用户名: 密码: 验证码:
SiGe HBT超宽带低噪声放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射频SiGe异质结双极晶体管(Hetrojunction bipolar transistor, HBT)作为新型射频器件,因为具有与III-V族器件可媲美的增益特性和频率特性、与现有的Si工艺可兼容的高集成能力,所以逐渐被运用在超宽带(Ultra-wideband, UWB)低噪声放大器(Low noise amplifier, LNA)设计中。SiGe HBT UWB LNA的2个核心研究内容是器件与电路。优异的器件性能是获得良好电路性能的基础。对器件而言,对影响包括噪声在内的器件性能的工作频率、偏置条件、几何参数、制备工艺等因素的研究一直十分活跃,同时,对器件噪声模型与噪声参数提取方法的研究也备受关注。另一方面,市场对高增益、小面积的UWB LNA的需求,使得不采用电感仍能同时实现优异的噪声特性与阻抗特性、以及获得良好的高频增益与宽带增益平坦度性能的技术研究成为研究热点。
     本论文围绕着射频SiGe HBT与SiGe HBT UWB LNA开展研究,主要工作有:
     首先,针对目前在SPICE设计工具中使用的SiGe HBT噪声模型(SPICEnoise model)未考虑射频关联的情况,首次提出了涵括射频关联噪声的新噪声模型。新噪声模型考虑了集电结空间电荷区(Collector-base junction space chargeregion, CB SCR)延迟效应对基极噪声电流源与集电极噪声电流源的影响。新模型采用了广泛使用的HICUM模型的表征形式,并使用Verilog-A编译设计,可以内嵌至任意标准CAD设计工具中,与已存在的晶体管直流、交流和频率等模型相兼容。将新噪声模型与SPICE噪声模型一起与SiGe HBT实测结果进行比较,表明新噪声模型与器件实测结果吻合得更好。
     其次,本文首次提出了Z参数噪声参量提取法。与传统Y参数提取法相比,新方法显著优点是不需要Y-Z参数转化,直接在器件噪声参量与电路的端口阻抗参量之间建立了联系,更方便同步实现电路噪声匹配与阻抗匹配
     第三,从理论和实验上全面研究了频率(f)、集电极电流(IC)和几何参数对射频SiGe HBT最小噪声系数(NFmin)的影响。发现,NFmin随f的增大呈上抛物线增长,通过抛物线切线斜率,给出了优化NFmin的三个关键条件---高电流增益(β)、低基极电阻(RB)和高特征频率(fT);在一定频率下,存在一个最优IC,使晶体管获得最低NFmin;适度地增大发射极长宽比、减小发射极-基极条间距和增多基极条数,均有益于降低NFmin。
     第四,改进了同步实现噪声匹配与输入单端阻抗匹配技术,提出了采用L-C与R-L-C复用网络的同步实现噪声匹配与输入输出双端阻抗匹配(Simultaneousnoise and both input and output ports matching, SNBIOM)技术。对比SPICE噪声模型,研究了新噪声模型对C波段射频低噪声放大器噪声匹配、输入共轭阻抗匹配、SNBIOM等设计的影响。研究表明,与SPICE噪声模型相比,新噪声模型使射频低噪声放大器更易于实现噪声匹配、输入共轭阻抗匹配和SNBIOM,其中,当对采用电压偏置、电流偏置的放大器进行SNBIOM设计时,新噪声模型在不影响高增益和高稳定性的条件下,还改善了IIP3,尤其是对采用电流偏置的放大器的IIP3改善更明显。
     第五,本文首次对采用新型复合反馈电阻、不采用电感的高增益、小面积SiGe HBT超宽带低噪声放大器的设计技术进行了研究。首先,为了实现电路高增益,分析了达林顿对(Darlington pairs, DP)的增益改善技术;其次,为了保障增益的平坦性,比较研究了旁路电感补偿与旁路电容补偿的增益平坦度改善技术,研究发现旁路电容补偿技术更佳;最后,首次提出了新型复合电阻反馈技术,结合DP技术与旁路电容补偿技术,使得不采用电感设计的小面积UWBLNA仍然能够获得良好的SNBIOM、高频增益与增益平坦度。完成的新型SiGe HBT UWB LNA,在3-10GHz内, S21高达24.33dB,增益平坦度为±0.7dB,S11低至-21dB,S22低至-14dB,NF与NFmin非常接近,低于3.7dB,Mul_l恒大于1。由于没有引入螺旋电感,所以电路总体版图尺寸仅为0.18mm2(0.45×0.40mm~2)。
     最后,立足国内现有工艺和材料生长条件,摸索出了一套适合SiGe HBTUWB LNA单片微波集成电路(Monolithic microwave integrated circuit, MMIC)的制作工艺流程,并对射频SiGe HBT的平面集成工艺流程进行了单步研发实验。单步实验中,成功制备了具有优良直流特性、fT/fMAX=7/6.93GHz、在1.2GHz内NF低至2.5dB、适合做L、S和C波段射频放大器有源器件的SiGeHBT。采用MMIC工艺流程,成功制备了新型复合电阻反馈的SiGe HBT UWBLNA MMIC,为了对比,同时也制备了单一电阻反馈的SiGe HBT DP LNAMMIC。因为没有采用占片面积大的螺旋电感,所以芯片面积仅为0.2mm2(0.5×0.4mm~2)。初步在片测试结果显示,两款LNA MMICs中,新型复合电阻反馈的UWB LNA MMIC的增益更高,噪声系数更低,阻抗匹配更佳,0.2-1.2GHz内,GA高达24.7dB,NF低至2.8dB;0.5-3.5GHz内,S21高达25.5dB,S11和S22均低于-10dB。
As a novel Radio Frequency(RF) devices, SiGe heterojunction bipolar transistor(HBT) are gradually used in design of ultra-wideband low noise amplifier(UWB LNA)due to comparable gain and frequency characteristics to the III-V devices, and highintegration with existing silicon technology. Two critical research aspects of SiGeHBT UWB LNA are device and circuit. As well known, good device performance isfundamental to achieve good performance of circuit. In one hand, the investigation offactors which affect device performances never stop including operating frequency,bias condition, geometry parameters, fabrication technology and so on. Meanwhile,researchers are also pay great attention to noise model of device and extractionmethodology of noise parameters. In another hand, the market requirements for smalldie area and high gain of UWB LNA push the improvement techniques researches toachieve simultaneously excellent noise and impedance characteristics withoutinductor, to offer the high gain with good gain flatness in wide frequency band.
     In this dissertation, researches are focus on SiGe HBT and SiGe HBT UWB LNA,the main works can be summarized as follows:
