用户名: 密码: 验证码:
潜浮状态下圆柱壳结构的声振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的工作是国家自然科学基金资助项目“水下流场-圆柱壳耦合系统的振动能量流特性研究”(项目编号:40976058)的一部分。论文的目标是研究浸没在有限域流场中的圆柱壳结构的声振特性,基于波传播的方法,分别对半浸状态下圆柱壳结构、部分浸没状态下圆柱壳结构以及有限浸没深度下考虑自由液面影响的圆柱壳结构以及考虑刚性壁存在下的圆柱壳结构的远场辐射声压和输入能量流进行了系统的研究。
     论文首先对本领域的国内外研究现状进行比较系统的介绍,分别介绍了自由声场下圆柱壳流场耦合系统声振特性研究,概括了结构声辐射的分析方法,回顾了半无限域下结构声振特性的研究以及介绍了镜像原理在声学领域中的应用。
     论文的第二部分对半浸状态下的圆柱壳结构为对象进行研究分析,这里的半浸状态是指圆柱壳结构的轴线与自由液面共面,圆柱壳结构的一半表面积浸没在流场中,另外一半表面积所在的环境假设为真空。为了满足自由液面处的边界条件,可以通过级数展开的形式给出流体声压的表达式,进而通过圆柱壳流场交界处的连续条件建立结构和声压间的联系,最终得到流固耦合振动方程。通过稳相法,得到圆柱壳结构远场声压的近似表达式,计算了半浸状态下的远场辐射声压并与无限域中的结果进行了对比分析。
     在对半浸状态下圆柱壳结构进行计算,特别是进行能量流的计算时,发现这种半无限域的存在导致了各阶周向模态之间是互相耦合的,这种耦合使得计算效率大为降低,计算时间急剧增加。基于此,针对半浸状态下圆柱壳结构辐射声压的快速计算方法展开了研究。这里借鉴有限长圆柱壳结构的解耦思路,认为半浸圆柱壳结构的耦合振动方程所得阻抗矩阵中非对角元素为零,从而对耦合方程进行解耦,通过对比验证了这种思路的可行性。基于这种解耦方法,计算分析了不同周向模态下半浸状态圆柱壳结构的输入能量流特性。
     接下来对部分浸没状态下圆柱壳结构的声振特性展开分析,考虑到部分浸没状态下流体声压的解析表达式不易直接给出,文中采用参考文献中声学边界的近似处理方法,给出了流体声压载荷的近似表达式,最终计算分析了部分浸没状态下圆柱壳结构的远场辐射声压和输入能量流特性。
     对于有限浸没深度下考虑自由液面影响的圆柱壳结构,这里利用镜像原理来处理自由液面处的流体声学边界条件,利用汉克尔函数的Graf加法定理,建立了实源和镜像所处的两个坐标系之间的联系,最后利用流体和结构边界处的连续条件,最终建立了这种浸没状态下声固耦合振动方程。计算了圆柱壳结构的远场辐射声压并与无限域中的结果进行对比分析,研究发现,当圆柱壳结构离自由液面距离较近时,圆柱壳结构的辐射声场表现出较大的差异性;而当圆柱壳结构离自由液面距离足够大时,其辐射声场和无限域中的结果基本一致。
     实际工程中,也存在诸如海底和码头壁面的情况,文中将海底和码头壁面近似当成刚性壁面来处理,建立了刚性壁面存在时水下圆柱壳结构的声固耦合振动方程,对其远场辐射声压进行计算,并与考虑自由液面影响下的结果进行对比分析。
     最后对自由液面和刚性壁面同时存在时的组合边界下水下圆柱壳结构的声辐射特性进行分析,令自由液面和刚性壁面是一种垂直关系,这里假设自由液面和刚性壁面只形成一次反射,也就是说自由液面的反射波不会在刚性壁面处形成二次反射。基于此,得到了计算组合边界下圆柱壳结构远场辐射声压的表达式,并与仅存在自由液面和仅考虑刚性壁面的情景进行对比研究。
     论文给出了不同浸没状态下圆柱壳结构远场辐射声压的计算方法,比较系统地对处于各种浸没状态下圆柱壳结构的声振特性展开了分析,为不同浸没状态下圆柱壳结构的声辐射预报建立了理论基础。
The work of the thesis is a part of the research project “Characteristics of VibrationalPower Flow in Submerged Coupled Cylindrical shell”, which is supported by the NationalNatural Science Foundation of China (Contract Number:40976058). Based on the wavepropagation approach, the vibro-acoustic characteristics of the cylindrical shells in thefollowing cases are studied: the semi-submerged cylindrical shell, the partially immersedcylindrical shells, the cylindrical shells which is submerged in the fluid with finite depthfrom the free surface or with finite distance form the rigid wall and the cylindrical shellssubmerged in the fluid with the boundary of the free surface and the rigid wall.
