用户名: 密码: 验证码:
基于模态振型和响应面法的结构声学性能优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噪声污染是严重的环境污染之一。随着现代工业化程度的不断提高,噪声污染日益加剧,严重影响到人们的身心健康。结构振动所产生的噪声是噪声的主要来源之一,结构声学特性优化设计可为结构降噪提供定量的和最优的设计方案,是噪声控制领域的重要研究内容。
     在产品设计阶段,对结构进行尺寸优化、形状优化和拓扑优化以及对结构敷设阻尼材料和吸声材料可有效改善产品的声学性能,提高产品的竞争力。本文在国家“跃升计划”专项——中国高水平汽车自主创新能力建设(简称“中气专项”)以及湖南大学汽车车身先进设计制造国家重点实验室自主课题(60870002)资助下,对基于模态振型和响应面法的结构声学特性优化设计方法进行了深入系统地研究,并实际应用于“中气专项”轿车车内声学特性优化中。
     论文主要研究工作和创新性成果有:
     (1)针对复杂结构形状难以参数化的问题,提出了一种基于模态振型的形状参数化方法,并将其用于结构声学性能分析与优化设计;研究了形状参数对结构声学性能的影响;基于结构声学数值分析方法建立了结构声学性能形状优化模型;研究了简谐激励力下的结构声学性能优化问题,以几何平板、复杂曲面和“中气专项”轿车为研究对象进行了结构声学性能形状优化设计,结果表明该方法可以有效改变结构形状,降低结构噪声。
     (2)针对阻尼厚度分布对声学特性的敏感程度不同的问题,提出一种基于模态振型的阻尼层敷设厚度分布优化方法,并将其应用于阻尼复合结构声学性能分析与优化设计;研究了阻尼厚度分布参数对复合结构声学性能的影响;基于粘弹性阻尼复合结构动力学分析方法、结构声学数值分析方法和优化算法建立了阻尼复合结构声学优化模型;研究了给定阻尼材料下的自由阻尼层厚度分布优化问题,以几何平板和“中气专项”轿车为研究对象进行了自由阻尼层厚度分布优化设计,研究结果表明阻尼层厚度分布优化方法有效提高了系统损耗因子,降低了结构噪声,提高了阻尼材料的利用率。
     (3)针对结构声学性能优化问题求解迭代计算时间太长的问题,将响应面模型引入到结构声学优化性能设计中,用响应面模型代替复杂的、具有大量自由度的结构声学数值仿真模型,结合试验设计、响应面法和优化算法建立了基于响应面法的结构声学性能优化模型,研究了简谐激励力下的结构声学性能优化问题,以封闭箱体和“中气专项”轿车为研究对象进行了基于响应面法的结构声学性能优化设计,结果表明该方法能提高优化效率,适用于复杂工程结构声学性能优化问题求解。
     (4)针对结构声学设计参数不确定问题,将可靠性理论引入到结构声学性能优化设计中,结合响应面法、结构声学数值分析、可靠性理论和优化算法建立了基于响应面法的结构声学可靠性优化模型,对“中气专项”轿车进行了结构声学性能可靠性优化设计,数值分析结果表明该方法能满足结构声学性能可靠度设计要求,达到结构声学性能可靠性优化设计的目的,适用于结构声学性能可靠性优化问题求解。
     本文在结构声学性能形状优化设计、阻尼复合结构声学优化设计和基于响应面法的结构声学性能确定性与可靠性优化设计方面做了深入地研究,提出了基于模态振型的形状参数化模型和阻尼厚度分布参数化模型,建立了基于响应面法的结构声学优化模型及不确定参数结构的结构声学优化模型,研究成果能为汽车等工业产品的声学性能优化设计提供有效途径,具有重要的理论意义与应用价值。
Our environment has been contaminated seriously by noise pollution. With the development of modern industrial technology, the noise pollution has aggravated, which affects seriously on our health Structure-born noise is the major sources of noise. Optimization design of structural acoustic characteristics can provide quantitative and optimal approchs to reduce structural noise. Improvement of structural acoustic characteristics plays a leading role in the research of noise controlling
     In the product design stage, the acoustic characteristics and competitiveness of products can be improved effectively by size optimization, shape optimization and topology optimization, using damping materials and sound-absorbing materials. This dissertation, sponsored by the project "Yue Sheng Program", the independent innovation capabilities of high-level car construction in China ("Zhong Qi Program") and the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No.60870002), carries on a systemic research work on the optimization design of structural acoustic characteristics based on mode shapes. The proposed optimization design approachs proposed in this dissertation are applied to the improvement of the interior acoustic characteristics of "Zhong Qi Program" car.