     Firstly, in order to solve the problem that noise model of SiGe HBT used in SPICEdesign tool at present ignores the RF correlation, the novel noise model consideringRF correlated noise is developed. In the novel noise model, the impact of collector-base junction space charge region(CB SCR) delay effect on base noise current sourceand collector current source is taken into account. And the novel model is representedby popular HICUM model, as well as be compiled using Verilog-A(the wholecompiling program is given in appendix A). Therefore, the novel noise model couldbe embed into any standard CAD design tools, and compatible with other existingmodels, such as DC model, AC model, frequency model and so on. The novel noisemodel and SPICE noise model are compared with measured results of SiGe HBTs.The results show that the noise parameters extracted from the novel noise modelagrees well with device measurement.
     Secondly, Z parameters extraction methodology of transistor noise parameters isproposed for the first time. New methodology directly builds the relationship betweennoise parameters of devices and port impedance parameters of circuits without Y-Zconversion process, which is clearly an attractive benefit compared with traditional Yparameters extraction methodology. It is much more convenient to achieve thesimultaneous noise and impedance matching of LNA.
     Thirdly, the impact of frequency(f), collector current(IC) and geometry parameterson the minimum noise figure(NFmin) of RF SiGe HBT are examined theoretically and experimentally. It is showed that NFmingrows up parabolically with increase offrequency. Hence, three critical conditions of high current gain(β), low baseresistor(RB) and high cut-off frequency(fT) to optimize NFminare given by analyzingthe tangent slope of the parabola curve. Furthermore, there exists an optimum ICatwhich transistor achieves the minimum NFminfor a given operating frequency. Inaddition, it is beneficial for reducing the NFminby slightly increasing the ratio ofemitter length to emitter width, gently reducing spacing between emitter stripe andbase stripe, and slimly adding base stripes.
     Fourthly, the technique relating to achieve simultaneous noise and both input andoutput ports impedance matching(SNBIOM) is proposed by adopting compositenetwork of L-C and R-L-C based on improved technique of simultaneous noise andsingle input port impedance matching. Then the impacts of the novel noise model onC waveband RF LNA designs are comprehensively investigated, which includedesigns of noise matching, input conjugate impedance matching and SNBIOM. It isfound that the novel noise model is more attractive to easily achieve noise matching,impedance matching, and SNBIOM compared with traditional SPICE noise model.Furthermore, the noise model even gives rise to IIP3improvement for SNBIOMdesign of LNAs with voltage bias and current bias without negative effects on highgain and high stability. Especially, the improvement is more dramatical for the LNAwith current bias.
     Fifthly, the design techniques for SiGe HBT UWB LNA to achieve high gain andsmall die area are investigated by taking advantage of the novel composite feedbackresistive without using inductor. First of all, the improved technique of Darlingtonpairs(DP) is analyzed to achieve high gain. Then, in order to guarantee flatness of gain,the technique for gain flatness enhancement is investigated by comparison betweenbypass inductor and capacitor compensation techniques. It is found that bypasscapacitor compensation technique is better. Finally, for the first time, the novelcomposite resistive feedback technique is proposed in conjunction with DP techniqueand bypass capacitor compensation technique so as to obtain excellent performanceincluding SNBIOM, high gain and high gain flatness, and small die area without usinginductor. This novel SiGe HBT UWB LNA shows that S21is as high as24.33dB withgain flatness of±0.7dB, S11is as low as-21dB, S22is less than-14dB, NF is highlyclose to NFmin, which as low as3.7dB, and Mul_l keeps always larger than1in theband from3GHz to10GHz. Due to absence of spiral inductors, the die area of theSiGe HBT UWB LNA is only0.18mm2(0.45×0.40mm2).