     The studies which are related to our work are introduced briefly. The main contentsinclude the outlines of the studies about the vibro-acoustic characteristics of cylindricalshell in the free space, the summary of the methods exployed in the sound radiationanalysis, the overview of the studies of the vibro-acoustic characteristics of cylindricalshell in half space and the introduction of the image method applied in acoustics.
     The vibro-acoustic characteristic of the semi-submerged cylindrical shell is studied.The domain of the fluid can be seen as semi-infinite. The expression can be expanded intoseries which can satisfy the boundary condition of the free surface in this case. Thestructure-fluid coupling equation can be obtained applying the boundary condition of theinterface of the structure and fluid. Introducing the stationary phase method, theapproximate expression of the far field sound pressure is obtained and the results arecompared with those in infinite fluid field.
     The coupling of the circumferential mode of the semi-submerged cylindrical shellmakes the impedance matrix very complicate which leads to the low solution efficiency ofthe coupling equation. A method of diagonal decoupling is employed here to solve theproblem. Using the method, the non-diagonal elements of the impedance matrix areassumed to be zero and the equation can be decoupled. The far field sound pressure can becalculated more efficient and the validity is proved by comparing the results with those inliterature. Based on the method, the input power flow is studied. This method alsofacilitates the study of more complicate cylindrical shells partially immersed.
     The characteristics of the sound radiation and vibrational power flow of the partiallysubmerged cylindrical shell under a harmonic excitation are studied. The approximateacoustic boundary of the free surface is used to solve the fluid domain. The structure-fluidcoupling equation is established based on the Flügge and Helmholtz theories. The far-fieldsound pressure is calculated and compared with that in infinite field.
     The far-field sound radiation of a submerged cylindrical shell with finite depth fromthe free surface is studied. The image method is applied to satisfy the boundary conditionof the free surface. Based on the Flügge shell theory and the Helmholtz equation, thestructure-acoustic coupling equation is established. The expression of the far-field soundpressure is obtained using the stationary phase method. In order to evaluate the effect ofthe depth from the free surface, the results of the submerged cylindrical shell with finitedepth from the free surface are compared to those of the submerged cylindrical shell in theinfinite fluid. The characteristics of the far-field sound pressure with the change of thedepth are investigated. It is found that the depth has important influence on the far-fieldsound pressure radiated from the submerged cylindrical shell due to the presence of freesurface.
     In practice, when the submarine runs near the seabed or the submarine is tested in thepresence of dock, the fluid domain can be seen as semi-infinite and the seabed and thedock can be processed as rigid wall The far-field acoustic radiation of a submergedcylindrical shell which is located at a finite distance from the rigid wall is studied. Basedon the image method, Flügge shell theory and the Helmholtz equation, thestructure-acoustic coupling equation is established and the expression of the far-fieldsound pressure is obtained. In order to evaluate the effect of the rigid wall, the results arecompared to those of the submerged cylindrical shell in presence of free surface.
     The far field sound pressure of the cylindrical shells with the boundary of thecombination of free surface and rigid wall is finally studied. The free surface and rigidwall is assumed to be perpendicular. It is assumed that the sound wave is reflected onlyonce by the boundary that is the reflected wave from the rigid wall can not be reflectedagain by the free surface and vice versa. Based on the assumption, the expression of thefarfiled sound pressure radiated by the cylindrical shell is otained.
     The expressions of the far field sound pressure are obtained while the cylindricalshells are located in the fluid with various boundary conditions. The vibro-acousitccharacteristics of the cylindrical shell in different immersion states are studied in our workwhich can serve as the theoretical basis for the establishment of the sound radiationprediction of the cylindrical shells in different immersion states.
引文
[1] Junger M C. Radiation loading of cylindrical and spherical surface. Journal of theAcoustical Society of America,1952,24(3):288-289
    [2] Junger M C. Vibrations of elastic shells in a fluid medium and the associatedradiation of sound. Journal of Applied Mechanics,1952,19:439-445
    [3] Junger M C. The physical interpretation of the expression for an outgoing wave incylindrical coordinates. Journal of the Acoustical Society of America,1953,25(1):40-47
    [4] Junger M C. Sound, Structures and their interaction,1979, Cambridge: M. I. T.Press.
