-9.
    44 Zhu SW, Kakimi Y, Matsubara Y. Investigation of active-buffer pulse tube refrigerator. Cryogenics. 1997;37(8):461-71.
    45 Gao JL, Matsubara Y. An inter-phasing pulse tube refrigerator for high refrigeration efficiency. Proceedings ICEC 16.1996. p.295-8.
    46 Matsubara Y, Gao JL. Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K. Cryogenics.1994;34 (4):259-62.
    47 Wang C, Thummes G, Heiden C. A two-stage pulse tube cooler operating below 4 K. Cryogenics. 1997;37 (3):159-64.
    48 Xu MY. de Waele A, Ju YL. A pulse tube refrigerator below 2 K. Cryogenics.1999;39 (10):865-9.
    49 Jiang N, Lindemann U, Giebeler F, Thummes G. A He-3 pulse tube cooler operating down to 1.3 K. Cryogenics.2004;44 (11):809-16.
    50 Gary J, Radebaugh R. An Improved Model for the Calculation of Regenerator Performance (REGEN3.1). Proc Fourth Interagency Meeting on Cryocoolers:David Taylor Research Center Technical Report DTRC91/003; 1991. p.165-76.
    51 Gedeon D. Sage:Object-Oriented Software for Cryocooler Design. Cryocoolers 8. Plenum Press, New York; Gedeon, D. p.281.
    52 Wang C. Numerical analysis of 4 K pulse tube coolers:Part Ⅰ. Numerical simulation. Cryogenics. 1997;37(4):207-13.
    53 Wang C. Numerical analysis of 4 K pulse tube coolers:Part Ⅱ. Performances and internal processes. Cryogenics.1997;37 (4):215-20.
    54 Zhu S, Matsubara Y. Numerical method of inertance tube pulse tube refrigerator. Cryogenics. 2004;44 (9):649-60.
    55 Zhu S, Matsubara Y. A numerical method of regenerator. Cryogenics.2004;44 (2):131-40.
    56 Zhu S, Nogawa M, Inoue T. Numerical simulation of a step-piston type series two-stage pulse tube refrigerator. Cryogenics.2007;47 (9-10):483-9.
    57 Kashani A, Roach PR. An optimization program for modeling pulse tube coolers. In:Kittel P, editor. Advances in Cryogenic Engineering, Vol 43 Pts a and B1998. p.1903-9.
    58 Park SJ, Koh DY, Hong YJ, Kim HB, Kim SY, Jung WS. A study on the in-line type inertance tube pulse tube cryocooler. Beijing2005. p.217-20.
    59 Ward B, Clark J, Swift G. Design Environment for Low-amplitude Thermoacoustic Energy Conversion (DeltaEC):http://www.lanl.gov/thennoacoustics. software and user's guide available from the Los Alamos thermoacoustics web site (Last viewed 9/30/); 2009.
    60 Flake B, Razani A. Modeling pulse tube cryocoolers with CFD. In:Waynert J, Barclay J, Breon S, Daly E, Demko J, Dipirro M. et al., editors. Advances in Cryogenic Engineering, Vols 49a and B. Melville:Amer Inst Physics; 2004. p.1493-9.
    61 Shiraishi M, Nakamura N, Seo K, Murakami M. Visualization study of velocity profiles and displacements of working gas inside a pulse tube refrigerator. In:Ross RG, editor. Cryocoolers 9. New York:Plenum Press Div Plenum Publishing Corp; 1997. p.355-64.
    62 Shiraishi M, Seo K, Nakamura N, Murakami M. Oscillating flow behavior in a pulse tube refrigerator under optimized conditions. In:Kittel P, editor. Advances in Cryogenic Engineering, Vol 43 Pts a and B. New York:Plenum Press Div Plenum Publishing Corp; 1998. p.2015-21.
    63 Hozumi Y, Murakami M, Shiraishi M. Numerical study of gas dynamics inside of a pulse tube refrigerator. In:Ross RG, editor. Cryocoolers 11. New York:Kluwer Academic/Plenum Publ; 2001. p. 363-9.
    64 Shiraishi M, Takamatsu K, Murakami M, Nakano A, Iida T, Hozumi Y. Visualization of DC gas flows in a double-inlet pulse tube refrigerator with a second orifice valve. In:Ross RG, editor. Cryocoolers 11. New York:Kluwer Academic/Plenum Publ; 2001. p.371-9.