     The main researches and innovative achievements in this dissertation include:
     (1) Aiming at the parameterized problem of complex structural shape, a structural shape optimization method is presented based on mode shape. The approach is applied to the improvement of structural acoustic performance. The effect of the shape parameters on the acoustic performance is studied. Based on the structural acoustic analysis, the optimization model of structural acoustic performance is established The structural acoustic optimization is studied under harmonic excitation. Numerical examples of geometric plate, complex surface and "Zhong Qi Program" car are presented, which show shat the structural noise is controlled effectively.
     (2) Aiming at the problem of optimum thickness distribution of damping materials, a thickness distribution optimization method is presented based on mode shapes. The approach is applied to improvement of acoustic performance of composite structures. The effect of the thickness distribution parameters on the acoustic performance is studied. Based on viscous elastic dynamic analysis of composite structures, structural acoustic analysis and optimization algorithm,the optimization model of acoustic performance of composite structures is established.The optimization problem of thickness distribution of unconstrained damping materials under constant damping materials is studied. Numerical examples of geometric plate and "Zhong Qi Program" car are presented, which show that the system loss factors and the utilization of damping material are improved and structural noise is controlled effectively.
     (3) Aiming at the problem of long time in solving structural acoustic optimization, response surface model is used to replace structural acoustic analysis of complex structures with a large degrees of freedom. The optimization model of structural acoustic performance is established by combing experiment design, RSM and optimization algorithm. The structural acoustic optimization is studied under harmonic excitation. Numerical examples of a sealed box and "Zhong Qi Program" car are presented, which show that the system loss factors and the utilization of damping material are improved and optimization of acoustic performance of complex structures is solved suitably.
     (4) Aiming at the uncertain problem of structural acoustic design parameters, reliability theory is introduced to structural acoustic optimization. The reliability optimization model of structural acoustic performance is established by combing RSM, structural acoustic analysis, reliability theory and optimization algorithm. Numerical example of sealed "Zhong Qi Program" car is presented, which shows that the requirements and goals of reliability design are satisfied and the reliability optimization of structural acoustic performance is solved suitably.
     In order to improve the structural acoustic performance, shape optimization, damping optimization, deterministic optimization and reliability optimization are discussed thoroughly in this dissertation. The parameterized models of structural shape and thickness distribution of damping materials are proposed based on mode shapes. Based on RSM, the optimization models of structural acoustic performance with certain and uncertain parameters are established. The research achievement has theoretical significance and application value, which provides an effective approach for the improvement of acoustic performance of industrial products, such as autos.
引文
[1]张淑玲.环境资源法[M].北京:北京工业出版社,2009.
    [2]Gladwell G M L, Zimmermann G. On energy and complementary energy formulations of acoustic and structural vibration problems[J]. Journal of Sound and Vibration,1966,3(2):233-241.
    [3]Craggs A. The use of simple three-dimensional acoustic finite elements for determining the natural modes and frequencies of complex shaped enclosure[J]. Journal of Sound and Vibration,1972,23(3):331-339.
    [4]Craggs A. The transient response of a coupled plate-acoustic system using plate and acoustic finite elements[J]. Journal of Sound and Vibration,1971,15(4): 509-528.
    [5]Petyt M, Lea J, Koopmann G. H. A finite element method for determining the acoustic modes of irregular shaped cavities[J]. Journal of Sound and Vibration,1976,45(4):495-502.
    [6]Wolf J A, Nefske D J, Howell L J. Structural-acoustic finite element analysis of the automobile passenger compartment[J]. Transactions of the Society of Automotive Engineers,1976,85(1):857-864.