    [5] Bleich H H, Baron M. L. Free and forced vibrations of an infinitely long cylindricalshell in an infinite acoustic medium. Journal of Applied Mechanics,1954,21(2):167-177
    [6] Manning J E, Maidanik G. Radiation properties of cylindrical shells. Journal of TheAcoustical Society of America,1964,36(9):1691-1398
    [7] Wiliams W, Parke N G, Moran D. A., et al. Acoustic radiation from a finitecylinder. Journal of the Acoustical Society of America,1964,36
    [8] Harari A, Sandman B E. Vibratory response of laminated cylindrical shellsembeded in an acoustic fluid. Journal of the Acoustical Society of America,1976,60(1):117-128
    [9] Laulagnet B, Guyader J L. Modal analysis of a shell's acoustic radiation in lightand heavy fluids. Journal of Sound and Vibration,1989,131(3):397-415
    [10] Fuller C R. Sound radiation from an infinite elastic cylinder with dual-wavepropagation intensity distributions. Journal of Sound and vibration,1988,122(3):479-490
    [11] Fuller C R. Free field coorection factor for spherical acoustic waves impinging oncylinders. American Institute of Aeronautics and Astronautics Journal,1989,27(12):1722-1726
    [12] Zhang X M. Vibration analysis of cross-ply laminated composite cylindrical shellsusing wave propagation approch. Applied Acoustics,2001,62(11):963-969
    [13] Zhang X M. Parametric studies of coupled vibration of cylindrical pipes conveyingfluid with the wave propagation approach. Computers&Structures,2002,80(3-4):287-295
    [14] Zhang X M, Liu G R, Lam K Y. Vibration analysis of thin cylindrical shells usingwave propagation approach. Journal of Sound and Vibration,2001,239(3):397-403
    [15] Zhang X M, Liu G R, Lam K Y. Frequency analysis of cylindrical panels using awave propagation approach. Applied Acoustics,2001,62(5):527-543
    [16] Zhang X M. Frequency analysis of submerged cylindrical shells with the wavepropagation approach. Internatinal Journal of Mechanical Sciences,2002,44(7):1259-1273
    [17] Zhang X M, Liu G R, Lam K Y. Coupled vibration analysis of fluid-filledcylindrical shells using the wave propagation approach. Applied Acoustics,2001,62(3):229-243
    [18] Zhang X M, Greenleaf J F. An anisotropic model for frequency analysis of arterialwalls with the wave propagation approach. Applied Acousitcs,2007,68(9):953-969
    [19] Yan J, Li T Y, Liu T G, et al. Charateristics of the vibrational power flowpropagation in a submerged periodic ring-stiffened cylindrical shell. AppliedAcoustics,2006,67(6):550-569
    [20] Yan J, Li T Y, Liu J X, et al. Space harmonic analysis of sound radiation from asubmerged periodic ring-stiffened cylindrical shell. Applied Acoustics,2006,67(8):743-755
    [21]严谨,李天匀,刘土光等.水下周期环肋圆柱壳声辐射的空间简谐分析.华中科技大学学报,2007,35(1):96-98
    [22]严谨,李天匀,刘土光等.流场中周期环肋圆柱壳辐射声压的理论和实验研究.中国舰船研究,2007,2(1):49-51
    [23] Yan J, Li T Y, Liu J X, et al. Input power flow in a submerged infinite cylindricalshell with doubly periodic supports. Applied Acoustics,2008,69(8):681-690
    [24]严谨,李天匀,刘土光等.流场中周期加肋圆柱壳受激振动的能量流输入特性.船舶力学,2006,10(4):140-147
    [25]严谨,李天匀,刘土光等.流场中周期加肋圆柱壳振动能量流的实验研究.船舶力学,2008,12(5):824-829
    [26] Yan J, Li F C, Li T Y. Vibrational power flow analysis of a submerged viscoelasticcylindrical shell with wave propagation approach. Journal of Sound and Vibration,2007,303(1-2):264-276
    [27]严谨,李天匀,刘敬喜等.基于波传播分析的水下粘弹性复合圆柱壳振动功率流研究.船舶力学,2007,11(5):780-787
    [28]严谨.水下复杂圆柱壳振动能量流和声辐射特性研究:[博士学位论文].武汉:华中科技大学图书馆,2006
