用户名: 密码: 验证码:
双钢轮振动压路机减振性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双钢轮振动压路机主要是用来压实路面的产品,不仅追求良好的作业性能,还要求有比较好的舒适性、可靠性。双钢轮压路机的减振系统是机器舒适性的重要保证,也是影响作业性能的一个重要环节,还是影响机器动态特性的一个重要因素。但国内普遍对这一问题缺乏认识,较少进行专门的研究。本文针对双钢轮振动压路机减振系统中一级减振环节进行了专题探讨,分析了减振系统的基本特性,对减振系统对作业舒适性、对作业质量的影响进行了较全面而深入的研究。
     论文从减振系统特性出发,分析了减振系统工作原理,通过对橡胶减振器材料特性的研究,认为减振器在经受振动冲击的过程中会损耗能量产生迟滞阻尼效应,呈现出非线性的特性,由滞回曲线从能量角度分析了减振器减振效果,通过试验识别不同频率下减振器的剪切模量及阻尼比,得到减振器的动态刚度与阻尼的变化规律及特点。
     根据人机工程学的舒适性要求,对双钢轮振动压路机减振系统对舒适性的影响进行分析。双钢轮振动压路机机架的振动是复杂的振动合成,包含前、后振动源相互影响、车架摆振、左右偏振、减振器造成的振动滞后等;建立了双钢轮振动压路机摆振模型与偏振模型,分析双振源系统对机架振动的影响规律;并在此基础上,提出了新的减振系统性能评价的评判标准。
     根据双钢轮振动压路机的作业质量要求,对减振系统对机器作业质量的影响进行了分析,发现减振系统参数的设置以及性能的优劣,直接影响振动参数的实现。减振系统参数设置不合理,导致钢轮左右侧振幅偏差,会影响压路机压实的均匀性与平整度;减振性能不好,导致工作振幅小于设计振幅,会影响机器的压实度。
     为了分析和优化振动压路机的振动与减振系统,采用ADAMS中的轴套力模型模拟橡胶减振器,采用Ansys生成橡胶地面的模态中性文件,以ADAMS/View为平台建立了双钢轮振动压路机的整机参数化三维可视模型,并利用该实体模型对压路机机架不同位置的振动加速度进行了仿真分析。与实验室试验的对比结果表明,基于ADAMS与Ansys建立的虚拟样机模型具有较高的精度,能够较真实地反映实际样机振动传递的动力学特性。为振动压路机振动系统的分析及减振系统的优化设计奠定了基础。
     论文最后归纳了影响双钢轮振动压路机减振效果的因素,并给出各因素优选后的参数。利用虚拟样机模型进行了仿真研究,仿真结果验证了研究的正确性。论文研究结果弥补了国内双钢轮压路机减振性能研究方面的空白,对国产双钢轮压路机性能的提升有重要理论意义和工程应用价值,对研究其它工程机械的减振系统具有参考价值。
Tandem vibratory roller is the special machine primarily used to compact road surface, which is asked to have not only high rolling quality but also good comfort and reliability. Vibration reduction system of the roller is the important guarantee of comfort, and it also significantly affects both rolling performance and dynamic characteristics of the roller. However, there is no knowledge and corresponding research on the problem in the world at present. In order to solve this problem, basic characteristics of vibration reduction system and their influence on comfort and rolling quality were studied for the primary vibration reduction system of tandem vibratory roller.
     This thesis began with operating principle of vibration reduction system, analyzed material characteristics of rubber vibration absorber. It is considered that the absorber causes depletion of energy and exhibits nonlinear characteristics when subjected to vibration and shock. Based on hysteresis loop curves, vibration reduction effect of the absorber was analyzed from the point of view of energy. By means of making a test identification of shear modulus and damping ratio of the absorber with different frequency, variation rule and characteristics of dynamic stiffness and damping were reached.