    [7]Nefshe D J, Wolf J A, Howell L J. Structural-acoustic finite element analysis of the automobile passenger compartment:a review of current practice[J]. Journal of Sound and Vibration,1982,80(2):247-266.
    [8]沈壕,孙洪生.工程声学中的有限元法[J].声学学报,1981,7(4):249-259.
    [9]Chen L H., Schweikert D G. Sound radiation from an arbitrary body[J]. Journal of the Acoustical Society of America,1963,35(10):1626-1632.
    [10]Seybert a F, Soenarko B, Rizzo F.J, et al. Application of the bie method to sound radiation problems using an isoparametric element[J]. Journal of Vibration, Acoustics, Stress, and Reliability Design,1984,106(3):414-420.
    [11]Seybert a F, Soenarko B, Rizzo F J,et al. An advanced computational method for radiation and scattering of acoustic waves in three dimensions[J]. Journal of the Acoustical Society of America,1985,77(2):362-368.
    [12]Schenck H A. Improved integral formulation for a acoustic radiation problems[J]. Journal of the Acoustical Society of America,1968,44(1):41-58.
    [13]Burton a J, Miller G F. The application of integral eqation methods to the numerical solutions of some exterior boundary value problems[J]. Preceedings of Royal Society of London,Series A,1971,323(1553):201-210.
    [14]Lyon R H. Power flow between linearly coupled oscillators[J]. Journal of the Acoustical Society of America,1962,34(5):632-639.
    [15]Smith P W. Response and radiation of structural modes excited by sound[J]. Journal of the Acoustical Society of America,1962,34(5):640-647.
    [16]Denis B, Andrew C. Building 3d sea models from templates-new developments[C]. S AE,2003-01-1541.
    [17]Parimal T, Denis B. Rapid sea model building using physical measurements[C]. SAE,2003-01-1543.
    [18]Sebnem O. Object oriented sea modeling[C]. SAE,2003-01-1551.
    [19]Jerome E M. Sea models to predict structure-borne noise in vehicles[C]. SAE,2003-01-1542.
    [20]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [21]马大遒.噪声控制学[M].北京:科学出版社,1987.
    [22]Zienkiewicz O C, Campbell J S. Optimum structural design, theory and application[M]:New York:Wiley,1973.
    [23]Kristnsen E S, Madsen N F. On the optimum shape of fillets in plates subjected to multiple in-plane loading cases[J]. International Journal of numerical methods in Engineering,1976,10(5):1007-1019.
    [24]Dems K. Multi-parameter shape optimization of elastic bars in torsion[J]. International Journal for Numerical Methods in engineering,1980,15(10): 1517-1537.
    [25]Week M, Steinke P. An efficient technique in shape optimization[J]. Mechanics Based Design of Structures and Machines,1983,11(4):433-449.
    [26]Wolfgang a W, Moritz a F, Christian C. Isogeometric structural shape optimization[J]. Compute methods applied mechanics and engineering,2008,197(33):2976-2988.
    [27]Iman M H. Three-dimensional shape optimization[J]. International Journal for Numerical Methods in engineering,1982,18(5):661-673.
    [28]Braibant V, Fleury C. Shape optimal design using b-spline[J]. Computer Methods in applied mechanics and engineering,1984,44(3):247-267.
    [29]Belegundu a D, Rahan S D. A shape optimization approach based on natural design variables and shape functions[J]. Computer Methods in applied mechanics and engineering,1988,66(1):87-106.
    [30]Christian S, Jean C M. Structural shape parametric optimization for an internal structural-acoustic problem[J]. Aerospace Science and Technology,2000,4(4): 263-275.
    [31]Jeawon L, Semyung W. Shape design sensitivity analysis for the radiated noise from the thin-body [J]. Journal of Sound and Vibration,2003,261(5):895-910.
    [32]Kaneda S, Yu Q, Shiratori M,et al. Optimization approach for reducing sound power from a vibrating plate by its curvature design[J]. JSME International Journal,Series C,2002,45(1):87-98.