    [29] Liu Z Z, Li T Y, Zhu X, et al. The effect of hydrostatic pressure fields on thedispersion characteristics of fluid shell coupled system. Journal of Marine Scienceand Application,2010,9(2):129-136
    [30]刘志忠,李天匀,刘敬喜.考虑流体静压时充液圆柱壳的频散特性分析.船舶力学,2009,13(4):635-640
    [31]何麟,李天匀,严谨等.静水压力下圆柱壳结构频散特性分析.中国舰船研究,2006,1(3):5-8
    [32]李天匀,刘志忠,张俊杰等.波传播法分析静压下圆柱壳-流场耦合系统的自由振动.第十二届船舶水下噪声学术讨论会,2009,中国长沙
    [33] Liu Z. Z., Li T Y, Zhu X, et al. Effect of hydrostatic pressure on input power flowin submerged ring-stiffened cylindrical shells. Journal of Ship Mechanics,2011,15(3):301-312
    [34]刘志忠.静压条件下圆柱壳-流场耦合系统振动功率流和声辐射特性研究:[博士学位论文].武汉:华中科技大学图书馆,2009
    [35]刘志忠,李天匀,张俊杰.考虑流体静压时充液圆柱壳的输入能量流特性.中国舰船研究,2009,4(2):20-23
    [36]张俊杰.基于不同理论的流场中圆柱壳振动能量流和辐射声功率研究.[博士学位学位论文].武汉:华中科技大学,2010
    [37] Zhang J J, Li T Y, Ye W B, et al. Acoustic radiation of damped cylindrical shellwith arbitrary thickness in the fluid field. Journal of Marine Science andApplication,2010(4):431-438
    [38]何祚镛.结构振动与声辐射.哈尔滨:哈尔滨工程大学出版社,2001
    [39] Scott J. F. M.. The free modes of propagation of an infinite fluid-loaded thincylindrical shell. Journal of Sound and Vibration,1988,125(2):241-280
    [40] Plona T J, Sinha B K, Kostek S, et al. Axisymmetric wave propagation influid-loaded cylindrical sehlls II:theory versus experiment. Journal of theAcoustical Society of America,1992,92:1144-1155
    [41] Sinha B K, Plona T J, Kostek S, et al. Axisymmetric wave propagation influid-loaded cylindrical shells I:theory. Journal of the Acoustical Society ofAmerica,1992,92:1132-1146
    [42] Guo Y P. Approximate solution of the dispersion equation for fluid-loadedcylindrical shells. Journal of the Acoustical Society of America,1994,95(3):1435-1440
    [43] Guo Y P. Sound scattering by bulkheads in cylindrical shells. Journal of theAcoustical Society of America,1994,95(5):2550-2559
    [44] Guo Y P. Acoustic scattering from cylindrical shells with deck-type internal plateat oblique incidence. Journal of the Acoustical Society of America,1994,96(1):287-293
    [45] Guo Y P. Sound scattering from cylindrical shell with internal elastic plates.Journal of the Acoustical society of America,1992,93(4):1936-1946
    [46] Guo Y P. Wave description of near field scattering from cylindrical shells. Journalof the Acoustical Society of America,1994,95(4):2006-2013
    [47] Guo Y P. Radiation from cylindrical shells driven by on-surface forces. Journal ofthe Acoustical Society of America,1994,95(4):2014-2021
    [48] Guo Y P. Acoustica radiation from cylindrical shells with deck-type internal plateat oblique incidence. Journal of the Acoustical Society of America,1996,99(3):2701-2713
    [49] Burroughs C B. Acoustic radiation from fluid-loaded infinite circular cylinderswith doubly periodic ring supports. Journal of the Acoustical Society of America,1984,75(3):715-722
    [50] Laulagnet B, Guyader J L. Sound radiation by finite cylindrical ring-stiffenedshells. Journal of Sound and Vibration,1990,138(2):173-191
    [51]谢官模.环肋圆柱壳在流场中的动力响应和声辐射:[博士学位论文].武汉:华中理工大学图书馆,1994
    [52]罗斌.肋骨型式对环肋圆柱壳综合性能的影响:[硕士学位论文].武汉:华中理工大学图书馆,1995
    [53] Yoshikawa S. Fluid-structure coupling by the entrained fluid in submergedconcentric double-shell vibration. Journal of the Acoustical Society of Japan,1993,14(2):99-111
    [54] Yoshikawa S, Willams E G, Washburn K B. Vibration of two concentricsubmerged cylindrical shells by the contained fluid. Journal of the AcousticalSociety of America,1994,95(6):3273-3286
    [55]陈越澎,骆东平,陈晓宁.流场中双层壳体结构振动特性研究.华中理工大学学报,1999,27(1):72-73
    [56]陈明,曹为午,陈美霞等.内部声源激励加筋双层圆柱壳声振计算方法.华中科技大学学报,2009,37(9):76-78
    [57]吴文伟,吴崇健,沈顺根.双层加肋圆柱壳振动和声辐射研究.船舶力学,2002,6(1):44-51