     According to the specifications of human engineering, the influence of vibration reduction system of tandem vibratory roller on comfort was analyzed. It is found that frame vibration of the roller is a complex vibration composition, including the interaction between front and back vibration source, frame swing, nonuniform vibration between left and right side, vibration delay induced by the absorber, and so on. Swing model and nonuniform vibration model of tandem vibratory roller were established, and the influence of dual vibration source system on the frame vibration of the roller was analyzed. On these bases a new criterion for performance assessment of vibration reduction system was put forward.
     According to rolling quality specifications of tandem vibratory roller, the influence of vibration reduction system on the rolling quality was analyzed. It is found that parameter settings of vibration reduction system and its performance directly influence the realization of the vibration parameters. Unsuitable parameter settings resulted in amplitude excursion of left right side of the drum, and furtherly influenced uniformity and smoothness of the roller's compaction; poor performance of vibration reduction system caused smaller amplitude than its design values, and therefore affected compaction degree of the roller.
     In order to analyze and optimize vibration and its absorption system of vibratory roller, the shaft sleeve force in ADAMS was used to simulate the rubber absorber, and the MNF of rubber floor in Ansys was adopted. Taking the ADAMS/View as a platform, parametric model of tandem vibratory roller was established, and the vibration acceleration of the roller's different positions was simulated based on the model. The comparing result of simulation with experimental data shows that the accuracy of the model based on ADAMS and Ansys is high, which can truly reflect the dynamics of vibration transmission of the actual roller.
     At last, influencing factors on vibration reduction of tandem vibratory roller were summarized, and furtherly the parameters of optimal factors were given. Based on virtual prototype model, vibration reduction was simulated, and the results were consistent with the theory. The studies of the paper make progress in the vibration reduction system of the domestic tandem vibratory roller. The conclusions of the paper are significant in both research and application in upgrading performance and energy saving of the tandem roller. The studies of the paper have a reference value of other engineering machinery vibration reduction system.
引文
[1]尹继瑶.当今世界压实机械的趋势及特点[J].工程机械与维修,1999(001):18-21.
    [2]吴竟吾.国内外压路机概况及趋势[J].工程机械与维修,2005(001):59-61.
    [3]刘良臣.国内压路机市场情况分析[J].工程机械与维修,2000(010):36-39.
    [4]陈海斌.YZC12G双钢轮振动压路机液压系统分析[J].科技资讯,2007(03)
    [5]张启君,张忠海,张宏,王华君.国外双钢轮振动压路机的探讨[J].筑路机械及施工机械化,2004.4
    [6]冯忠绪,侯劲汝,沈建军等.双钢轮振动压路机功率的配置[J].长安大学学报(自然科学版)2009.29(6).107-110.
    [7]秦四成,程悦荪.振动压路机橡胶减振器性能试验研究[J].农业工程学报,1997(S1)
    [8]秦四成,陈龙珠.振动压路机振动轮减振支承系统动力分析[J].筑路机械与施工机械化,2000(01)
    [9]秦四成,黄海东,阚君武.振动压路机振动轮振动轴承油封的使用特点[J].建筑机械,1998(05)
    [10]徐慎初.卡特彼勒(Caterpillar) CB-434D双钢轮压路机[J].建筑机械,2005(004):56.
    [11]丁兴华.山推SR13D双钢轮压路机[J].工程机械,2007,38(003):68.
    [12]徐慎初.英格索兰(Ingersoll-Rand) DD-158HFA双钢轮压路机[J].建筑机械,2005(004):57.
    [13]李海啸.戴纳派克CC522双钢轮压路机[J].工程机械,2005,36(010):1.
    [14]徐慎初.悍马(Hamm) HDO90V双钢轮压路机[J].建筑机械,2005(004):57.
    [15]李大强.酒井CR270型双钢轮压路机[J].工程机械与维修,2005(012):125.