    65 Shiraishi M, Ikeguchi T, Murakami M, Nakano A, Iida T. Visualization of oscillatory flow phenomena in tapered pulse tube refrigerators. In:Breon S, DiPirro M, Glaister D, Hull J, Kittel P, Pecharsky V, et al., editors. Advances in Cryogenic Engineering, Vol 47, Pts a and B. Melville:Amer Inst Physics; 2002. p.768-75.
    66 Shiraishi M, Fujisawa Y, Murakami M, Nanako A. Reduction of secondary flow in inclined orifice pulse tubes by addition of DC flow. In:Waynert J, Barclay J, Breon S, Daly E, Demko J, Dipirro M, et al., editors. Advances in Cryogenic Engineering, Vols 49a and B. Melville:Amer Inst Physics; 2004. p. 1560-7.
    67 Shiraishi M, Takamatsu K, Murakami M, Nakano A. Dependence of convective secondary flow on inclination angle in an inclined pulse tube refrigerator revealed by visualization. Cryogenics.2004;44 (2):101-7.
    68 Shiraishi M, Fujisawa Y, Murakami M, Nakano A. Reduction of convective heat losses in pulse tube refrigerators by additional DC flow2005.
    69 Shiraishi M, Murakami M, Nakano A, Iida T. Control of secondary flow in a double-inlet pulse tube refrigerator. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 51A and B. Melville:Amer Inst Physics; 2006. p.27-34.
    70 Cha JS, Ghiaasiaan SM, Desai PV, Harvey JP, Kirkconnell CS. CFD simulation of multi-dimensional effects in an inertance tube pulse tube refrigerator. In:Ross RG, editor. Cryocoolers 13. New York:Springer; 2005. p.285-92.
    71 Cha JS, Ghiaasiaan SM, Desai PV, Harvey JP, Kirkconnell CS. Multi-dimensional flow effects in pulse tube refrigerators. Cryogenics.2006;46 (9):658-65.
    72 Taylor RP, Nellis GF, Klein SA. Optimal pulse-tube design using computational fluid dynamics. In: Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 53a and 53b. Melville:Amer Inst Physics; 2008. p.1445-53.
    73 Taylor RP, Nellis GF, Klein SA, Radebaugh R, Lewis M, Bradley P. Experimental validation of a pulse tube CFD model. Tucson, AZ2010. p.76-83.
    74 Zhang XB, Qiu LM, Gan ZH, He YL. CFD study of a simple orifice pulse tube cooler. Cryogenics. 2007;47 (5-6):315-21.
    75 Zhang XB. Gan ZH, Qiu LM, Liu HX. Computational fluid dynamic simulation of an inter-phasing pulse tube cooler. Journal of Zhejiang University:Science A.2008;9 (1):93-8.
    76 Zhang XB, Qiu LM, Gan ZH. Complete linear model for double-inlet pulse tube cooler. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science).2008;42 (5):826-9.
    77 Hou XF, Zhao MG, Yang LW, Cai JH, Liang JT. CFD simulation and experimental optimization of high-frequency pulse tube cryocooler. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics.2006;27 (6):901-4.
    78 Gustafson S, Flake B, Razani A. CFD simulation of oscillating flow in an inertance tube and its comparison to other models. Keystone, CO2006. p.1497-504.
    79 Ki T, Jeong S. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor. Cryogenics.2010.
    80 Banjare YP, Sahoo RK, Sarangi SK. CFD simulation of a Gifford-McMahon type pulse tube refrigerator. International Journal of Thermal Sciences.2009;48 (12):2280-7.
    81 Wilson KB, Gedeon DR. Status of pulse tube cryocooler development at sunpower. In:Ross RG, editor. Cryocoolers 13. New York:Springer Science+Business Media; 2005. p.31-40.
    82 Bradley PE, Gerecht E, Radebaugh R, Garaway I. Development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. Advances in Cryogenic Engineering. Tucson, AZ: Melville:Amer Inst Physics; 2010. p.1593-600.
    83 Hu JY, Dai W, Luo EC, Wu ZH. Numerical simulation of a three-stage Stirling-type pulse tube cryocooler for 4K operation. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 53a and 53b. Melville:Amer Inst Physics; 2008. p. 1531-8.
    84 Gan ZH, Li ZP, Chen J, Dai L, Qiu LM. Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling. Journal of Zhejiang University:Science A. 2009; 10 (9):1277-84.
    85 Tanaeva 1A, Bos CGK, De Waele A. High-frequency pulse-tube refrigerator for 4 K. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 51A and B. Melville:Amer Inst Physics; 2006. p.821-8.