    [58]范军,刘涛,汤渭霖.水中双层无限长圆柱壳声散射.声学学报,2003,28(4):345-.350
    [59]何祚镛,商德江.加肋双层圆柱壳振动声辐射数值计算分析.声学学报,2001,26(3):193-201
    [60]陈美霞,骆东平,彭旭等.敷设阻尼材料的双层圆柱壳声辐射性能分析.声学学报,2003,28(6):486-493
    [61]陈美霞,骆东平,周锋等.阻尼材料敷设方式对双层壳体声辐射性能的影响.声学学报,2005,30(4):296-302
    [62]陈美霞,金家坤,彭旭等.内、外壳对水下双层圆柱壳声振性能影响分析.船舶力学,2009,13(4):628-634
    [63]陈美霞,骆东平,曹钢等.有限长加筋双层圆柱壳低阶模态声辐射性能分析.哈尔滨工程大学学报,2004,25(4):446-450
    [64]陈美霞,骆东平,陈小宁等.复杂双层壳体声辐射性能分析.声学学报,2004,29(3):209-215
    [65]陈美霞,骆东平,杨叔子.壳间连接形式对双层壳声辐射性能的影响.振动与冲击,2005,24(5):77-80
    [66]艾海峰,陈志坚,孙谦.降低双层加肋圆柱壳低频噪声的声学设计技术.噪声与振动控制,2007(3):106-109
    [67]韩蕴韬,张阿漫,惠超等.双层圆柱壳振动传递及声辐射试验研究.传感器与系统,2007,26(7):41-44
    [68]谬旭弘,陶景桥,姚熊亮等.基于灰色理论的水下双层壳体振动和声辐射统计能量分析.船舶力学,2006,10(2):146-152
    [69]姚熊亮,杨娜娜,陶景桥.双层壳体水下振动和声辐射的仿真分析.哈尔滨工程大学学报,2004,25(2):136-140
    [70]张阿漫,钱德进,姚熊亮.结构型式对双层声辐射特性影响研究.中国舰船研究,2007,2(3):1-6
    [71]曹贻鹏,张文平.轴系纵振对双层圆柱壳体水下声辐射的影响研究.船舶力学,2007,11(2):293-299
    [72]刘小勇,盛美萍,行晓亮等.双层圆柱壳声预报及统计能量参数灵敏度分析.振动与冲击,2007,26(7):50-54
    [73]谢志勇,周其斗,纪刚.双层柱壳的流固耦合模态计算与试验研究.海军工程大学学报,2009,21(2):97-101
    [74] Stepanishen P R. Modal coupling in the vibration of fluid-loaded cylindrical shells.Journal of the Acoustical Society of America,1982,71(4):813-823
    [75] Photiais D M. The relationships of singular value decomposition to wave-vector byth e three-dimensional structures. Journal Of the Acoustical Society of America,1990,88(2):1152-1159
    [76] Borgiotti G V. The power radiated by a vibrating body in an acoustic fluid and itsdetermination from boundary measurements. Journal of the Acoustical Society ofAmerica,1990,88(4):1884-1893
    [77] Chen P T, Ginsberg J H. Complex power, reciprocity, and radiation modes forsubmerged bodies. Journal of the Acoustical Society of America,1995,98(6):3343-3351
    [78] Chen P T. Vibrations of submerged structrures in a heavy acousitc medium usingradiation modes. Journal of Sound and Vibration,1997,208(1):55-71
    [79] Chen P T. Acoustica radiations for submerged elastic structures using natural modeexpansions in coujunction with radiation modes approach. Journal of Sound andVibration,2001,246(2):245-263
    [80]姜哲.声辐射问题中的模态分析:I理论.声学学报,2004,29(4):373-378
    [81]姜哲.声辐射问题中的模态分析:II.实例.声学学报,2004,29(6):507-515
    [82]姜哲.声辐射问题中的模态分析:III.声场重构.声学学报,2005,30(3):242-248
    [83]杨东升,姜哲.声辐射模态在声场重构中的应用.噪声与振动控制,2009(2):55-58
    [84]姜哲.基于声辐射模态讨论声能量辐射与传递.声学学报,2005,30(2):125-131
    [85]李双,陈克安.结构振动模态和声辐射模态之间对应关系及其应用.声学学报,2007,32(2):171-177
    [86]吴经彪,姜哲,朱利锋.基于声辐射模态的有源控制解耦.声学学报,2009,34(5):453-461
    [87]靳国永,杨铁军,刘志刚.基于声辐射模态的有源结构声传入及其辐射控制.声学学报,2009,34(3):256-265
    [88] Zhao Z G, Huang Q B, He Z. Calculation of sound radiant efficiency and soundradiant modes of arbitrary shape structures by BEM and general eigenvaluedecomposition. Applied Acoustics,2008,69(6):796-803
    [89] Hunt J T, Knittel M R, Barach D. Finite element approach to acoustic radiationfrom elastic structures Finite element approach to acoustic radiation from elasticstructures. Journal of the Acoustical Society of America,1974,55(2):269-280
    [90] Everstine G C. Finite element formulations of structural acoustics problems.Computers and Structrues,1997,65(3):307-321
    [91] Amini S, Kirkup S M. Solution of Helmholtz equation in the exterior domain byelementary boundary integral methods. Journal of Computational Physics,1995,118:208-221
    [92] Bell W, Meyer W, Zinn B. Predicting the acoustics of arbitrarily shaped bodiesusing an integral approach. AIAA Journal,1977,15(6):813-820