     Finally, the fabrication processes suitable for SiGe HBT monolithic microwaveintegrated circuit (MMIC) are developed based on the state of the art integrated circuittechnology. Meanwhile, the plane fabrication processes of RF SiGe HBTs for MMICapplication are examined individually, and a series of transistors are fabricated successfully. Due to good DC performance, fT/fmax=7/6.93GHz, NF as low as2.5dBwithin1.2GHz, the fabricated devices are suitable as active devices of L, S, and Cwaveband RF LNA.
     By adopting developed MMIC processes, SiGe HBT UWB LNA MMIC with thenovel composite resistive feedback is fabricated. Meanwhile, SiGe HBT DP LNAMMIC with single resistive feedback is also fabricated as a counterpart circuit. Theabsence of inductor leads to a small chip area of0.2mm2(0.5×0.4mm2). Initialmeasured results show that, compared with SiGe HBT DP LNA MMIC, SiGe HBTUWB LNA MMIC achieves higher gain, lower NF and better impedance matching,GAas high as24.7dB, NF as low as2.8dB in the band from0.2GHz to1.2GHz, aswell as S21is up to25.5dB, and both S11and S22are lower than-10dB in the band from0.5GHz to3.5GHz.
引文
1. A. S. Acampora. An overview of UCSD’s Center for wireless Communications[J]. IEEEJournal of Personal Communications,6(5).1999:8-16.
    2. F. A. Cassara. Wireless Communications Laboratory[J]. IEEE Transaction on Education,2006,49(1):132-140.
    3.徐世六,范麟,郭树田.世界RFIC发展趋势与中国RFIC发展思考[J].微电子学,2005,36(5):556-563.
    4. D. Summer. FCC Release National Broadband Plan[EB/OL][2010-03-16].http://www.arrl.org/news/fcc-releases-em-national-broadband-plan-em.
    5. F. Schwirez and Juin J. Liou. RF transistors: Recent developments and roadmap towardterahertz applications[J]. Solid State Electronics,2007,51(8):1079-1091.
    6. F. Guarin, J.S.Rieh, Z.Yang, et al. Wafer Level Reliability evaluation of120GHz SiGeHBT’s[C]//Proceedings of the Fifth IEEE International Caracas Conference on Devices,Circuits and Systems, Dominican Republic,2004:71-76.
    7. A. J. Joseph, D. L. Harame, B. Jagannathan, et al. Status and Direction of CommunicationTechnologies-SiGe BiCMOS and RFCMOS[J]. Proceedings of the IEEE,2005,93(9):1539-
    1557.
    8.黄文韬. SiGe/Si外延与SiGe HBT微波单片放大电路研究[D].北京:清华大学微电子所研究所,2004.
    9. S. S. Iyer, G. L. Pattom, J. M. C. Stork, et al. Heterojunction bipolar transistors using Si-Gealloys[J]. IEEE Transactions on Electron Devices,1989,36(10):2043-2064.
    10. G. L. Patton, J. H. Comfort, B S Meyerson et al.75GHz fTSiGe base heterjunction bipolartransistors[J]. IEEE Electron Device Letters,1990,11(4):171-173.
    11. A. Gruble, H. Kibbel and U. Kong. MBE-grown Si/SiGe HBTs with high β, fTand fMAX, IEEEElectron Device Letters,1992,13(4):206-208.
    12. E Kasper, A Gruhle and H Kibbel. High speed SiGe-HBT with very low base sheetresistivity[C]//Proceeding of Technical Digest-International Electron Devices Meeting,Washington, DC, USA,1993:79-81.
    13. F Schwierz. Microwave transistors-the last20years[C]//Proceedings of the IEEEInternational Caracas Conference on Devices, Circuits and Systems, Cancun, Mexi,2000:28/1-28/7.
    14. R. Krithivasan, Y. Lu, J.D Creesler et al. Half-terahertz operation of SiGe HBTs[J]. IEEEElectron Device Letters,2006,27(7):567-569.
    15. D. Nguyen-Nqoc, D L Harame, J C. Malinowski, et al. A200mm SiGe-HBT technology forwireless and mixed-signal application[C]//Proceedings of the IEEE Bipolar/BiCMOS Circuitsand Technology Meeting, Minneapolis, MN, USA,1995:89-92
    16. J. H. Yuan, J. D. Cressler, R. Krithivasan, et al. On the Performance Limits of CryogenicallyOperated SiGe HBTs and Its Relation to Scaling for Terahertz Speed[J]. IEEE Transactions onElectronics Devices,2009,56(5):1007-1019.