    [16]万汉驰.双钢轮振动压路机前沿技术分析[J].建筑机械技术与管理,2005.07
    [17]. Gallery of Tandem Vibratory Rollers[J]. Construction Equipment; Oct 2004,107 (10)
    [18]闫成春,谷建华.双钢轮振动压路机压实性能分析[J].市政技术,2003.3,21(1)
    [19]cc224hf_en-20090126.093404 www.dynapac.com[EB/OL]
    [20]cc524hf_en-20090126.093827.www.dynapac.com[EB/OL]
    [21]cc624hf_en-20090126.www.dynapac.com[EB/OL]
    [22]Sakai_SW800_Series.www.sakaiamerica.com[EB/OL]
    [23]SW652 Brochure.www.sakaiamerica.com[EB/OL]
    [24]DYNAPAC CC 422/422C/522/522C WORKSHOP MANUAL Hydraulic Circuit Diagrams W4221 EN 1,2000
    [25]James A Scherocman. Compaction of Stiff and Tender Asphalt Concrete Mixes [J]. TRANSPORTATION RESEARCH CIRCULAR E-C105. Transportation Research Board General Issues in Asphalt Technology Committee. September 2006
    [26]Dale W Starry Jr. Vibratory Rollers[J]. CIRCULAR E-C105. Transportation Research Board General Issues in Asphalt Technology Committee. September 2006
    [27]H Murrenhoff. Systematic approach to the control of hydrostatic drives.steady state performance of axial piston motor drives[J]
    [28]J Watton. An explicit design approach to determine the optimum[J]. Systems and Control Engineering. Proc. IMechE Vol.220 Part I:J
    [29]Larry Stewart. Vibratory Rollers Respond To the Need for Speed [J]. Construction Equipment; Oct 2004,107 (10)
    [30]公路沥青路面施工技术规范[S],2004.
    [31]B. Jerman, J. Kramar. A study of the horizontal inertial forces acting on the suspended load of slewing cranes[J]. International Journal of Mechanical Sciences 50 (2008) 490-500.
    [32]沈建军,冯忠绪,侯劲汝等.双钢轮压路机行走液压系统参数匹配的探讨[J].长安大学学报(自然科学版),2009.05
    [33]Sj bergM, Kari L. Testing of nonlinear interaction effects of sinusoidal and noise excitation on rubber isolator stiffness [J].Polymer Testing,2003(10):343-351
    [34]Liang, X. G., Virvalo, T. and Linjama, M. The influence of control valves on the efficiency of a hydraulic crane[J]. In 6th Scandinavian International Conference on Fluid Power, Tampere, Finland, May 1999:381-394.
    [35]沈建军,刘本学,张志峰.液压驱动车辆下坡刹车性能的探讨.[J].郑州大学学报(工学版).2008,28(4):113-116.
    [36]Z. S. Filipi.D. N. Assanis.A Nonlinear, Transient, Single-Cylinder Diesel Engine Simulation for Predictions of Instantaneous Engine Speed and Torque[J]. Journal of Engineering for Gas Turbines and Power,OCTOBER 2001, Vol.123 O951
    [37]宋传学,蔡章林,安晓鹃.车辆平顺性的虚拟仿真及试验[J].吉林大学学报,工学版,2007,37(002):259-262.
    [38]李冰,焦生杰.振动压路机与振动压实技术[M].北京:人民交通出版社,2001:57-69
    [39]丁文镜.减振理论[M].北京:清华出版社,1988:1-6
    [40]张人德,赵钧良.减振降噪阻尼材料及其应用[J].上海金属,2004(24):18-22
    [41]徐庆善.隔振技术的进展与动态[J].机械强度,1994,16(1):37-42
    [42].Imagine. ADAMS Interface Help[EB/OL]
    [43]MSC. Adams Online Help[EB/OL]
    [44]AMESim online help[EB/OL]
    [45]Tian Ran L in, Nabil H Farag, Jie pan. Evaluation of frequency dependent rubber mount stiffness and damping by impact test[J]. Applied Acoustics,2005(66):829-844
    [46]王戈.压实机械[M].北京:中国建筑工业出版社,1992:87-92
    [47]高东.粘弹阻尼减振技术的工程应用[J].电子机械工程,2001(6):39-42
    [48]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991(1):40-43
    [49]盛美萍等.噪声与振动控制技术基础[M].北京:科学出版社,2007:54-105
    [50]顾仲权.振动主动控制[M].北京:国防工业出版社,1997:2-3
    [51]Markovsky, A., Soules, T. F. and Vukecvich, M. R., "Mathematical and Computational Aspects of a General Viscoelastic Theory",G. E. Lighting and Research and Technical Services Operation,Report No.86-LRL-2021,February 1986
    [52]Pinkin, A. C., "Lectures in Viscoelasticity Theory", Springer, New York,1986
    [53]Zienkiewicz, O. C., Watson, M. and King, I. P., "A Numerical Method of Visco-Elastic Stress Analysis", International Journal of Mechanical Science, Vol.10, PP.807-827,1968
    [54]S. A.Billings. Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems[J]. Journal of Sound and Vibration,2009 (323):352-365
    [55]Keith K. Denoyer, Conor Johnson. Recent Achievements in Vibration Isolation Systems for Space Launch and On-Orbit Applications[J]. International Astronautical Congress Toulouse 2001 (10):32-36
    [56]Gaul L. The influence of damping on waves and vibrations. Mechanical Systems and Signal Processing[J],1999(13):1-8
    [57]L. JIANG. Improved Nonlinear Solution Techniques in the VAST Finite Element Program[R], Halifax, Nova Scotia, Canada:Martec Limited,2000.