    [93] Bell W, Meyer W, Zinn B. Boundary integral solutions of three dimensionalacoustic radiation problems. Journal of Sound and Vibration,1978,59(2):245-262
    [94] Kleinman R E, Roach G F. Boundary integral equations for the three-dimensionalHelmholtz equation. SIAM Review,1974,16(2):214-216
    [95] Seybert A F, Cheng C Y R, Wu T W. The solution of coupled interior/exterioracoustic problems using the boundary element method. Journal of the AcousticalSociety of America,1990,88(3):1612-1618
    [96] Chen L H. Sound radiation from an arbitrary body. Journal of the AcousticalSociety of America,1963,35:1626-1632
    [97] Chertock G. Sound radiation from vibrating surfaces. Journal of the AcousticalSociety of America,1964,36(7):1305-1313
    [98] Copley L G. Integral equation method for radiation from vibrating bodies. Journalof the Acoustical Society of America,1967,41:807-816
    [99] Schenck H A. Improved integral formulation for an acoustic radiation problems.Journal of the Acoustical Society of America,1968,44:41-58
    [100]赵健,汪鸿振,朱物华.边界元法计算已知振速封闭面的声辐射.声学学报,1989,14(4):250-257
    [101]姜哲.边界元方法在声辐射问题中的应用.江苏工学院学报,1991,12(2):92-99
    [102]张敬东,何祚镛.传递矩阵-边界元方法预报水下旋转薄壳振动和声辐射.哈尔冰船舶工程学院学报,1989,10(4):435-444
    [103]刘钊,王有成,陈心昭.全特解场边界元方法及其在计算振动体声辐射中的应用.合肥工业大学学报,1994,17(4):14-21
    [104]刘钊,陈心昭.结构声辐射分析的全特解场边界元方法.振动工程学报,1996,9(4):341-347
    [105]汪鸿振,冯革楠.用边界元法计算变压器辐射噪声.噪声与振动控制,1994(4):26-28
    [106]黎胜,赵德友.用边界元法计算结构振动辐射声场.大连理工大学学报,2000,40(4):391-394
    [107]闫再友,姜楫,严明.利用边界元法计算无界声场中结构体声辐射.上海交通大学学报,2000,34(4):520-523
    [108] Everstine G C, Henderson F M. Coupled finite element/boundary element approachfor fluid-structure interaction. Journal of the Acoustical Society of America,1990,87(5):1938-1947
    [109] Allen M J, Vlahopoulos N. Integration of finite element and boundary elementmethods for calculating the radiated sound from a randomly excited strucrue.Computers&Structrues,2000,77(2):155-169
    [110]周其斗.细长壳体水声辐射问题的有限元结合边界元解法.海军工程学院学报,1996(2):35-44
    [111]黎胜,赵德友.用有限元/边界元方法进行结构声辐射的模态分析.声学学报,2001,26(2):174-179
    [112]张军,兆文忠,张维英.结构声辐射有限云/边界元声学结构灵敏度研究.振动工程学报,2005,18(3):366-370
    [113]徐张明,汪玉,华宏星等.双层壳体的船舶动力舱振动与声辐射的有限元结构边界元数值计算.中国造船,2002,43(4):39-44
    [114]袁亮,倪樵,刘攀等.用有限元/边界元方法计算U型管振动声辐射.华中科技大学学报,2006,23(1):39-42
    [115]赵志高,黄其柏,何锃.基于有限元边界元方法的薄板声辐射分析.噪声与振动控制,2008(1):39-43
    [116] Farassat F. Extension of kirchhoff's formula to radiation from moving surfaces.Journal of Sound and Vibration,1988,123(3):451-460
    [117]汤渭霖.用物理声学方法计算非硬表面的声散射.声学学报,1993,18(1):45-53
    [118]汤渭霖.用物理声学方法计算界面附件目标的回波.声学学报,1999,24(1):1-5
    [119] Bernhard R J, Huff J E. Structural-acoustic design at high frequency using theenergy finite element method. Journal of Vibration and Acoustics,1999,121(3):295-301
    [120] Burroughs C B, Fischer R W, Kern F R. An introduction to statistical energyanalysis. Journal of the Acoustical Society of America,1997,101(4):1779-1789
    [121] Carcaterra A, Sestieri A. Energy density equations and power flow in sturctures.Journal of Sound and Vibration,1995,188(2):269-282
    [122] Desmet W. Mid-frequency vibro-acoustic modeling: challenges and potentialsolutions. Proceedings of ISMA,2002,2:835-862
    [123] Mace B R, Shorter P J. Energy flow models from finite element analysis. Journal ofSound and Vibration,2000,233(8):369-389
    [124] Nefske D J, Sung S H. Power flow finite element analysis of dynamic systems:basic theory and application to beams. Journal of Vibration, Acoustics, Stress andReliability in Design,1989,111:94-100
    [125] Richard H L. Statistical energy analysis of dynamical systems: theory andapplication,1975, USA: MIT Press.