    17. D. Y. C. Lie, X. J. Yuan, L. E Larson, et al."RF-SoC": low-power single-chip radio designusing Si/SiGe BiCMOS technology[C]//Proceedings of3rd International Conference onMicrowave and Millimeter Wave Technology, Beijing, China,2002:30-37.
    18. J. D. Cressler. Silicon-Germanium as an Enabling Technology for Extreme EnvironmentElectronics[J]. IEEE Trans on Devices and Materials Reliability,2010,10(4):437-448.
    19. C. H. Lin, Y. K. Su, Y. Z. Juang et al. The effect of Geometry on the Noise Characterization ofSiGe HBTs and Optimized Device Sizes for the Design of Low-Noise Amplifiers[J]. IEEETransaction on microwave theory and techniques,2004,52(9):2153-2164.
    20. B. G. Mala and M. Ostling. Mixed mode circuit and device simulation of RF harmonicdistortion for high-speed SiGe HBTs[J]. Solid State Electronics,2002,46(10):1567-1571.
    21. S. M. Zhang, G. F. Niu, J. D. Cressler et al. The effects of Geometrical Scaling on theFrequency Response and Noise Performance of SiGe HBTs. IEEE Tranctions on ElectronDevices[J],2002,49(3):429-435.
    22. D. R. Greenberg, S. Sweeney, B. Jagannathan et al. Noise Performance Scaling in High-SpeedSilicon RF Technologies[C]//Proceeding of Topical Meeting on Silicon Monolithic IntegratedCircuits in RF Systems,2003, Grainau, Germany,2003:22-25.
    23. Christoph Jungemann, Burkhard Neinhus, Bernd Meinerzhagen et al. Investigation ofCompact Models for RF Noise in SiGe HBTs by Hydrodynamic Device Simulation. IEEETransactions on Electron Devices,2004,51(6):956-961.
    24. Z. Y. Xu, G. F. Niu, P. S. Chakraborty et al. Cryogenic RF Small-Signal Modeling andParameter Extraction of SiGe HBTs[C]//Proceeding of IEEE Radio Frequency IntegratedCircuits Symposium, RFIC, San Diego, CA, USA2009:1-4.
    25. K. H. K. Yau, P. Chevalier, A. Chantre et al. Characterization of the Noise Parameters of SiGeHBts in the70-170GHz Range[J]. IEEE Transactions on Microwave Theory and Techniques,59(8),2011:1983-2000.
    26. T. L Yu, C. C Hsiao, W. Tao et al.3-10GHz Ultra-Wideband Low-Noise Amplifier UlitizingMiller Effect and Inductive Shunt-Shunt Feedback Technique[J]. IEEE Transactions onMicrowave Theory and Techniques,2007,55(9):1832-1843.
    27. H. Zhang, X. H. Fan and S. S. Edgar. A Low-Power Linearized Ultra-Wideband LNA DesignTechnique[J]. IEEE Solid-State Circuits,2009,44(2):320-330.
    28. M. Y. Yang, M. Ha, Y. Q. Park et al. A3-10GHz CMOS Low-Noise Amplifier Using WireBond Inductors[J]. IEEE Microwave and Optical Technology Letters,2009,51(2):414-416.
    29. H. S. Bennett, R. Brederlow, J. C. Costa, et al Device and Technology Evolution for Si-BasedRF Integrated Circuits[J]. IEEE Tranctions on Electron Devices,2005,52(7):1235-1258
    30. D. Barras, F. Ellinger, H. Jackel et al. A low supply voltage SiGe LNA for ultra-widebandfrontends[J]. IEEE Microwave and Optical Technology Letters,2004:469–471.
    31. D. C. Howard, P. Saha, S. Shankar, et al. A UWB SiGe LNA for multi-band applications withself-healing based on DC extraction of device characteristics[C]//Proceeding of IEEEBipolar/BiCMOS Circuits and Technology Meeting, Atlanta, GA, United states,2011:111-
    114.
    32. S. Vishwakarma, S. Jung, and Y. Joo. Ultra wide-band CMOS low noise amplifier with activeinput matching[C]//Proceeding of International Workshop on Ultra Wideband Systems, Kyoto,Japan2004:415–419.
    33. A. Bevilacqua and A, M. Niknejad. An Ultra-Wideband CMOS LNA for3.1to10.6GHzWireless Receivers[C]//Proceeding of IEEE International Solid-State Circuits Conference, SanFrancisco, CA., United states,2004:383-384.
    34. A. Keerti and A. V. H. Pham. RF Characterization of SiGe HBT Power Amplifiers under LoadMismatch[J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(2):207-214.
    35. S. C. Shin, C. S. Lin, M. D. Tsai, et al. A Low-Voltage and Variable-Gain DistributedAmplifier for3.1-10.6GHz UWB Systems[J]. IEEE Microwave and Wireless ComponentsLetters,2006,16(4):179-181.
    36. A. Ismail and A. Abidi. A3to10GHz LNA Using a Wideband LC-Ladder MatchingNetwork[C]//Proceeding of IEEE International Solid-State Circuits Conference, San Francisco,CA, United states,2004:385-386.