    86 Radebaugh R, O'Gallagher A. Regenerator operation at very high frequencies for microcryocoolers. 823 Ⅱ. Keystone, CO2006. p.1919-28.
    87 Vanapalli S, Lewis M, Gan ZH, Radebaugh R.120 Hz pulse tube cryocooler for fast cooldown to 50 K. Applied Physics Letters.2007;90 (7).
    88 Wang X, Dai W, Luo E, Zhou Y, Ren J. Characterization of a 100 Hz miniature pulse tube cooler driven by a linear compressor. Tucson, AZ201O. p.183-90.
    89 Cai H, Yang L, Luo E, Zhou Y. A 300 Hz two-stage pulse tube cryocooler that attains 58 K. Cryogenics.2010;50 (8):469-71.
    90 Yu G, Luo E, Dai W. Advances in a 300 Hz thermoacoustic cooler system working within liquid nitrogen temperature range. Cryogenics.2010;50 (8):472-5.
    91 Wu YZ, Gan ZH, Qiu LM, Chen J, Li ZP. Study on a single-stage 120 Hz pulse tube cryocooler. Tucson, AZ2010. p.175-82.
    92 Radebaugh R. Status and recent trends in cryocooler research. In:Wang R, Zhang P, editors. Cryogenics and Refrigeration, Proceedings. Beijing:Science Press, Beijing; 2008. p.11-22.
    93 Swift GW. Analysis and performance of a large thermoacoustic engine. J Acoust Soc Am.1992;92 (3):1551.
    94 Dietrich M, Yang LW, Thummes G. High-power Stirling-type pulse tube cryocooler:Observation and reduction of regenerator temperature-inhomogeneities. Cryogenics.2007;47 (5-6):306-14.
    95 Ross RG, Jr., Boyle RF, Key RW, Coulter DR. NASA advanced cryocooler technology development program. In:Mather JC, editor. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 4850. Bellingham:Spie-Int Soc Optical Engineering; 2003. p.1020-8.
    96 Yoshimura H. Nagao M, Inaguchi T, Yamada T, Iwamoto M. Helium liquefaction by a Gifford-McMahon cycle cryogenic refrigerator. Rev Sci Instrum.1989;60 (11):3533-6.
    97 Chen G, Zheng J, Zhang F, Yu J, Tao Z, Ding C, et al. Investigation on a two-stage solvay refrigerator with magnetic material regenerator. Cryogenics.1992;32 (SUPPL. 1):5-8.
    98 Kuriyama T, Takahashi M, Nakagome H, Eda T, Seshake H, Hashimoto T. Heliumliquefaction by a two-stage Gifford-McMahon-cycle refrigerator using new regenerator material of Er3Ni. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers.1992;31 (8 B):1206-8.
    99 Buschow KH. Cryogenics.1975; 15261.
    100 Li R. Proc 12th ICEC Butterworth U. K.1988. p.423.
    101 Gao JL, Matsubara Y. Experimental investigation of 4 K pulse tube refrigerator. Cryogenics. 1994;34(1):25-30.
    102 Tanida K, Gao JL, Yoshimura N, Matsubara Y. Three-staged pulse tube refrigerator controlled by four-valve method. In:Kittel P, editor. Advances in Cryogenic Engineering, Vol 41, Pts a and B. New York:Plenum Press Div Plenum Publishing Corp; 1996. p.1503-9.
    103 Wang C, Ju YL, Zhou Y. The experimental investigation of a two-stage pulse tube refrigerator. Cryogenics.1996;36 (8):605-9.
    104 Thummes G, Bender S, Heiden C. Approaching the 4He lambda line with a liquid nitrogen precooled two-stage pulse tube refrigerator. Cryogenics.1996;36 (9):709-11.
    105 Wang C, Thummes G, Heiden C. Experimental study of staging method for two-stage pulse tube refrigerators for liquid He-4 temperatures. Cryogenics.1997;37 (12):857-63.
    106 Wang C. Experimental study of staging method for two-stage PTR for liquid He-4 temperature 1997.
    107 Wang C, Thummes G, Heiden C. Effects of DC gas flow on performance of two-stage 4 K pulse tube coolers. Cryogenics.1998;38 (6):689-95.
    108 Qiu LM, He YL, Gan ZH, Chen GB. A single-stage pulse tube cooler reached 12.6 K. Cryogenics. 2005;45 (9):641-3.
    109 Qiu LM, He YL, Gan ZH, Zhang XB, Chen GB. Regenerator performance improvement of a single-stage pulse tube cooler reached 11.1 K. Cryogenics.2007;47 (1):49-55.
