用户名: 密码: 验证码:
分数阶微积分及其在黏弹性材料与核磁共振中的某些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究分数阶微积分及其在黏弹性材料与核磁共振中的某些应用,由彼此相关又相互独立的四章构成.第一章为引言,简要介绍了分数阶微积分理论、某些特殊函数以及分数阶算子在各种复杂系统中的应用.§1.1节简要介绍了分数阶微积分的发展历史及其在当前各领域的广泛应用,给出了Riemann-Liouville分数阶积分算子t0Dt-β、Riemann-Liouville分数阶微分算子t0Dtα与Caputo分数阶算子Ct0Dtα的定义及其主要性质以及Riemann-Liouville与Caputo分数阶导数的Laplace变换.§1.2节简要介绍了分数阶微积分及其应用中常用的两类特殊函数:Mittag-Leffler函数与Fox H函数.Mittag-Leffler函数包括以下四种类型:单参数Mittag-Leffler函数Ea(z)、双参数Mittag-Leffler函数Eα,β(z)、广义Mittag-Leffler函数Eα,βγ(z)与四参数Mittag-Leffler函数Eα,βγ,q(z);而Fox H函数为非常重要的一类函数,在应用数学与统计学中出现的几乎所有的函数,都可作为H函数的特例,即使象Mittag-Leffler函数、Meijer G函数、广义超几何函数与Wright广义Bessel函数这样复杂的函数,也都包括在H函数中.该节还介绍了Fox H函数的一些性质、级数表达式及其特例.Fox H函数是研究分数阶微积分的有力工具.§1.3节简要介绍了分数阶算子在非ewton流体力学、生物物理和生物力学与反常扩散及随机游走理论等复杂系统中的应用.本章是以后各章的基础.
     第二章讨论应力与应变的分数阶导数阶不相同的分数阶5参数广义Zener模型.§2.1节为引言,介绍了Zener模型的物理背景及4参数分数阶Zener模型.§2.2节引入分数阶5参数广义Zener模型σraσ(a)=Eε+Ebε(β),(0.0.1)在随后的两节里讨论了该模型的应力松弛及应变蠕变.运用离散求Laplace逆变换技术,得到了应力松弛及应变蠕变的解析表达式及分数阶4参数Zener模型为分数阶5参数广义Zener模型的特例.在这两节中,还分别将实验数据与得到的松弛与蠕变表达式进行拟合.与参数广义Zener模型相比,该解与实验数据更好地吻合.值得注意的是,通常松弛与蠕变试验只能单独独进行,尚无证据表明二者存在必然联系.本文拟合的最佳结果农明,β,α,b,a在上述二拟合中取相同值.这印证了本文模型的有效性.本文还讨论了该模型频率域上的性态,得到损耗正切的极限由应变与应力求导阶数的差确定:这也与实验结果一致.
     第三章讨论了一类具有记忆的固体材料模型σ+aσ(α)+bσ(2α)=E(ε+cε(β)+dε(2β))(0.0.5)运用Laplace变换方法,得到了松弛与蠕哟变的表达式
     拟合结果显示,α=0.2685,β=0.2710.a=0.130,b=0.900.c=0.187,d=1.000使实验结果同时达到与松弛与蠕变的拟合.通常松弛与蠕变试验只能单独进行,尚无证据表明二者存在必然联系[112].本文拟合的最佳结果表明,α,β,a,b,c与d在上述二拟合中取相同值.这印证了本文模型的有效性.在频率域内,高频率时高分子阻尼材料的损耗因子的理论结果由应变与应力关于时间导数阶的差决定:这与实验结果一致.
     第四章讨论了具有三个分数阶导数参数的Bloch方程组利用Laplace变换技术,得到了该方程组的解析解(β≥γ时的表达式,β≤γ时的表达式与此类似,详见第四章)该解析解对核磁共振研究具有指导意义.图形显示,当α=β=γ=1时,即得经典Bloch方程的解.由图4.1还可看出,γ,β值越小,磁化强度在xy平面即横截面上的的分量衰减越快.