    37. N. Shiramizu, Masuda and T. K. Washio. A3-10GHz bandwidth low-noise and low-poweramplifier for full-band UWB communications in0.25-μm SiGe BiCMOStechnology[C]//Proceeding of IEEE Radio Frequency Integrated Circuits Symposium RadioFrequency, Long Beach, CA, United states,2005:39-42.
    38. P. K. Datta, G. Fischer, S. Krishnan. A Ultra-wideband Transceiver Front-end in SiGe:CBiCMOS Technology for Ultra-wideband Applications[C]//Proceeding of IEEE InternationalConference on Ultra-Wideband, Waltham, MA, United states,2007:167-172.
    39. J. S. Lee and J. D. Cressler. Analysis and Design of an Ultra-Wideband Low-Noise AmplifierUsing Resistive Feedback in SiGe HBT Technology[J]. IEEE Transactions on MicrowaveTheory and Techniques,2006,54(3):1262-1268.
    40. Y. Park, C. H. Lee, J. D. Cressler, et al. The Analysis of UWB SiGe HBT LNA for Its Noise,Linearity, and Minimum Group Delay Variation[J]. IEEE Transactions on Microwave Theoryand Techniques,2006,54(4):1687-1697.
    41. B. Shi and Y. W. Chia. Ultra-wideband SiGe Low-noise Amplifier[J]. Electronics Letters,2006,42(8):462-463.
    42. S. C. Chen, R. L. Wang, C. L. Tsai, et al. A Low Power, Good Gain Flatness SiGe Low NoiseAmplifier for3.1–10.6GHz Ultra-wide Band Radio[C]//Proceeding of Midwest Symposiumon Circuits and Systems, Montreal, QC, Canada,2007:750-753
    43. D. C. Howard, J. Poh, T. S. Mukerjee et al. A3-20GHz SiGe HBT Ultra-wideband LNA withGain and Return Loss Control for Multiband Wireless Applications[C]//Proceeding of IEEEInternational53rdMidwest Symposium on Circuits and Systems, Seattle, WA, UnitedStates,2010:445-448.
    44. N. Shiramizu, T. Masuda, M. Tanabe, et al. A3-10GHz Bandwidth Low-noise and Low-power Amplifier for Full-band UWB Communications in0.25-μm SiGe BiCMOSTechnology[C]//Proceeding of IEEE Radio Frequency Integrated Circuits Symp. Long Beach,CA, USA,2005:39-42.
    45. L.C. Liu and Z. F. Zhang. An RF Low-noise Broadband Amplifier Processed In0.35um SiGeTechnology[C]//Proceeding of7th International Conference on Solid-State and Integrated-Circuit Technology. Beijing, China,2004:2144-2147.
    46.张静,刘伦才,李开成等.一种基于MBE差分外延技术的SiGe低噪声放大器[J].微电子学,2006年,36(5):569-571.
    47.鲁亚诗,张伟,李高庆等.一种低噪声SiGe微波单片放大电路[J].微电子学,2006年,36(5):588-590.
    48.张华斌,张庆中和陈庆华.2.4GHz微波宽带低噪声放大器的设计[J].电子器件,2006,29(3):714-717.
    49.宋睿丰,廖怀林,黄如等.3.1-10.6GHz超宽带低噪声放大器设计[J].北京大学学报[J],2007,43(1):78-81.
    50.李佳,张万荣,沈珮等.3-10GHz SiGe HBTs超宽带低噪声放大器的设计[J].电子器件,2009,32(2):311-314.
    51.沈珮,张万荣,金冬月等. SiGe HBT低噪声放大器的设计与制造[J].电子与信息学报,2010,32(8):2028-2032.
    52.沈珮,张万荣,金冬月等.超宽带SiGe HBT低噪声放大器的设计和分析[J].高技术通讯,2011,21(1):77-82.
    53. P. Shen G. F. Niu, W. R. Zhang et al. Impact of High Frequency Correlated Noise on SiGeHBT Low Noise Amplifier Design[C]//Proceeding of IEEE12th Topical Meeting on SiliconMonolithic Integrated Circuits in RF System, Santa Clara, CA, USA,2012:125-128.
    54. Q. Q. Liang, G. F. Niu, J. D. Cresslor, et al. On the optimization and design of SiGe HBTcascode low-noise amplifiers[J]. Solid-State Electronics,2005,49(3):329-341.
    55. C. T. Armijo and R. G. Meyer. A New Wide-Band Darlington Amplifier[J]. IEEE Solid-StsteCircuit,1989,24(4):1105-1109.
    56. D. A. Hodges, Darlington’s Contributions to Transistor Circuit Design[J]. IEEE Transactionson Circuit and System-I: Fundamental Theory and Applications,1999,46(1):102-104.
    57. C. D. Hull and R. G. Meyer. Principles of Monolithic Wideband Feedback Amplifier Design[J].High Speed Electronics,1992,3(1):53-93.