    110 Gan ZH, Dong WQ, Qiu LM, Zhang XB, Sun H, He YL, et al. A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics.2009;49 (5):198-201.
    111 Xu MY, De Waele ATAM, Ju YL. Pulse tube refrigerator below 2 K. Cryogenics.1999;39 (10):865-9.
    112 Sato Y, Sugita H, Komatsu K, Shimizu R, Uchida H, Murakami M, et al. Development of Advanced Two-stage Stirling Cryocooler for Next Space Missions. Cryocoolers 162009. p.13-22.
    113 Ren J, Dai W, Luo E, Wang X, Hu J. Experimental Investigation on a Single-Stage Stirling-Type Pulse Tube Cryocooler Working below 30 K. Cryocooler 16.2011. p.51-6.
    114 Durand D, Raab J, Colbert R. Michaelian M, Nguyen T, Petach M, et al. NGST Advanced Cryocooler Technology Development Program (ACTDP) cooler system. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 51A and B. Melville:Amer Inst Physics; 2006. p.615-22.
    115 Radebaugh R, O'Gallagher A, Gary J. Regenerator behavior at 4 k:effect of volume and porosity. In:Breon S, DiPirro M, Glaister D, Hull J, Kittel P, Pecharsky V, et al., editors. Advances in Cryogenic Engineering 47. Melville:Amer Inst Physics; 2002. p.961-8.
    116 Bradley PE, Radebaugh R, Garaway I, Gerecht E. Progress in the Development and Performance of a High Frequency 4 K Stirling-Type Pulse Tube Cryocooler. In:Miller SD, Ross RG, Jr., editors. Cryocoolers 16. ICC Press; 2011. p.27-34.
    117 Liang J, Ravex A, Rolland P. Study on pulse tube refrigeration Part 1:Thermodynamic nonsymmetry effect. Cryogenics.1996;36 (2):87-93.
    118 Liang J, Ravex A, Rolland P. Study on pulse tube refrigeration Part 2:Theoretical modelling. Cryogenics.1996;36 (2):95-9.
    119 Liang J, Ravex A, Rolland P. Study on pulse tube refrigeration Part 3:Experimental verification. Cryogenics.1996;36 (2):101-6.
    120 Xiao JH, Yang JH, Tao ZD. Miniature double-inlet pulse tube cryocooler:Design by thermoacoustic theory compared with preliminary experimental results. In:Kittel P, editor. Advances in Cryogenic Engineering, Vol 41, Pts a and B. New York:Plenum Press Div Plenum Publishing Corp; 1996. p.1435-41.
    121曹强,邱利民,甘智华,俞益波,植晓琴.单级斯特林型脉管制冷机的能量流分析.二程热物理学报.2011(6):905-9.
    122 Cao Q, Gan ZH, Liu GJ, Li ZP, Wu YZ, Qiu LM, et al. Theoretical and experiment study on a pulse tube cryocooler driven with a linear compressor. Cryocoolers 15. Kluwer Academic/Plenum Publishers; 2009. p.149-56.
    123 Radebough R. Development of the pulse tube refrigerator as an efficient and reliable cryocooler. AIRAH J 2001.p.21-7.
    124 Rawlins W, Radebaugh R, Bradley PE, Timmerhaus KD. Energy flows in an orifice pulse tube refrigerator. Adv Cryog Eng 39.1994. p.1449-56.
    125 Swift GW, Allen MS, Wollan JJ. Performance of a tapered pulse tube. In:Ross RG, editor. Cryocoolers 10. New York:Kluwer Academic/Plenum Publ; 1999. p.315-20.
    126 Thummes G, Schreiber M, Landgraf R, Heiden C. Convective heat losses in pulse tube coolers: Effect of pulse tube inclination. In:Ross RG, editor. Cryocoolers 9. New York:Plenum Press Div Plenum Publishing Corp; 1997. p.393-402.
    127 Ross Jr RG, Johnson DL. Effect of gravity orientation on the thermal performance of Stirling-type pulse tube cryocoolers. Cryogenics.2004;44 (6-8):403-8.
    128陈国邦,汤珂.小型低温制冷机原理.科学出版社;2010.p.237-57.
    129 Duval JM, Charles 1, Coynel A, Gauthier A. Development of 15 K Pulse Tube Cold Fingers for Space Applications at CEA/SBT. Cryocoolers 16.2011. p.45-50.
    130 Charles I, Golanski L, Gauthier A, Coynel A, Duval JM.20 K coaxial pulse tube using passive precooling. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 53a and 53b. Melville:Amer Inst Physics; 2008. p.887-94.