    [58]王利荣.橡胶隔振器有限元建模技术及静态弹性特性分析[J].汽车工程,2002,24(6):480-485
    [59]秦四成,程悦荪.振动压路机的橡胶减振器减振性能试验研究[J].1971(13):306-310
    [60]刘浩亮.振动压路机橡胶减振器的隔振性能分析[J].筑路机械与施工机械化,2004(11):47-49
    [61]邓习树.基于ADAMS的振动压路机动态特性分析研究[J].建筑机械,2005(10):63-66
    [62]庄表中.振动压路机的原理与减振性能的评估[J].振动与冲击,2005,24(1):23-25
    [63]陈丙三.压路机减振器的研究[J].建筑机械,2006(5):92-95
    [64]韩德宝,宋希庚,薛东新.橡胶减振器非线性动态特性的试验研究[J].振动工程学报,2008,21(4):102-106
    [65]康凤举.现代仿真技术与应用[M],2006.
    [66]唐红彩,刘龙,沈建军.单钢轮压路机惯性载荷的探讨[J].建筑机械,2009(11)
    [67]姚怀新,陈波编著.工程机械底盘及其液压传动理论工程机械底盘理论[M].北京:人民交通出版社,2001:40-43.
    [68]尹冠生主编.理论力学[M].西安:西北工业大学出版社,2000:392.
    [69]Sauer, Series 90 Axial Piston Pumps and motors Technical Information[M],1995
    [70]Sauer, Series 51 Bent Axis Variable motors Technical Information[M],1997
    [71]Rexroth Bosch Group, RC 15207/02.98[M]:521.
    [72]Rexroth Bosch Group, RC 15205/02.98[M]:497.
    [73]Gillespie Thomas D., Fundamentals of Vehicle Dynamics[M]:Society of Automotive Engineers,Inc.,2000
    [74]Sanr-Gyum Kim, Jun-Ha Kim, and Wong-Sung Lee. Hydraulic System Design and Vehicle Dynamic Modeling for the Development of a Tire Roller[J]. International Journal of Control,Automation,and System,2003,1 (4)
    [75]Pacejka H. B., Tyre and vehicle dynamics[M]:Butterworth-Heinemann Ltd,2006
    [76]孙晓邦.橡胶元件动、静态特性试验方法研究[D].辽宁:辽宁工学院,2007
    [77]何忠波,白鸿柏,张培林等.发动机动态特性及其对车辆换档特性的影响[J].军械工程学院学报,2005(05)
    [78]Schoenau G J Burton R. T. Kavanagh. Dynamic Analysis of a Variable Displacement Pump[J]. Journal of Dynamic Systems, Measurement, and Control,1990,112:122.
    [79]J. M. Bergada,J. Watton,and S. Kumar,Pressure, Flow, Force, and Torque Between the Barrel and Port Plate in an Axial Piston Pump[J]. Dynamic Systems, Measurement, and Control,2008,130
    [80]Roccatello A., Manco S., Nervegna N. Modelling a Variable Displacement Axial Piston Pump in a Multibody Simulation Environment J]. Journal of Dynamic Systems, Measurement, and Control,2007,129:456.