This paper focuses on fractional calculus and its applications to viscoelastic ma-terials and nuclear magnetic resonance. It is composed of four chapters, which are independent and correlative to one another. The first chapter is an introduction, a brief introduction of the fractional calculus theory, special functions and fractional opera-tors in a variety of complex systems. The history of the development of fractional calculus and the applications of fractional calculus to various fields are introduced in§1.1. Riemann-Liouville fractional integral operator t0Dt-β、Riemann-Liouville fractional derivative operator t0Dtα, and Caputo fractional operator Ct0Dtα are defined and their main properties are discussed. The Laplace transforms of Riemann-Liouville and Caputo fractional derivative are introduced. Mittag-Leffler function and Fox H-function are briefly discussed in§1.2. There are four kinds of Mittag-Leffler func-tions:Mittag-Leffer function in one parameter Eα.(z)、Mittag-Leffler function in two parameters Eα,β(z)、generalized Mittag-Leffler function Eα,βγ(z), and Mittag-Leffler function in four parameters Eα,βγ,q(z). The importance of Fox H-function lies in the fact that nearly all the special functions occurring in applied mathematics and statistics are its special cases. Besides, Mittag-Leffler function, Meijer G function, the general-ization of the hypergeometric functions and Wright generalized Bessel function are all special cases of the H-function. The properties, the series expression and some special cases of the H-function are also mentioned in§1.2. The H-function plays an important role in fractional calculus. The applications of fractional calculus to non-Newtonian fluid mechenics, biophysics and biomechanics, and the theory of anomalous diffu-sion and random walk are briefly discussed in§1.3. This chapter is the basis of the following chapters of this thesis.
     A five-parameter generalized Zener model is discussed in Chapter2. The physi-cal background of Zener model and a four-parameter fractional Zener model are intro- duced in§2.1. A five-parameter generalized Zener model σ+a.σ(σ)=Eε+Ebε(β)(0.0.15) is introduced in§2.2. The stress relaxation and the strain creep of the model are dis-cussed in the next two sections. By using Laplace transform techniques, the ana-lytical solutions of the relaxation and creep are obtained: a(t)=Eε0-Eε0Eα(-a-1t(?)) and The fractional4-parameter Zener model is a special case of the5-parameter general-ized Zener model. The experimental data fit with the relaxation and creep expressions respectively in the two sections The fitting results show that the5-parameter gener-alized Zener model fits the experimental data better than The fractional4-paramcter Zener model. Now, usually in literature the tests are performed considering creep test only or relaxation test only and the direct connection between the two tests is not evidenced. The results obtained in this chapter show that β,a,b, a take the same val-ue in the two fittings mentioned above. This indicates the validity of the5-parameter generalized Zener model. Frequency response is also discussed in§2.5, and the limit of the loss factor as the frequency ω approaches to infinity is governed by the difference between the order of time derivatives of strain and stress and this result is consistent with the experiments.
     A model for solid materials with memory σ+aσ(α)+bσ(2α)=E(ε+cε(β)+dε(2β))(0.0.19) is discussed in Chapter3. By using Laplace transform techniques, the analytical so- lutions of the relaxation and creep are obtained: and
     Fitting results show that the experimental data fit the relaxation and the creep si-multaneously with α=0.2685, β=0.2710, a=0.130, b=0.900, c=0.187, d=1.000. Usually in literature the tests are performed considering creep test only or re-laxation test only and the direct connection between the two tests is not evidenced. The results obtained in this chapter show that α,β, a, b, c and d take the same value in the two fittings mentioned above. This indicates the validity of the model (0.0.19). The limit of the loss factor as the frequency ω approaches to infinity is governed by the difference between the order of time derivatives of strain and stress and this result is consistent with the experiments.
     fractional derivative Bloch equations with three fractional derivative parameters are discussed in Chapter4. By using Laplace transform techniques, the analytical solution of the equations are obtained (β≥γ. The case of β≤γ see Chapter4): The analytical solution is helpful to the theory of nuclear magnetic resonance. The fig-ures in this paper show that the solution of the classical Bloch equations is the special case of the fractional Bloch equations discussed in this paper and that the smaller the values of γ,β, the faster the decay of the magnetization component in the xy plane, i.e., the cross-section.