    131 Jaco C, Nguyen T, Colbert R, Pietrzak T, Chan CK, Tward E. High capacity staged pulse tube cooler. In:Waynert J, Barclay J, Breon S, Daly E, Demko J, Dipirro M, et al., editors. Advances in Cryogenic Engineering, Vols 49a and B. Melville:Amer Inst Physics; 2004. p.1263-8.
    132 Jaco C, Nguyen T, Tward E. High capacity two-stage coaxial pulse tube cooler. In:Weisend JG, Barclay J, Breon S, Demko J, DiPirro M, Kelley JP, et al., editors. Advances in Cryogenic Engineering, Vols 53a and 53b. Melville:Amer Inst Physics; 2008. p.530-7.
    133 Olson JR. Mateo S. Cold inertance tube for multi-stage pulse tube cryocooler.2005 Mar 15, Patent No.:US 6983610 B1.
    134陈杰,李卓裴,范炳燕,甘智华,邱利民.低温惯性管调相机理研究.低温与超导(增刊),第九届全国低温工程大会论文集2009.
    135 Yan P, Chen G, Dong J, Gao W.15 K two-stage Stirling-type pulse-tube cryocooler. Cryogenics. 2009;49(2):103-6.
    136 Nguyen C, Yeckley A, Culler A, Haberbusch M, Radebaugh R. Hydrogen/oxygen propellant densifier using a two-stage pulse tube cryocooler. In:Waynert J, Barclay J, Breon S, Daly E, Demko J, Dipirro M, et al., editors. Advances in Cryogenic Engineering, Vols 49a and B. Melville:Amer Inst Physics; 2004. p.1703-9.
    137 Gan ZH, Fan BY, Wu YZ, Qiu LM, Zhang XJ, Chen GB. A two-stage Stirling-type pulse tube cryocooler with a cold inertance tube. Cryogenics.2010;50 (6-7):426-31.
    138 Gan ZH, Liu GJ, Wu YZ, Cao Q, Qiu LM, Chen GB, et al. Study on a 5.0 W/80 K single stage Stirling type pulse tube cryocooler. Journal of Zhejiang University-Science A.2008;9 (9):1277-82.
    139刘国军.单级斯特林型脉管制冷机的理论和实验研究:浙江大学;2008.
    140李姗姗.高频脉冲管制冷机相位特性的理论及实验研究:中国科学院上海技术物理研究所;2011.
    141 Yoshimura N, Zhou SL, Matsubara K, Chandratilleke GR, Ohtani Y, Nakagome H, et al. Performance dependence of 4K pulse tube cryocooler on working pressure. In:Ross RG, editor. Cryocoolers 10. New York:Kluwer Academic/Plenum Publishers; 1999. p.227-32.
    142 Yang LW. Investigation on a thermal-coupled two-stage Stirling-type pulse tube cryocooler. Cryogenics.2008;48 (11-12):492-6.
    143 Li S, Dang H, Wu Y, Wang L, Yang K. Investigation on the Phase Characteristics of High Frequency Inertance Pulse Tube Cryocoolers above 50 K. In:Miller SD, Ross RG, Jr., editors. Cryocoolers 16:ICC Press; 2011. p.259-66.
    144 Cao Q, Qiu LM, Gan ZH, Yu YB, Zhi XQ. A Three-stage Stirling Pulse Tube Cryocooler Approaching 4 K. In:Miller SD, Ross RG, Jr., editors. Cryocoolers 16. ICC Press; 2011. p.19-26.
    145 Qiu LM, Cao Q, Zhi XQ, Gan ZH, Yu YB, Liu Y. A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4. Cryogenics.2011;51 (10):609-12.
    146 Company S. Metering Valves, S, M, L, and 31 Series, (MS-01-142, R8). http://www.swagelok.com/downloads/WebCatalogs/EN/MS-01-142.pdf; 2008.
    147甘智华,张小斌,王博.制冷与低温测试技术(普通高等教育“十一五”国家级规划教材).杭州:浙江大学出版社;2011.
    148 Dietrich M, Thummes G. Two-stage high frequency pulse tube cooler for refrigeration at 25 K. Cryogenics.2010;50 (4):281-6.
    149 Lemmon E, McLinden M, Huber M. NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP:U.S. Dept. of Commerce; 2002.
    150 Jung J, Jeong S. Expansion efficiency of pulse tube in pulse tube refrigerator including shuttle heat transfer effect. Cryogenics.2005;45 (5):386-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700