    [33]Steffen M. A general concept for design modification of shell meshes in structural-acoustic optimization part i:Formulation of the concept[J]. Finite Elements in Analysis and Design,2002,38(8):725-735.
    [34]Steffen M. A general concept for design modification of shell meshes in structural-acoustic optimization.Part ii:Application to a floor panel in sedan interior noise problems[J]. Finite Elements in Analysis and Design,2002,38(8): 737-754.
    [35]孙庆鸿,张启军,姚慧珠.振动与噪声的阻尼控制[M].北京:机械工业出版社,1992.
    [36]Lall a K. Damping analysis of partially covered sandwich beams[J]. Journal of Sound and Vibration,1988,123(2):247-259.
    [37]Lumsdaine A. Shape optimization of unconstrained viscoelastic layers using continuum finite element[J]. Journal of Sound and Vibration,1998,216(1):29-52.
    [38]杨德庆,柳拥军.自由阻尼层结构阻尼材料配置优化的拓扑敏度法[J].振动工程学报,2003,16(4):420-425.
    [39]Magnus A. Optimal position and shape of applied damping material[J]. Journal of Sound and Vibration,2008,310(4):947-965.
    [40]Yi C C, Shyh C H. An optimal placement of cld treatment for vibration suppression of plates[J]. International Journal of Mechanical Sciences,2002,44(8):1801-1821.
    [41]Zheng H, Cai C, Tan X M. Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams[J]. Computers & Structures,2004,82(29):2493-2507.
    [42]Zheng H, Cai C, Pau G S H,et al. Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments [J]. Journal of Sound and Vibration,2005,279(3):739-756.
    [43]Wodtke H W. Sound power minimization of circular plates through damping layer placement[J]. Journal of Sound and Vibration,1998,215(5):1145-1163.
    [44]Zheng H, Cai C. Minimization of sound radiation from baffled beams through optimization of partial constrained layer damping treatment[J]. Applied Acoustics,2004,65(5):501-520.
    [45]魏强,朱英富,张国良.阻尼处理多向加筋板的振动响应及声辐射[J].中国造船,2005,16(2):35-42.
    [46]陈美霞,骆东平,周峰,等.阻尼材料敷设方式对双层壳体声辐射性能的影响[J].声学学报,2005,30(4):296-301.
    [47]Liang X H, Liu Z Q, Zhu P. Acoustic analysis of damping structure with response surface method[J]. Applied Acoustics,2007,68(9):1036-1053.
    [48]Ichiro H, Wakae K. The development of eigenmode sensitivity analysis methods for coupled acoustic-structural systems and their application to reduction of vehicle interior noise[J]. Finite Elements in Analysis and Design,1993,14(3): 235-248.
    [49]Dyn N, Levin D, Rippa S. Numerical procedures for surface fitting of scattered data by radial basis functions[J]. SIAM Journal on Scientific Computing,1986,7(2):639-659.
    [50]Krige D G. A statistical approach to some basic mine valuations problems on the witwatersrand[J]. Journal of the Chemical,Metallurgical and Mining Socity of South Africa,1951,52(6):119-138.
    [51]Box G E, Wilson K B. On the experimental attainment of optimum conditions[J]. Journal of Royal Statistical Society,Series B,1951,13(1):322-654.
    [52]Mattias B, Kenneth H. Global optimization of costly nonconvex functions using radial basis functions[J]. Optimization and Engineering,2000,1(4):373-397.
    [53]Gutmann H M. A radial basis function method for global optimization[J]. Journal of Global Optimization,2001,19(3):201-227.
    [54]杨建刚,郭瑞,高亹.基于径向基模型的滑动轴承压力分布求解模型[J].中国电机工程学报,2005,25(6):157-160.
    [55]吴宏晓,侯志俭,刘涌,等.基于免疫聚类径向基函数网络模型的短期负荷预测[J].中国电机工程学报,2005,25(16):53-56.
    [56]Sakata S, Ashida F, Zako M. Structural optimization using kriging approximation.[J]. Computer Methods in applied mechanics and engineering,2003,192(7-8):923-939.