引文
[1]B. Ross, A brief history and exposition of the fundamental theory of fractional calculus[J]. Lecture Notes in Mathematics 1975,457:1-36.
    [2]J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus[J]. Commun. Nonlinear Sci. Numer. Simul.,2011,16(3):1140-1153.
    [3]D. Cafagna, Past and present-fractional calculus:a mathematical tool from the past for present engineers[J]. IEEE Industrial Electronics Magazine,2007,1(2): 35-40.
    [4]K. B. Oldham, J. Spanier, The fractional calculus:theory and applications of differentiation and integration to arbitrary order[M]. New York, Acadamic Press, 1974.
    [5]I. Podlubny, Fractional Differential Equations[M]. Academic press, San Diego, 1999.
    [6]B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions[J]. fractional noises and applications, SIAM Review,1968,10:422-437.
    [7]B. Mandelbrot, Fractals, Form, Chance, and Dimension[M]. Freeman, San Fran-cisco,1977.
    [8]B. Mardelbrot, The Fractal Geometry of Nature[M]. W. H. Freeman, San Francis-co,1983.
    [9]M. Y. Xu, W. C. Tan, Intermediate processes and critical phenomena:Theory, method and progress of fractional operators and their applications to modern me-chanics[J]. Science in China:Series G Physics, Mechanics and Astronomy,2006, 49(3):257-272.
    [10]M. O. Vlad, R. Metzler, T. F. Nonnenmacher, et al, Universality classes for asymp-totic behavior of relaxation processes in systems with dynamical disorder: dynam-ical generalizations of stretched exponential[J]. J. Math. Phys., 1996, 37: 2279-2306.
    [11]H. Schiessel, A. Blumen, Hierarchical analogues to fractional relaxation equa-tions[J]. J Phys. A: Math. Gen. 1993, 26:5057-5069.
    [12]R. L. Magin, Fractional calculus models of complex dynamics in biological tis-sues[J]. Comput. Math. Appl., 2010, 59 : 1586-1593.
    [13]F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phe-nomena[J]. Chaos Solitons Fract., 1996,7: 1461-1477.
    [14]Y. A. Rossikhin, M.V. Shitikova, Analysis of rhcological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations[J]. Mechanics of Time-Dependent Materials, 2001, 5: 131-175.
    [15]Y. H. Ryabov, A. Puzenko, Damped oscillations in view of the fractional oscillator equation[J]. Phys. Rev. B, 2002, 66: 184201-184208.
    [16]B. N. N. Achar, J. W. Hanncken, T. Clarke, Damping characteristic of a fractional oscillator[J]. Physica A, 2004, 339: 311-319.
    [17]Y. G. Kang, X. E. Zhang, Some comparison of two fractional oscillators[J]. Phys-ica B, 2010, 405: 369-373.
    [18]R. Hilfcr, Fractional diffusion based on Ricmann-Liouville fractional deriva-tives[J]. J. Phys. Chem. B, 2000, 104: 3914-3917.
    [19]E. Barkai, Fractional Fokker-Planck equation, solution, and application[J]. Phys. Rev. E, 2001,63:046118.
    [20]R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equa-tions[J]. Physica A, 2000,278: 107-125
    [21]J. R. Leith, Fractal scaling of fractional diffusion processcs[J]. Signal Processing, 2003, 83: 2397-2409.
    [22]W. R. Schneider, W. Wyss, Fractional diffusion and wave equations[J]. J. Math. Phys.,1989,30:134-144.
    [23]F. Mainardi, The fundamental solutions for the fractional diffusion-wave equa-tion[J]. Appl. Math. Lett.1996,9:23-28.