    [126] Woodhouse J. An approach to the theoretical background of statistical energyanalysis applied to structural vibration. Journal of the Acoustical Society ofAmerica,1981,69(6):1695-1709
    [127] Seybert A F, Soenarko B. Radiation and scattering of acoustic waves from bodiesof arbitrary shape in a three dimensional half space. Journal of Vibration, Acoustics,Stress, and Reliability in Design,1988,110:112-117
    [128] Seybert A F, Wu T W. Modified helmholtz integral equation for bodies sitting onan infinite plane. Journal of the Acoustical Society of America,1988,85(1):19-23
    [129] Chen P, Lin C, Yang T. Respoinse of partially immersed elastic structures using asymmetric formulation for coupled boundary element and finite element methods.Journal of the Acoustical Society of America,2002,112(3):866-875
    [130]黎胜,赵德友.半空间内结构声辐射研究.船舶力学,2004,1(8):106-112
    [131]邹元杰,赵德友,黎胜.自由液面和刚性壁面对结构振动声辐射的影响.声学学报,2005,30(1):89-96
    [132]林皋,李炳奇,申爱国.半无限弹性空间域内点加振格林函数的计算.力学学报,1994,5(26):583-592
    [133]邹明松,吴文伟,谢基榕.半无限流域中T型接头结构声传递研究.船舶力学,2011,1-2(15):143-150
    [134]汪鸿振,冯革楠.半无限域中结构体辐射声场计算.声学技术,1996,15(2):54-63
    [135]邹春平,陈端石,华宏星.船舶水下辐射噪声特性研究.船舶力学,2004,8(1):112-124
    [136]苏海东,黄玉盈.求半无限域流场中物体附连水质量的一种简便解法.华中科技大学学报,2003,20(4):14-16
    [137] Amabili M. Free vibration of partially filled, horizontal cylindrical shells. Journalof Sound and Vibration,1996,191(5):757-780
    [138] Amabili M. Flexural vibration of cylindrical shell partially coupled with externaland internal fluid. Journal of Vibaration and Acoustics,1997,119(3):476-484
    [139] Ergin A. An approximate method for the free vibration analysis of partially filledand submerged, horizaontal cylindrical sehlls. Journal of Sound and Vibration,1997,207(5):761-767
    [140] Ergin A, Tenarel P. Free vibration of a patially liquid-filled and submerged,horizontal cylindrical sehll. Journal of Sound and Vibration,2002,254(5):951-965
    [141] Moon K K, Jae R K, Chun H B. Free vibration analysis of a hung clamped-freecylindrical sehll partially submerged in fluid. Journal of Fluid and Structures,2011,27(2)
    [142] Askari E, Daneshmand F. Coupled vibrations of cantilever cylindrical shellspartially submerged in fluids with continuous, simply connected and non-convexdomain. Journal of Sound and Vibration,2010,329(17):3250-3536
    [143] Askari E, Jeong K H. Hydroelastic vibration of a cantilever cylindrical shellpartially submerged in a liquid. Ocean Engineering,2010,37(11-12):1027-1035
    [144] Chiba M, Osumi H. Free vibration and buckling of a partially submerged clampedcylindrical tank under compression. Journal of Sound and Vibration,1998,209(5):771-796
    [145] Chun H B, Moon K K, Jae R K. Free vibration analysis of a hanged clamped freecylindrical shell partially submerged in fluid: The effect of external wall, internalshaft, and flat bottom. Journal of Sound and Vibration,2012,331(17):4072-4092
    [146] Zhou D, Liu W Q. Bending-torsion vibration of a partially submerged cylinderwith an arbitrary cross-section. Applied Mathematical Modelling,2007,31(10):2249-2265
    [147] Sabuncu T, Calisal S. Hydrodynamic coefficients for vertical circular cylinders atfinite depth. Ocean Engineering,1981,8(1):25-63
    [148] Chiba M, Ubukata S. Influence of internal liquid on buckling of circular cylindricalshells partially submerged in a liquid. Thin-Walled Structures,1996,24(2)
    [149] Chiba M. Free vibration of a clamped-free circular cylindrical shell partiallysubmerged in a liquid. Journal of the Acoustical Society of America,1994,97(4):2238-2248
    [150] Jouaillec F, Jacquart G. The acoustic radiation from a semi-submerged elasticcylinder. in Sencond Joint Meeting of the Acoustical Society of America and theAcoustical Society of Japan,1988. Honolulu,Hawaii, November