    [81]Kassem S A Bahr M. K. On the Dynamics of Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[M].2000:13-17.
    [82]赵东福,孙月明等.粘弹性材料隔振性能的研究[J].浙江大学学报,1992(S1):7-15
    [83]王从曾.材料性能学[M].北京:北京工业大学出版社,2001:65-69
    [84]梁威等.减震用橡胶材料及其应用[J].合成橡胶工业,2006(4):13-16
    [85]D. Pietzsch, and W. Poppy, Simulation of Soil Compaction with Vibratory Rollers[J].Journal of Terramechanics,Vol.29,No.6,pp.585-597 (1992)
    [86]L. Forssblad, Vibratory Soil and Rock Fill Compaction. Dynapac Maskin AB, Solna Sweden(1981)
    [87]. S D Kim, MS, H S Cho, PhD and C O Lee, PhD,A parameter sensitivity analysis for the dynamic model of a variable displacement axial piston pump[J]. Department of Production Engineering, Korea Advanced Institute of Science and Technology, Seoul, Korea
    [88]胡小锋,魏伯荣.阻尼橡胶[J].特种橡胶制品,2002,23(5)
    [89]潘存治.含滞回非线性作动器的隔振系统研究[D].北京交通大学,2008,12
    [90]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.9
    [91]韩冬冰,王慧敏.高分子材料概论[M].北京:中国石化出版社,2003:91
    [92]Howard L.Stephens弹性体手册[M].北京:中国石化出版社,2005:582
    [93]潘孝勇,上官文斌,柴国钟,黄志.橡胶隔振器动态特性计算方法的研究[J].振动工程学报,2009,22(4):345-351
    [94]Soares F., Branco PJC. Simulation of a 6/4 switched reluctance motor based on Matlab/Simulink environment[J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37 (3):989-1009.
    [95]Farshidianfar A., Ebrahimi M., Bartlett H. Hybrid modelling and simulation of the torsional vibration of vehicle driveline systems[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215 (2) 217-229.
    [96]Wang J., Zhao Y., Cui T. Synthesis of the modeling and control systems of a tunneling accelerometer using the MatLab simulation[J]. Journal of Micromechanics and Microengineering,2002,12 (6):730-735.
    [97]滕发义,杨国桢.液压弹簧阻力特性的研究[J].铁道车辆,1999,37(12):12-15
    [98]江牧.设计伦理之道[J].包装工程,2006(6):12-13.
    [99]Henriksson D., Cervin A., rzen K. E., TrueTime:Real-time control system simulation with MATLAB/Simulink[M],2003
    [100]Assanis D. N., Filipi Z. S., Gravante S.Validation and use of SIMULINK integrated, high fidelity, engine-in-vehicle simulation of the international class Ⅵ truck[J]. SAE transactions,2000,109 (3):384-399.
    [101]Hatch M. R., Vibration Simulation using MATLAB and ANSYS[M]:CRC Press,2001
    [102]方泳龙,王红岩.车辆无级变速传动系统匹配策略的仿真[J].农业机械学报,2000,31(004):1-5.
    [103]Nisheng CHU. AMESim仿真技术在飞机液压系统中的应用[J].计算机辅助工程,2006(02)
    [104]李煌辉,崔可润.柴油机动态过程的非线性特性分析[J].车用发动机,2003(8)
    [105]龚进,冀谦,郭勇等AMESim仿真技术在小型液压挖掘机液压系统中的应用[J].机电工程技术,2007,36(010):11l-114.