    [24]W. Wyss, The fractional diffusion equation[J]. J. Math. Phys.,1986,27:2782-2785.
    [25]F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation[J]. Fractional Calculus Appl. Anal., 2001,4:153-192.
    [26]L. R. da Silva, L. S. Lucena, E. K. Lenzi et al, Fractional and nonlinear diffusion equation:additional results[J]. Physica A,2004,344:671-676.
    [27]V. V. Anh, N. N. Leonenko, Harmonic analysis of random fractional diffusion-wave equations[J]. Appl. Math. Comput,2003,141:77-85.
    [28]N. Sebaa, Z. E. A. Fellah, W. Lauriks et al, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone Original[J]. Signal Pro-cessing,2006,86(10):2668-2677.
    [29]W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics[J]. Biophysical Journal,1995,68:46-53.
    [30]M Kopf, C. Corinth, O. Haferkamp et al, Anomalous diffusion of water in biolog-ical tissues[J]. Biophysical journal,1996,70(6):2950-2958.
    [31]R. L. Magin, T. J. Royston, Fractional-order elastic models of cartilage:A multi-scale approach, Communications in Nonlinear Science and Numerical Simulation, 2010,15(3):657-664.
    [32]G. Srinivas, A. Yethiraj, B. Bagchi, Nonexponentiality of time dependent survival probability and the fractional viscosity dependence of the rate in diffusion con-trolled reactions in a polymer chain[J]. J. Chem. Phys.,2001,114:9170-9178.
    [33]M. Y. Xu, W. C. Tan, Theoretical analysis of the velocity field, stress field and vor-tex sheet of generalized second order fluid with fractional anomalous diffusion[J]. Science in China Series A:Mathematics,2001,44(11):1387-1399.
    [34]G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport[J]. Physics Reports,2002,371(6):461-580.
    [35]M. M. El-Borai, Some probability densities and fundamental solutions of frac-tional evolution equations[J]. Chaos, Solitons and Fractals, 2002, 14(3): 433-440.
    [36]I. A. Lopez, W. O. Urbina, Fractional Differentiation for the Gaussian Measure and applications[J]. Bull. Sci. math., 2004, 128: 587-603.
    [37]Y. Al-Assaf, R. El-Khazali, W. Ahmad. Identification of fractional chaotic system parameters[.I]. Chaos, Solitons and Fractals, 2004, 22(4): 897-905.
    [38]V. Daftardar-Gejji, S. Bhalekar, Chaos in fractional ordered Liu system[J]. Com-puters and Mathematics with Applications, 2010, 59(3): 1117-1127.
    [39]S. Bhalekar, V. Daftardar-Gejji, D. Baleanu et al, Transient chaos in fractional Bloch equations[J]. Computers and Mathematics with Applications, 2012, 64: 3367 - 3376.
    [40]S. S. Kharintscv, M. Kh. Salakhov, A simple method to extract spectral parameters using fractional derivative spectrometry[J]. Spectrochimica Acta Part A: Molecu-lar and Biomolecular Spectroscopy, 2004 60(8-9): 2125-2133.
    [41]R. Metzler, J. Klaftcr, The random walk's guide to anomalous diffusion: a frac-tional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77.
    [42]R. Gorcnilo, F. Mainardi, D. Moretti et al. Discrete random walk models for space-time fractional diffusion[J]. Chemical Physics, 2002, 284(1-2): 521-541.
    [43]K. Bertin, S. Torres, C. A. Tudor, Drift parameter estimation in fractional dif-fusions driven by perturbed random walks[J]. Statistics and Probability Letters, 2011 81(2): 243-249.
    [44]B. M. Vinagre, I. Podlubny, A. Hernandez et al, Some approximations of fraction-al order operators used in control theory and applications[J]. Fractional Calculus and Applied Analysis, 2000, 3(3): 231-248.