    [151] Salaün P. Effect of a free surface on the far-field pressure radiated by apoint-excited cylindrical shell. Journal of the Acoustical Society of America,1991,90(4):2173-2181
    [152] LI H L, Wu C J, Huang X Q. Parametric study on sound radiation from an infinitefluid-filled/semi-submerged cylindrical shell. Applied Acoustics,2003,64(5):495-509
    [153]王斌,汤渭霖.半潜状态圆柱壳振动声辐射特性研究.第十二届船舶水下噪声学术讨论会,2009,中国长沙
    [154]许金泉,陈永清,杨震.板材自由表面受法向集中力时的理论界.固体力学学报,2004,25(4):394-398
    [155]许金泉.双材料应力分析中的镜像点法.力学学报,2004,36(1):106-111
    [156]沈国光,李德筠.关于水地和池壁效应的理论分析.船舶工程,1987(1):3-12
    [157] LI K M, Lui W K, Frommer G H. The diffraction of sound by an impedance spherein the vicinity of a ground surface. Journal of the Acoustical Society of America,2004,115(1):42-56
    [158] Lui W K, LI K M. The scattering of sound by a long cylinder above an impedanceboundary. Journal of the Acoustical Society of America,2010,127(2):664-674
    [159] Gaunaurd G C, HUang H S. Acoustic scattering by a spherical body near a planeboundary. Journal of The Acoustical Society of America,1994,96(4):2526-2536
    [160] Gaunaurd G C, HUang H S. Acoustic scattering by an air bubble near the seasurface. Ieee Journal of Oceanic Engineering,1995,20(4):285-292
    [161] Gaunaurd G C, HUang H S. Sound scattering by a spherical object near a hard flatbottom. IEEE Transactions Ultrasonics, Ferroelectrics and Frequency Control,1996,43(4):690-700
    [162] Huang H H, Gaunaurd G C. Scattering of a plane acoustic wave by a sphericalelastic shell near a free surface. International Journal of Solids and Structures,1997,34(5):591-602
    [163] Hasheminejad S M, Azarpeyvand M. Modal vibration of a cylindrical radiator overan impedance plane. Journal of Sound and Vibration,2004,278(3):461-477
    [164] Ergin A, Ugurlu B. Hydroelastic analysis of fluid storage tanks by using aboundary integral equation method. Journal of Sound and Vibration,2004,275(3-5):489-513
    [165] Hayir A, Bakirtas I. A note on a plate having a circular cavity excited by planeharmonic SH waves. Journal of Sound and Vibration,2004,271(1-2):241-255
    [166] Brunskog J. Image solution for clamped finite beams. Journal of Sound andVibration,2005(287):1057-1064
    [167] Hu C, Fang X Q, Huang W H. Multiple scattering of flexural waves in asemi-infinite thin plate with a cutout. International Journal of Solids and Structures,2007,44(2):436-446
    [168] Fang X Q, Wang X H. Multiple scattering of flexural waves from a cylinricalinclusion in a semi-infinite thin plate. Journal of Sound and Vibration,2009,320(4-5):878-892
    [169] Fang X Q. Multiple scattering of electro-elastic waves from a buried cavity in afunctionally graded piezoelectric material layer. International Journal of Solids andStructures,2008,45(22-23):5716-5729
    [170] Chan K L, Smith B, Wester E. Flexural wave scattering in a quarter-infinite thinplate with circular scatterers. International Journal of Solids and Structures,2009,46(20):3669-3676
    [171] Ye Z, Feuillade C. Sound scattering by an air bubble near a plane sea suafce.Journal of the Acoustical Society of America,1997,102(2):798-805
    [172]文钢,玄兆林,张晓兵.平坦海底界面上圆形平板的高频回声特性.武汉理工大学学报,2008,32(6):1075-1078
    [173] Putra A, Thompson D J. Radiation efficency of unbaffled and perforated platesnear a rigid reflecting surface. Journal of Sound and Vibration,2011,330(22):5443-5459
    [174] Olver F W J, Lozier D W, Boisvert R F, et al. Handbook of MathematicalFunctions,2010, New York: Cambridge University Press.
    [175]徐幕冰.圆柱壳-流场耦合系统的振动波传播与能量流研究:[博士学位论文].武汉:华中理工大学图书馆,1998
    [176] Lee W M, Chen J T. Scattering of flexural wave in a thin plate with multiplecircular holes by using the multipole Trefftz method. International Journal ofSolids and Structures,2010,47(9):1118-1129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700