    [57]Park K, Park K O. Lim H J. The application of the cfd and kriging method to an optimization of heat sink[J]. International Journal of Heat and Mass Transfer,2006,49(19-20):3439-3447.
    [58]刘克龙,姚卫星,穆雪峰.基于kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347.
    [59]张崎,李兴斯.基于kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179.
    [60]韩永志,高行山,李立州,等.基于kriging模型的涡轮叶片多学科设计优化[J].航空动力学报,2007,22(7):1055-1059.
    [61]Roux W J, Stander N, Haftka R T. Response surface approximations for structural optimization[J]. International Journal for Numerical Methods in engineering,1998,42(3):517-534.
    [62]Kurtaran H, Eskandarian A, Marzougui D,et al. Crashworthiness design optimization using successive response surface approximations [J]. Computational Mechanics,2002,29(4-5):409-421.
    [63]Bahloul R, Mkaddem A, Santo D,et al. Sheet metal bending optimization using response surface method,numerical simulation and design of experiments [J]. International Journal of Mechanical Science,2006,48(9):991-1003.
    [64]高晖,郑刚,李光耀.基于响应面方法的材料参数反求[J].机械工程学报,2008,44(8):102-105.
    [65]伊卫林,黄鸿燕,韩万金.基于模拟退火算法与响应面模型的三维气动优化设计方法[J].空气动力学学报,2008,26(1):36-41.
    [66]胡龙飞,刘全坤,王成勇,等.基于响应面模型的铝合金壁板挤压成形优化设计[J].中国机械工程,2008,19(13):1630-1633.
    [67]Wu Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA,1994,32(8):1717-1723.
    [68]Enevoldsen I, S(?)rensen J D. Reliability-based optimization in structural engineering[J]. Structural Safety,1994,15(3):169-196.
    [69]Youn B D, Choi K K. Selecting probabilistic approaches for reliability-based design optimization[J]. AIAA,2004,42(1):124-131.
    [70]郭惠听,刘德顺,胡冠昱,等.证据理论和区间分析相结合的可靠性优化设计方法[J].机械工程学报,2008,44(2):35-41.
    [71]Youn B D, Choi K K. An investigation of nonlinearity of reliability-based design optimization approaches [J]. Journal of Mechanical Design,2004,126(3):401-411.
    [72]Youn B D, Choi K K, Yang R J,et al. Reliability-based design optimization for crashworthiness of vehicle side impact[J]. Structural and Multidisciplinary Optimization,2004,26(3-4):272-283.
    [73]Yang R J, Chuang C, Gu L,et al. Experience with approximate reliability-based optimization methods [J]. Structural and Multidisciplinary Optimization,2004,26(1-2):152-159.
    [74]Yang R J, Chuang C, Gu L,et al. Experience with approximate reliability-based optimization method:An exhaust system problem[J]. Structural and Multidisciplinary Optimization,2005,29 (6):488-497.
    [75]Allen M, Maute K. Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena[J]. Computer Methods in applied mechanics and engineering,2005,194 (30-33):3472-3495.
    [76]Yu X Q, Du X P. Reliability-based multidisciplinary optimization for aircraft wing design[J]. Structure and Infrastructure Engineering,2006,2(3-4):277-289.
    [77]李海燕,张宪民,彭惠青.柔顺结构的疲劳可靠性优化设计[J].中国机械工程,2004,15(23):2130-2133.
    [78]陈建军,黄居峰,赵颖颖,等.随机参数轴盘扭振结构系统动力学特性优化设计[J].机械工程学报,2005 180-184,2005(41):8.
    [79]张勇,李光耀,钟志华.基于可靠性的多学科优化设计在薄壁轻量化设计中的应用研究[J].中国机械工程,2009,20(15):1882-1889.
    [80]张义民,苏长青,闻邦椿.转子系统的频率可靠性分析[J].振动工程学报,2009,22(2):218-220.
    [81]张义民,贺向东,刘巧伶.非正态分布参数的车辆零件可靠性稳健设计[J].机械工程学报,2005,41(11):102-108.