    58. A. M. H. Sayed Elahl, M. M. E. Fahmi and S. N. Mohammad. Quantitative analysis of highfrequency performance of modified Darlington pair[J]. Solid-State Electronics,2002,46(4):593-595.
    59. K. W. Kobayashi, D. K. Umemoto, T. R. Block, et al. A Novel Monolithic LNA Integrating aCommon-Source HEMT with an HBT Darlington Amplifier[J]. IEEE Microwave and Guidedwave Letters,1995,5(12):442-444.
    60. T. Yi and T. P. Chow. Monolithic4H-SiC Darlington transistors with a peak current gain of2000[C]//Proceeding of Device Research Conference, Salt Lake City, UT, USA,2003:79-80.
    61. T. K. Lee, W. S. Chan and Y. M. Siu. Darlington feedback amplifier with good bias stabilityunder large-signal conditions[J].Electronics Letters,2004,40(20):1271-1272
    62. W. T. Huang, X.Y. Xiong, G. Q. Li, et al. Cascadable Direct-Coupled Wideband SiGe HBTMMIC[C]//Proceeding of International Conference on Solid-State and Integrated CircuitsTechnology, Beijing, China,2004:2140-2143.
    63. Y. S. Lu, W. Zhang, Z. H. Liu, et al. A Darlington SiGe Microwave Monolithic IntegratedCircuit[C]//Proceeding of IEEE Mediterranean Electrotechnical Conference, Benalmadena,Malaga, Spain,2006:184-186.
    64. P. Shen, W. R. Zhang, and H. Y. Xie, et al. An Ultra-Wideband Darlington Low NoiseAmplifier Design Based on SiGe HBT[C]//Proceeding of the6th International Conference onMicrowave and Millimeter Wave Technology, Nanjing, China,2008:1372-1375.
    65. T. H. Wu, C. C. Meng, and G. W. Huang. Inductorless Broadband RF Front-End Using2μmGaInP/GaAs HBT Technology[C]//IEEE MTT-S International Microwave Symposium Digest,Honolulu, HI, United states,2007:2137–2140.
    66. S. Seth, C. H. J. Poh, T. Thrivikraman, et al. Using saturated SiGe HBTs to realize ultra-lowvoltage/power X-band low noise amplifiers[C]//Proceeding of Bipolar BiCMOS Circuits andTechnology Meeting, Atlanta, GA, United states,2011:103-106.
    67. K. Bhatia, S. Hyvonen and E. Rosenbaum. A Compact, ESD-Protected, SiGe BiCMOS LNAfor Ultra-Wideband Applications[J]. IEEE Journal of Solid-State Circuits,2007,42(5):1121-1130.
    68. R. L. Wang, M. C. inL, C. F. Yang, et al. A1V3.1-10.6GHz Full-band Cascade UWB LNAwith Resistive Feedback[C]//Proceeding of IEEE Radio Frequency Integrated Technology,NewYork, United States,2007.188-190.
    69. F. Bruccoleri, E. A. M. Kulmperink and B. Nauta. Generating all two-MOS-transistoramplifiers leads to new wide-band LNAs[J]. IEEE Journal of Solid-State Circuits,2001,36(7):1032-1040.
    70. F. Bruccoleri, E. A. M. Kulmperink and B. Nauta. Wide-band CMOS low-noise amplif ierexploiting thermal noise canceling[J]. IEEE Journal of Solid-State Circuits,2004,39(2):275-
    282.
    71.廖友春,唐长文和闵昊.一种用于电视调谐器的宽带CMOS低噪声放大器设计[J].半导体学报,2006年,27(11):2029-2034.
    72. X. Wang, J. Sturm, N. Yan, et al.0.6-3-GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA[J]. IEEE Transactions onMicrowave Theory and Techniques,2012,60(2):387-392.
    73. E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, et al. Distributed amplification[C]//Proceeding ofthe IRE, New York, NY, United States,1948:956–969.
    74.焦世龙,陈堂胜,钱峰等。5Gb/s单片集成GaAs MSM/PHEMT850nm光接收机前端[J].半导体学报,2007,28(4):587-591.
    75. E. W. Strid and K. R. Gleeson. A DC-12GHz monolithic GaAs FET distributed amplifier[J].IEEE Transaction Microwave Theory and Techniques,1982,30(7):969-972.
    76. J. B. Beyer, S. N. Prasad, R. C. Becker, et al. MESFET distributed amplifier designguidelines[J]. IEEE Transaction Microwave Theory and Techniques,1984,32(3):268-275.
    77. K. Takahata, Y. Muramoto, H. Fukano, et al. Ultrafast monolithic receiver OEIC composedof multimode waveguide p-i-n photodiode and HEMT distributed amplifier[J]. IEEE Journalof Selected Topics in Quantum Electronics,2000,6(1):31.
    78.郑远,陈堂胜,钱峰等。用于40Gb/s光接收机的0.2μm GaAs PHEMT分布放大器[J].半导体学报,2005,26(10):1989-1994.
    79. G. F. Niu. Noise in SiGe HBT RF Technology: Physics, Modeling, and CircuitImplications[C]//Proceedings of IEEE,2005,93(9):1583-1597.