    [45]Y. Q. Chen, D. Xue, H. Dou, Fractional calculus and biomimetic control, in: Pro-ceedings of the First IEEE International Conference on Robotics and Biomimetics (RoBio04), Shengyang, China, August 2004, IEEE, pages robio2004-347.
    [46]Y. Luo, Y. Q. Chen, Fractional order [proportional derivative] controller for a class of fractional order systems[J]. Automatica,2009,45(10):2446-2450.
    [47]R. L. Bagley, P. J. Torvik, On the fractional calculus model of viscoelastic behav-ior[J]. J. Rheology,1986,30:133-155.
    [48]R. Metzler, T. F. Nonnenmacher, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials[J]. In-ternational Journal of Plasticity,2003,19(7):941-959.
    [49]A. Chatterjee, Statisticalorigins of fractionalderivatives in viscoelasticity[J]. Jour-nal of Sound and Vibration,2005,284(3-5):1239-1245.
    [50]H. Schiessel, R. Metzler, A. Blumen et al, Generalized viscoelastic models:their fractional equations with solutions[J]. J. Phys. A:Math. Gen.,1995,28:6567-6584.
    [51]S. W. J. Welch, R. A. L. Rorrer, R. G. Duren, Application of time-based frac-tional calculus methods to viscoelastic creep and stress relaxation of materials[J]. Mechanics of Time-Dependent Materials,1999,3(3):279-303.
    [52]M. Y. Xu, W. C. Tan, Representation of the constitutive equation of viscoelas-tic materials by the generalized fractional element networks and its generalized solutions[J]. Science in China Series G:2003,46(2):145-157.
    [53]A. D. Freed, K. Diethelm, Fractional Calculus in Biomechanics:A 3D Viscoelas-tic Model Using Regularized Fractional Derivative Kernels with Application to the Human Calcaneal Fat Pad[J]. Biomechanics and Modeling in Mechanobiolo-gy,2006,5(4):203-215.
    [54]J. G. Liu, M. Y. Xu, Higher-order fractional constitutive equations of viscoelas-tic materials involving three different parameters and their relaxation and creep functions[J]. Mechanics of Time-Dependent Materials,2006,10(4):263-279.
    [55]M. Sasso, G. Palmieri, D. Amodio, Application of fractional derivative models in linear viscoelastic problems[J]. Mechanics of Time-Dependent Materials,2011, 15(4):367-387.
    [56]N. Laskin, Fractional quantum mechanics and Levy path integrals[J]. Physics Let-ters A,2000,268:298-305.
    [57]D. Baleanu, S. I. Muslih, About fractional supersymmetric quantum mechanics[J]. Czechoslovak Journal of Physics, 2005, 55(9): 1063-1066.
    [58]F. B. Adda, J. Cresson, Fractional differentialequations and the Schrodinger equa-tion[J]. Applied Mathematics and Computation, 2005, 161: 323-345.
    [59]S. W. Wang, M. Y. Xu, X. C. Li, Green's function of time fractional diffusion e-quation and its applications in fractional quantum mcchanics[J]. Nonlinear Anal-ysis: Real World Applications, 2009, 10(2): 1081-1086.
    [60]G. Dattoli, Operational methods, fractional operators and special polynomials[J]. Applied Mathematics and Computation, 2003, 141(1): 151-159.
    [61]S. S. Ray, R. K. Bera, An approximate solution of a nonlinear fractional differ-ential equation by Adomian decomposition mcthod[J]. Applied Mathematics and Computation, 2005, 167(1): 561-571.
    [62]M. M. El-Borai, Semigroups and some nonlinear fractional differential equa-tions[J]. Applied Mathematics and Computation, 2004, 149(3): 823-831.
    [63]S. S. de Romero, H. M. Srivastava, An application of the N-fractional calculus operator method to a modified Whittaker equation[J]. Applied Mathematics and Computation, 2000, 115(1): 11-21.
    [64]K. Y. Chen, H. M. Srivastava, Some infinite series and functional relations that arose in the context of fractional calculus[J]. Journal of Mathematical Analysis and Applications, 2000, 252(1): 376-388.