    [82]扶原放,金达峰,乔蔚炜.微型电动车车架结构优化设计方法[J].机械工程学报,2009,45(9):210-213.
    [83]许肖梅.声学基础[M].北京:科学出版社,2003.
    [84]何祚庸.声学理论基础[M].北京:国防工业出版社,1981.
    [85]Mitchell a L. Introduction to genetic algorithms[M]. Cambridge:MIT Press, 1996.
    [86]唐文艳,顾元宪.遗传算法在结构优化中的研究进展[J].力学进展,2002,32(1):26-40.
    [87]张国栋,顾克秋.基于遗传算法和参数化建模的非线性结构优化[J].计算力学学报,2003,20(6):764-768.
    [88]Rajeev S, Krishnamoorthy C S. Genetic algorithms-based methodologies for design optimization of truss[J]. Journal of Structured Engineering,1997,123(3): 350-358.
    [89]Almedia F S, Awruch a M. Design optimization of composite laminated structures using genetic algorithms and finite element analysis[J]. Composite Structures,2009,88(3):443-454.
    [90]Muc A, Gurba W. Genetic algorithms and finite element analysis in optimization of composite structures[J]. Composite Structures,2001,51(2-3):275-281.
    [91]杨莉,孙庆鸿.自由阻尼处理结构的有限元建模及声辐射分析[J].振动工程学报,2004,17(3):306-310.
    [92]桂洪斌,赵德有,郑云龙.粘弹性阻尼层结构动力问题有限元分析综述[J].振动与冲击,2001,20(1):44-47.
    [93]Johnson C D, Kienholz D. A.Finite element predication of damping in structures with constrained layers[J]. AIAA,1982 Johnson C D, Kienholz D A.Finite element predication of damping in structures with constrained layers[J].AIAA Journal,1982,120(9):1284-1290.
    [94]张铁茂,丁建国.试验设计与数据处理.[M].北京:兵器工业出版社,1990.
    [95]栾军.现代试验设计优化方法[M].上海:上海交通大学出版社,1995.
    [96]刘文卿.试验设计[M].北京:清华大学出版社,2005.
    [97]Lindman H R. Analysis of variance in experimental design[M]. New York: Springer-Verlag,1991.
    [98]Todoroki A, Ishikawa T. Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation[J]. Composite Structures,2004,64(3-4):349-357.
    [99]Kleijnen P C J. An overview of the design and analysis of simulation experiments for sensitivity analysis[J]. European Journal of Operational Research,2005,164(2):287-300.
    [100]Mckay M D, Bechman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics,1979,21(2):239-245.
    [101]Keramat M, Kielbase R. Latin hypercube sampling monte carlo estimation of average quality index for integrated circuits[J].1997,14(1-2):131-142.
    [102]张峻,柯映林.序列响应面方法在覆盖件成形过程优化中的应用研究[J].汽车工程,2005,27(2):246-250.
    [103]谢延敏,于沪平,陈军,等.基于代理模型的板料成形优化技术进展.[J].塑性工程学报,2006,13(2):20-24.
    [104]廖兴涛,李青,张维刚.基于连续响应表面法的汽车结构耐撞性仿真优化[J].机械强度,2007,29(6):941-945.
    [105]张科施,韩忠华,李为吉,等.基于近似技术的高亚声速运输机机翼气动/结构优化设计[J].航空学报,2006,27(5):810-815.
    [106]Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International journal of impact engineering,2006,32(5):759-777.
    [107]庞剑,谌刚,何华,等.汽车噪声与振动——理论与应用[M].北京:北京理工大学出版社,2006.
    [108]Zang C, Friswell M I, Mottershead J E. A review of robust optimal design and its application in dynamics[J]. Computers & Structures,2005,83(4-5):315-326
    [109]张义民,王世鹏,解艳彩.广义随机空间内汽车零部件的可靠性优化设计[J].汽车工程,2008,30(3):268-270.
    [110]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005.
    [111]李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报,1992,32(4):455-459.
    [112]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,25(4):9-15.
    [113]Zhao Y G, Ono T. Moment method for structural reliability [J]. Structural Safety,2001,23(6):47-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700