    80.庄奕琪和孙青.半导体器件中的噪声及其低噪声化技术.国防工业出版社,1993:12-29.
    81. U. Zillmann and F. Herzel. Improved SPICE model for High-frequency noise of BJT’s andHBT’s[J]. IEEE Journal of Solid-State Circuits,1996,31(9):1344-1346.
    82. A. Huber, D. Huber, C. Bergamaschi, et al. Noise model of InP-InGaAs SHBTs for RF circuitdesign[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(7):1675-1682.
    83. K. J. Xia and G. F. Niu. Discussions and Extension of van Vliet’s Noise Model for High SpeedBipolar Transistors[J]. Solid State Electronics,53(3):349-354.
    84. Z. Y. Xu, G. F. Niu and M. M. Ramana. Compact modeling of collector base junction spacecharge region transmit time effect on noise in SiGe HBTs[C]//Proceeding of IEEE TopicalMeetings on Silicon Monolithic Integrated Circuits in RF Systems, New Orleans, LA, UnitedStates,2010:180–183.
    85. R. L. Pritchard, Electrical Characteristics of Transistors[M]. McGraw Hill, New York,1967:68-102.
    86. J. D. Cressler and G. F. Niu. Silicon-Germanium Heterojunction Bipolar Transistor[M].Norwood, MA, Artech House,2003:261-293.
    87. P. Sakalas, M. Ramonas, and M. Schroter. Impact ionization noise in SiGe HBTs: Comparisonof device and compact modeling with experimental results, IEEE Transactions on ElectronDevices,2009,56(2):328-336.
    88. L. Gonzalez and Juan M. Analytical modeling of200GHz SiGe HBT high-frequency noiseparameters[J]. Semiconductor Science and Technology,2010,25(10).
    89. G. F. Niu, S. M. Zhang, J. D. Cressler, et al. Noise modeling and SiGe profile design tradeoffsfor RF applications[J]. IEEE Transactions on Electron Devices,2000,47(11):2037-2044.
    90.张屏英,周佑谟.晶体管原理[M].上海科技出版社,1985:190-192.
    91. D. A. Sunderland, D. C. Ahlgren. Manufacturability and applications of SiGe HBTtechnology[J]., Solid-State Electronics.1997,41(10):1503-1507.
    92. E. J. Prinz and P. M. Garone, The effect of base-emitter spacers and strain-dependent densitiesof states in Si/Si1-xGex/Si heterojunction bipolar transistors[C]//Proceeding of InternationalElectron Devices Meeting, Washington, DC, USA,1989:639-642.
    93. B. Heinemann, F. Herzed and U. Zillmann. Influence of low doped emitter and collectorregions on high-frequency performance of SiGe-base HBTs[J]. Solid-State Electronics,1995,38(6):1183-2289.
    94.陈星弼和张庆中.晶体管原理与设计[M],第二版,电子工业出版社,2006:86-116.
    95. W. Liu. Emitter-length design for microwave power HBts[J]. Solid-State Electronics,1993,36(6):885-890.
    96.沈珮,张万荣,金冬月等.具有高电流处理能力的多发射极条微波功率GeSi HBT[J].功能材料与器件学报,2009,15(1):15-19.
    97. P. Shen, W. R. Zhang, D. Y. Jin, et al. High-power SiGe Heterojunction Bipolar Transistor(HBT) with multiple emitter finger[C]//Proceeding of The Eighth International Workshop onjunction Technology(IWJT), Shanghai, China,2008:107-110.
    98.李智群和王志功.射频集成电路与系统[M].科学出版社,2008:86-114.
    99. R. Ludwig and P. Bretchko. RF Circuit Design: Theory and Applications[M]. Prentice Hall,2008:59-67.
    100Osama, L. Ivan, and T. Len. Frequency-Scalable SiGe Bipolar RF Front-End Design[J]. IEEEJournal of Solid-State Circuits,36(6),2001:888-895.
    101R. Hu. Wide-band matched LNA design using transistor’s intrinsic gate–drain capacitor[J].IEEE Tranactions on Microwave Theory and Techniques,2006,54(3):1277–1286.
    102B. Kyu and K. Lee. A New Simultaneous Noise and Input Power Matching Technique forMonolithic LNA’s Using Cascode Feedback[J]. IEEE Transactions on Microwave Theory andTechniques,1997,45(9):1627-1630.
    103S. H. Lavasani and S. Kiaei. A New Method to Stabilize High Frequency High Gain CMOSLNA[C]//Proceeding of IEEE International Conference on Electronics, Circuits and Systems,Sharjah, United arab emirates,2003:982-985
    104M. Gordon and S. P. Voinogescu. An inductor-Based52GHz0.18μm SiGe HBT CascodeLNA with22dB Gain[C]//Proceedings of the30th European Solid-State Circuits Conference,Leuven, Belgium,2004:287-290
    105D. K. Shaeffer and T. H. Lee. A1.5-v1.5ghz CMOS low noise amplifier[J]. IEEE Solid StateCircuits,1997,32(5):745–759.