    [65]Z. Odibat, S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional ordcr[J]. Chaos, Solitons and Fractals, 2008 36(1): 167-174.
    [66]F. Mainardi, R. Gorenflo, On Mittag-Leffler-type function in fractional evo-lution processes[J]. J. Comput. Appl. Math. 2000, 118(2): 283-299.
    [67]A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties[J]. Journal of Mathematical Analysis and Applications,2007, 336(2):797-811.
    [68]C. Fox, The G and H functions as symmetrical Fourier kernels[J]. Trans. Amer. Math. Soc.,1961,98(3):395-429.
    [69]A. M. Mathai, R. K. Saxena, The H-function with applications in statistics and other disciplines[M]. Wiley Eastern Limited, New Delhi,1978.
    [70]W. G. Glockle, T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes[J]. Journal of Statistical Physics,1993,71:741-757.
    [71]Walter G. Glockle, Theo F. Nonnenmacher, Fractional integral operators and Fox functions in the theory of viscoelasticity[J]. Macromolecules,1991,24(24):6426-6434.
    [72]R. Gorenflo, Y. Luchko, F. Mainardi, Wrightfunctions as scale-invariant solutions of the diffusion-wave equation[J]. Journal of Computational and Applied Mathe-matics,2000,118:175-191.
    [73]徐明瑜,谭文长,广义二阶流体分数阶反常扩散速度场、应力场及涡旋层的理论分析[J].中国科学,A辑,2001,31(7):626-638.
    [74]W. C. Tan, M. Y. Xu, Unsteady flows of a generalized second grade fluid with fractional derivative model between two parallel plates[J]. ACTA Mechanica Sinica,2004,20(5):471-476.
    [75]W. C. Tan, W.X.Pan, M. Y. Xu. A note on unsteady flows of a viscoelastic fluid with fractional Maxwell model between two parallel plates[J]. Int. J Non-linear Mech.,2003,38(5):645-650.
    [76]W. C. Tan, M. Y. Xu, The impulsive motion of flat plate in a general second grade fluid[J]. Mechanics Research Communication,2002,29(1):3-9.
    [77]谭文长,鲜峰,魏兰,等.广义二阶流体非定常Couette流动的精确解[J].科学通报,2002,47(16):1226-1228.
    [78]W. C. Tan, M. Y. Xu, Plane surface suddenly set in motion in a vis-coelastic fluid with fractional Maxwell model[J]. ACTA Mechanica Sini-ca,2002,18(4):342-349.
    [79]同登科,王瑞和,杨河山,管内非Newton流体分数阶流动的精确解[J].中国科学,G辑,2005,35(3):318-326.
    [80]D. K. Tong, Y. S. Liu, Exact solutions for the unsteady rotational flow of non-Newtonian fluid in all annular pipe[J]. Inter. J. of Engn. Sci.,2005,43(3):281-289.
    [81]同登科,王瑞和,分形油藏非Newton黏弹性液分数阶流动分析[J].中国科学,G辑,2004,34(1):87-101.
    [82]黄军旗,何光渝,刘慈群,双筒流变仪中广义二阶流体运动分析[J].中国科学,A辑,1996,26(10):912-920.
    [83]D. Y. Song, T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids:Modified Jeffreys model and its applica-tion[J]. Rheologica ACTA,1998,27:512-517
    [84]S. W. Wang. M. Y. Xu, Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative[J]. Acta Mechanica,2006,187(1-4):103-112.
    [85]S. W. Wang. M. Y. Xu. Axial Couette flow of two kinds of fractional viscoelas-tic fluids in an annulus[J]. Nonlinear Analysis:Real World Applications,2009, 10(2):1087-1096.
    [86]R. S. Lakes, Viscoelastic Solids[M], CRC Press, Boca Raton, FL 1999.