    [106]Chang C., Chen S.J.. Inelastic Behavior of Steel Frames With Added Viscoelastic Dampers[J]. Journal of Structural Engineering,1996,(10):232-243
    [107]Choi S.B., Lee S.K.. A Hysteresis Model For The Field-Dependent Damping Force For A Magneto-rheological Damper[J].Journal of Sound and Vibration,2001,V245(2): 375-383
    [108]Yu Shen. Vehicle Suspension Vibration Control With Magneto rheological Dampers[D]. university of waterloo,2005:9-47
    [109]Thomas D. G.车辆动力学基础[M].北京:清华大学出版社,2006:100-150
    [110]Dave Crolla,喻凡.车辆动力学及其控制[M].人民交通出版社,2004:75-100
    [111]刘斌,沙成满,张锋春.高等土力学[M].北京:地质出版社,2008:33-35
    [112]王林.振动病[M].人民卫生出版社,1984:30-80
    [113]丁玉兰,石来德.白行式建筑机械的振动舒适性预测[J].建筑机械,1992(10):29-34
    [114]庄表中.振动压路机的原理与减振性能的评估[J].振动与冲击,2005,24(1):23-25
    [115]余志生主编,汽车理论[M].北京:机械工业出版社,2000
    [116]JG/T60-1999,振动压路机用橡胶减振器技术条件[S].北京:中国标准出版社,1999
    [117]JG/T-5076.1-1996,振动压路机减振系统设计规范[S].北京:中国标准山版社,1996
    [118]靳晓雄,张立军,江浩编辑.汽车振动分析[M].上海:同济大学出版社,2002
    [119]JG/T-5076.2-1996,振动压路机减振系统检验规范[S].北京:中国标准出版社,1996
    [120]范东林,郭志军,田朝阳,赵国鹏.铰接式车架的动态特性分析[J].河南科技大学学报:自然科学版,2008,29(6):25-29
    [121]许亚楠.铰接车架的铰点结构设计[J].工程机械,2003,10:10-14
    [122]侯劲汝.双钢轮振动压路机振幅不均匀性的试验研究[D].西安:长安大学,2008
    [123]侯劲汝,冯忠绪、徐倩等.压路机双轮振动对整机减振性能影响的试验研究[J].郑州大学学报(工学版).2010,31(6):69-72.
    [124]Brekelmans W. A. M. A simulation method for the die compaction of granular materials. Ph.D. thesis Eindhoven Technical University[J]. Eindhoven.,1989
    [125]Daines M. E.1986. Cooling of bituminous layers and time available for their compaction. [J]. Procedings of Third Eurobitume symposium. The Hague, 11-13,September 1985. pp 237-242,
    [126]JH, Grootenboer. Compaction of Asphalt Road Pavements H.L. ter Huerne, CT&M Department,University of Twente[J]. P.O. Box 217,7500 AE, Enschede, the Netherlands
    [127]Rodrigo Delgadillo Hussain U. Bahia. Effects of Temperature and Pressure on Hot Mixed AsphaltCompaction:Field and Laboratory Study,[J][J], JUNE 2008/447
    [128]Barnes G. W. Soil mechanics, Principles and Practice[J]. Mc Millan, London.,1995
    [129]J. M. Bergada. J. Watton. S. Kumar. Pressure, Flow, Force, and Torque Between the Barrel and Port Plate in an Axial Piston Pump[J]. Journal of Dynamic Systems, Measurement, and Control. JANUARY 2008, Vol.130/011011-1
    [130]Bahr M. K., Svoboda J., Bhat R. B. Vibration Analysis of Constant Power Regulated Swash Plate Axial Piston Pumps[J]. Journal of Sound and Vibration,2003,259 (5) 1225-1236.
    [131]Manring N. D., Damtew F. A. The Control Torque On the Swash Plate of an Axial-Piston Pump Utilizing Piston-Bore Springs[J]. Journal of Dynamic Systems, Measurement, and Control,2001,123:471.
    [132]Kassem S. A., Bahr M. K., On the Dynamics of Swash Plate Axial Piston Pumps with Conical Cylinder Blocks[M],2000:13-17.
    [133]Manring N. D., Luecke G. R. Modeling and Designing a Hydrostatic Transmission with a Fixed-Displacement Motor[J]. Journal of Dynamic Systems, Measurement, and Control,1998,120:45.