    106M. P. V. D. Heijden, L. C. N. D. Vreede and J. N. Burghartz. On the Design of UnilateralDual-Loop Feedback Low-Noise Amplifiers with Simultaneous Noise, Impedance, and IIP3Match[J]. IEEE Journal of Solid-State Circuits,2004,39(10):1727-1736.
    107P. Shen, W. R. Zhang, L, Huang, et al. Improving the quality factor of an RF spiral inductorwith non-uniform metal width and non-uniform coil spacing[J]. Journal of Semiconductors.2011,32(6):064011-(1-5).
    108S. T. Nicolson and S. P.Voiniqescu. Methodology for simultaneous noise and impedancematching in W-band LNAs[C]//Proceeding of IEEE Compound Semiconductor IntegratedCircuit Symposium, San Antonio, TX, United States,2006:279-282.
    109C. T. Fu, C. N. Kuo and S. S. Taylor. Low-Noise Amplifier Design with Dual ReactiveFeedback for Broadband Simultaneous Noise and Impedance Matching[J]. IEEE Transactionson Microwave Theory and Techniques,58(4),2010:795-806.
    110S. Asgaran, M. J. Deen, and C. H. Chen. Design of the input matching network of RF CMOSLNAs for low-power operation[J]. IEEE Transactions on Circuits and Systems I: RegularPapers,2007,54(3):544-554.
    111Heng Zhang, Xiaohua Fan and Edgar Sanchez Sinencio. A Low-Power, Linearized, Ultra-Wideband LNA Design Technique[J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS,2009,44(2):320-330.
    112J. Kang, J. Yoon, K. Min; et al A highly linear and efficient differential CMOS poweramplifier with harmonic control[J]. IEEE Journal of Solid-State Circuits,2006,42(6):1314-1332.
    113D. Ponton, P. Palestri, D. Esseni, et al. Design of Ultra-Wideband Low-Noise Amplifiers in45-nm CMOS Technology: Comparison between Planar Bulk and SOI FinFET Devices[J].IEEE Transactions on Circuits and Systems I: Regular Papers.2009,56(5):920-932.
    114S. Pernici, G. Nicollini and R. Castello. A CMOS low-distortion fully differential poweramplifier with double nested Miller compensation[J]. IEEE Journal of Solid-State Circuits,1993,28(7):758-763
    115Kobayashi, K.W.; Esfandiari, R.; Oki, A.K. A novel HBT distributed amplifier designtopology based on attenuation compensation techniques[J]. IEEE Transactions on MicrowaveTheory and Techniques,1994,42(12),2583-2589,
    116K. W. Lau, K. Y. Chan, Q. Xue; et al. Self-biased distributed amplifier: linearity improvementand efficiency enhancement[J]. Microwave and Optical Technology Letters,2008,50(10):2493-2497.
    117H. Lim and J.Park. Frequency-domain analysis of effects of the location of a feedback resistorin a current feedback amplifier[J]. IEEE Transactions on Circuits and Systems II: Analog andDigital Signal Processing,2006,53(8):687-691.
    118T. H. Wu, J. S. Syu and C. C. Meng. Analysis and design of the0.13-μm CMOS shunt-seriesseries-shunt dual-feedback amplifier[J]. IEEE Transactions on Circuits and Systems I: RegularPapers,2009,56(11):2373-2383.
    119L. M. Lee. Interpretation of feedback amplifier by a power series of succeeding feedbackcomponents[J]. International Journal of Electrical Engineering Education,2011,48(1):1-9.
    120沈珮,张万荣,金冬月等.3.1-6GHz具有高增益的超宽带低噪声放大器设计[J].北京工业大学学报,36(9):1181-1185.
    121谢红云,陆志义,张万荣等.适于超宽带放大器的增益平坦化反馈技术[J].北京工业大学学报,2011,37(11):1638-1643.
    122沈珮,张万荣,金冬月等.超宽带SiGe HBT低噪声放大器的设计和分析[J].高技术通讯,2011,21(1):77-82
    123Y. S. Noh, M. S. Uhm and I. B. Yom. A compact Ku-band SiGe power amplifier MMIC withon-chip active biasing[J]. IEEE Microwave and Wireless Components Letters,2010,20(6)349-351.
    124Z. Q. Ma, G. G. Wang and N. Y Jiang. High Power SiGe X-Band (8-10GHz) HeterojunctionBipolar Transistors and Amplifiers[J]. Chinese Journal of Semiconductors,2006,27(2):270-275
    125黄华,张海英,杨浩等.一种噪声系数为1.4dB的S波段MMIC低噪声放大器[J].电子器件,2007,30(3):808-814.
    126P. Shen, W. R. Zhang, D. Y. Jin, et al. A monolithic SiGe HBT low noise amplifier using anovel resistive feedback configuration[C]//International Conference on Electric Informationand Control Engineering(ICEICE), Wuhan, Hubei, China,2011:56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700