    [87]T. Pritz, Unbounded complex modulus of viscoelastic materials and the Kramers-Kronig relations[J]. Journal of Sound and Vibration,2005,279:687-697.
    [88]S. Muller, M. Kastner, J. Brummund et al, A nonlinear fractional viscoelastic material model for polymers[J]. Computational Materials Science,2011,50(10): 2938-2949.
    [89]Z. Moravek, J. Fiala, Fractal dynamics in the growth of root[J]. Chaos Solitons and Fractals,2004,19(1):31-34.
    [90]M. Y. Xu, An analytical solution for the model of drug distribution and absorption in small intestine[J]. ACTA Mech Sinica,1990,6(4):316-323.
    [91]T. Sun, P. Meakin, T. Jossang, Minimum energy dissipation and fractal structures of vascular systems. Fractals,1995,3(1):123-153.
    [92]B. J. West, Fractal Physiology and Chaos in Medicine[M]. World Scientific, Sin-gapore,1990.
    [93]苏海军,徐明瑜.耳石器官广义分数阶黏弹性动力学模型[J].中国生物医学工程学报,2001,20(1):46-52.
    [94]刘甲国,徐明瑜.人颅骨分数阶黏弹性模型研究[J].中国生物医学工程学报,2005,24(1):12-16.
    [95]J. Y. Liu, M. Y. Xu, An exact solution to the moving bound-ary problem with fractional anomalous diffusion in drug release de-vices[J]. ZAMM,2004,84(1):22-28.
    [96]X. C. Li, M. Y. Xu, S. W. Wang, Analytical solutions to the moving boundary problems with space-time-fractional derivatives in drug release devices[J]. Jour-nal of Physics A:Mathematical and Theoretical,2007,40:12131-12141.
    [97]F. Mainardi, Fractional relaxation—scillation and fractional diffusion wave phe-nomena[J]. Chaos Solitons and Fractals,1996,7(9):1461-1477.
    [98]A. Carpinteri, E. Mainardi, Fractals and fractional calculus in continuum me-chanics[M]. New York:Springer,1997.
    [99]B. I. Henry, S.L. Wearne, Fractional reaction-diffusion[J]. Physica A:Statistical Mechanics and its Applications 2000,276:448-455.
    [100]A. Compte, Stochastic foundations of fractional dynamics[J]. Phys. Rev. E,1996,53(4):4191-4193.
    [101]J. S. Duan, M. Y. Xu, Concentration distribution of fractional anoma-lous diffusion caused by an instantaneous point source[J]. Applied Math. Mech.,2003,24(11):1302-1308.
    [102]X. Y. Jiang, M. Y. Xu, Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media[J]. Int. J. Non-linear Mechanics,2006,41:156-165.
    [103]E. K. Lenzi, G. A. Mendes, R. S. Mendes, et al, Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption[J]. Phys. Rev. E,2003,67:051109.
    [104]G. Richard, Diffusion phenomena:cases and studies[M]. New York:Kluwer Academic/Plenum Publishers,2001
    [105]M. Bologna, C. Tsallis, P. Grigolini, Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation:Exact time-dependent solutions[J]. Phys. Rev. E,2000,62:2213-2218.
    [106]X. Y. Jiang, M. Y. Xu, H. T. Qi, The fractional diffusion model with an absorp-tion term and modified Fick's law for non-local transport processes[J]. Nonlinear Analysis:Real World Applications,2010,11(1):262-269.
    [107]J. Y. Liu, M. Y. Xu, Some exact solutions to Stefan problems with fraction-al differential equations[J]. Journal of Mathematical Analysis and Applications, 2009,351(2):536-542.
    [108]X. C. Li, M. Y. Xu, S. W. Wang, Scale-invariant solutions to partial differen-tial equations of fractional order with a moving boundary conditional[J]. Journal of Physics A:Mathematical and Theoretical,2008,41:155202.
    [109]X. C. Li, M. Y. Xu, X. Y. Jiang, Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition[J]. Applied Math-ematics and Computation,2009,208(2):434-439.