    [134]Zeiger G., Akers A. Dynamic Analysis of an Axial Piston Pump Swashplate Control[J]. Proceedings of the Institution of Mechanical Engineers Pt. C. Mechanical Engineering Science,1986,200:49-58.
    [135]Schoenau G. J., Burton R. T., Kavanagh G. P. Dynamic Analysis of a Variable Displacement Pump[J]. Journal of Dynamic Systems, Measurement, and Control,1990, 112:122.
    [136]T.S.Yoo, Selig,E.T. Fundamentals of Vibratory Compaction of Soil, Proceedings, Ninth International Conference on Soil Mechanics and Foundation Engineering, Vol.2,Japan,1977:375-380.
    [137]Selig,E.T., T.S.Yoo. Dynamics of vibratory roller compaction [J]. Journal of the Geotechnical Eng.Division,1979.
    [138]Selig,E.T., Truesdale,W.B., Hampton,D. Soil Compaction Study, Vol.III:Analysis of Field Tests on Subgrade Soils[J], Bureau of Public Roads, Office of Research and Development, Washington,D.C.,April,1967.
    [139]Yoo,T.S. A Theory for vibratory Compaction of Soils[D].State university of New York at Buffalo, Buffalo, New York,1975.
    [140]Selig,E.T., Unified System for Compactor Performance Specification, Transactions, Society of Automotive Engineers,1972:2454-2464.
    [141]马鹏宇,王均敏,刘浩亮.振动压路机五自由度减振模型求解的一种新方法及仿真分析[J].机械施工与施工技术,2007,21(7):26-30.
    [142]马玉坤,贾策,栾延龙等ADAMS软件及其在汽车动力学仿真分析中的应用[J].重庆交通学院学报,2004,23(004):110-113.
    [143]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京:北京航空航天大学出版社,2008:238-244
    [144]宋健,穆希辉.机械系统分析软件ADAMS在汽车列车动力学仿真中的应用[J].汽车工程,1997,19(005):286-290.
    [145]梁浩,余跃庆.基于ADAMS及ANSYS的柔性机器人动力学仿真系统[J].机械科学与技术(西安),2002,21(006):892-895.
    [146]董明明,顾亮.履带车辆非线性悬挂系统的ADAMS仿真[J].北京理工大学学报,2005,25(008):670-673.
    [147]愈武勇.柔性多体机械系统动力学特征的ADAMS仿真研究[D].2001.
    [148]Liu J. K., Advanced PID. control and MATLAB simulation[J]. Publishing House of Electronics Industry. Beijing,2004
    [149]Jan S. S., Chan W., Walter T., Matlab Simulation Toolset for SBAS Availability Analysis[M]:11-14.
    [150]马玉坤,贾策,栾延龙等ADAMS软件及其在汽车动力学仿真分析中的应用[J].重庆交通学院学报,2004,23(004):110-113.
    [151]宋健,穆希辉.机械系统分析软件ADAMS在汽车列车动力学仿真中的应用[J].汽车工程,1997,19(005):286-290.
    [152]杜中华.基于ADAMS的某型炮闩系统动力学仿真研究[D].石家庄:军械工程学院,2001.
    [153]梁浩,余跃庆.基于ADAMS及ANSYS的柔性机器人动力学仿真系统[J].机械科学与技术(西安),2002,21(006):892-895.
    [154]董明明,顾亮.履带车辆非线性悬挂系统的ADAMS仿真[J].北京理工大学学报,2005,25(008):670-673.
    [155]愈武勇.柔性多体机械系统动力学特征的ADAMS仿真研究[D].2001.
    [156]Liu J. K., Advanced PID. control and MATLAB simulation[J]. Publishing House of Electronics Industry. Beijing,2004
    [157]Wang J., Zhao Y., Cui T. Synthesis of the modeling and control systems of a tunneling accelerometer using the MatLab simulation[J]. Journal of Micromechanics and Microengineering,2002,12 (6):730-735.
    [158]敖宏瑞,孟庆鑫,姜洪源,ULANOV A M安装预紧量对金属橡胶构件干摩擦阻尼的影响[J].材料科学与工艺,2005,13(3):225-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700