    [110]L. M. Petrovic, D. T. Spasic, T. M. Atanackovic, On a mathematical model of a human root dentin[J]. Dental Materials,2005,21:125-128.
    [111]J. Jantarat, J. E. A. Palamara, C. Lindner, et al, Time dependent properties of human root dentin[J]. Dental Materials,2002,18:486-493.
    [112]M. D. Paola, A. Pirrotta, A. Valenza, Visco-elastic behavior through fractional calculus:an easier method for best fitting experimental results[J]. Mechanics of Materials,2011,43:799-806.
    [113]T. Pritz, Five-parameter fractional derivative model for polymeric damping materials[J]. Journal of Sound and Vibration,2003,265:935-952.
    [114]R. N. Capps, Dynamic Youngs moduli of some commercially available polyurethanes[J]. Journal of the Acoustical Society of America,1983,73:2000-2005.
    [115]B. L. Fowler, Interactive characterization and data base storage of complex mod-ulus data. Proceedings of Damping89,1989, West Palm Beach, FL, Vol.2, FAA 1-12.
    [116]D. I. G. Jones, Results of a Round Robin test program:complex modulus proper-ties of a polymeric damping material.1992, WL-TR-92-3104, Technical Report, Wright Laboratory, Dayton, Ohio.
    [117]W. M. Madigosky, G. F. Lee, Improved resonance technique for materials charac-terization[J]. Journal of the Acoustical Society of America,1983,73:1374-1377.
    [118]A. D. Nashif, T. M. Lewis, Data base of dynamic properties of materials. Pro-ceedings of Damping 91,1991, San Diego, CA, Vol.1, DBB 1-26.
    [119]L. Rogers, Operators and fractional derivatives for viscoelastic constitutive equa-tions[J]. Journal of Rheology 1983,27:351-372.
    [120]T. F. Nonnenmacher, Fractional relaxation equations for viscoelasticity and re-lated phenomena[C]. In:Vasguez JC, Jon D, (eds) Rheological modeling:Ther-modynamical and statistical approaches. Springer, Berlin,309-320,1991.
    [121]L. Debnath, Recent applications of fractional calculus to science and engineer-ing[J]. International Journal of Mathematics and Mathematical Sciences,2003, 54:3413-3442.
    [122]Y. Li, M. Y. Xu, Hysteresis and precondition of viscoelastic solid models[J]. Mech. Time-Depend. Mater.,2006,10:113-123.
    [123]Y. Li, M. Y. Xu, Hysteresis loop and energy dissipation of viscoelastic solid models[J]. Mech. Time-Depend. Mater.,2007,11:1-14.
    [124]R. C. Koeller, Polynomial operators, Stieltjes convolution, and fractional calcu-lus in hereditary mechanics[J]. Acta Mechanica,1986,58:251-264.
    [125]R. C. Koeller, Toward an equation of state for solid materials with memory by use of the half-order derivative[J]. Acta Mechanica,2007,191:125-133.
    [126]F. Bloch, Nuclear induction[J]. Physical Review,1946,70:460-473.
    [127]R. L. Magin, X. Feng, D. Baleanu, Solving the fractional order Bloch equa-tion[J]. Concepts Magn. Reson. Part A,2009,34A(1):16-23.
    [128]I. Petras. Modeling and numerical analysis of fractional-order Bloch equa-tions[J]. Computers and Mathematics with Applications,2011,61:341-356.
    [129]R. L. Magin, W.Li, M. P. Velasco, etal, Anomalous NMR relaxation in car-tilage matrix components and native cartilage:Fractional-order models[J]. Journal of Magnetic Resonance,2011,210(2):184-191.
    [130]S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, et al, Fractional Bloch equa-tion with delay[J]. Computers and Mathematics with Applications,2011,61: 1355-1365.
    [131]A. M. Mathai, R. K. Saxena, H. J. Haubold, The H-Function:theory and appli-cations[M]. Springer, Berlin,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700