用户名: 密码: 验证码:
氟化物熔盐体系中Si的电化学提取与提纯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳级Si的低成本高效率制备是光伏产业发展的迫切需求,也是国家能源战略的重要组成部分。论文在博士点基金、湖南省研究生创新项目和中南大学优博扶植基金的资助下,以制备高纯Si和含Si合金为目标,开展氟化物熔盐体系中Si的电解提取与电解精炼研究,探讨了氟化物熔盐体系中多种组元的热力学沉积条件,研究了Si在固态电极和液态金属电极上的电化学行为,研究了Na3A1F6-SiO2体系中Si的电解提取工艺,提出并研究了Si的三层液和水平式熔盐电解精炼工艺,主要研究结果如下:
     (1)基于自由能计算获得了氟化物熔盐体系中主要元素的电极电位和电沉积序,结合实际组元浓度获得了Si的单一沉积临界条件。Sr、Mg、Ca等元素因电极电位比Si负,不会与Si共沉积;而Fe、Cu、P等元素在电解质中的浓度大于理论计算获得的“极限浓度”时,会先于Si电沉积析出,从而影响沉积Si的纯度。
     (2)揭示了Si在氟化物熔盐体系中的电沉积机理,建立了沉积Si在液态阴极中的传质模型,获得了低熔点合金元素扩散系数和活度系数等难以直接测量的基础数据。在Na3A1F6熔体中阳离子的还原序为Si、A1及Na,通过控制电解质中Si离子浓度和沉积电位,可以实现单质硅的沉积。Si在不同液态金属中的扩散系数差异显著,Cu-Si熔体中Si的扩散系数比A1-Si熔体中要高两个数量级。A1-Si合金中硅浓度为3.230×10-5mol/cm3时活度系数为0.387,浓度为6.457×10-5mol/cm3时活度系数为0.435。
     (3)揭示了原料、电极材料和电解工艺参数对Na3A1F6-SiO2熔盐中电解提取Si的电流效率和产物纯度的影响规律。固态电极上电解硅的纯度高于99.9%,主要杂质为A1、Fe、Ti等。电解槽容量和电流的增大可显著提高电流(收集)效率,200A电解20h后阴极A1-Si合金中Si的平均含量高于18%,部分区域合金中Si含量达到40%。与冶金Si相比,以液态Al为阴极电解制备A1-Si合金所分离出单质Si纯度更高,其中杂质B和P含量分别降低到3.3和10.2ppmw,含量低于10ppmw的其它杂质元素有Ti、Ni和Cu。
     (4)通过三层液熔盐电解精炼实现了Si的提纯。电解精炼过程可以在大电流密度(400mA/cm2)下平稳进行,电解阳极电流效率高于95%。与直接熔配合金相比,三层液精炼制备Al-Si合金中B和P的含量分别由32.7和32.5降低到4.8和12.4ppmw,合金总的纯度也由99.950%提高到99.987%,其中分离得到的单质Si中的B和P的含量最低分别为2.2和6.5ppmw。熔盐电解及精炼制备的Al-Si合金更适合作为合金凝固提纯制备太阳级Si的原料。
     (5)发展了基于液态电极的水平式熔盐电解精炼Si的新方法,突破了三层液熔盐电解中电解质和电极材料密度差异对精炼体系的限制。水平式精炼过程在高达800mA/cm2电流密度下运行平稳,电流效率达到98.6%,水平槽型电流密度分布不均匀特点并未对电解精炼带来不利影响。以Al为阴极水平精炼Si时的收集效率较低,随着电流密度的增大,收集效率从50mA/cm2时的32%降低到400mA/cm2的15%,而以Cu-8wt%Si合金为阴极时收集效率最高可达78%。
     (6)提出了从SiO2到太阳级Si的熔盐电化学-合金凝固提纯工艺原型。针对合金凝固提纯方法目前所存在的除杂效率和产品纯度问题,采用熔盐电化学方法提高合金原料纯度,同时利用水平精炼来实现高纯Al的循环利用。与西门子法相比,该工艺更简单,估算综合能耗仅为58.4kWh/kg。
Developing a low-cost solar grade (SoG) silicon feedstock is both requirement of continued rapid expansion of the photovoltaic (PV) market and a very important role in national energy security strategies. This thesis work has been funded by Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.200805331120), Hunan Provincial Innovation Foundation For Postgraduate (CX2009B036) and Innovation Foundation of Central South University(2010bsxt02). After systematic analyzing of the advantages and disadvantages of "solidification refining with Al-Si melts" method, this paper focuses on the study of electrochemical preparation of high pure Si and Si alloys. The reduction potentials of elements in fluoride molten salt were calculated based on Gibbs free energy, and the electrodeposition behavior of Si on solid and liquid electrodes were studied. Furthermore, electrowinning of Si in Na3AlF6-SiO2molten salt was studied systematically considering the electrolysis parameters, electrolysis cell and composition of electrodes. Meanwhile, three-liquid-layer electrorefining and similar horizontal electrorefining of Si were proposed and carried out. The main results of the thesis can be summarized as follows:
     (1) Reduction potential of each element is calculated based on the Gibbs free energy of fluoride, the conditions of co-deposition of impurities and Si in complex fluoride molten salt are also discussed. Reduction potentials of impurities such as Sr, Mg and Ca are more negative than Si, which means that they can't co-deposit with Si. When the concentration of impurities such as Fe, Cu and P are greater than the calculated minimal concentration in complex fluoride molten salt, they would be reduced prior to Si and bring bad influence on the purity of deposited Si.
     (2) Si electrodeposition behavior in complex fluoride molten salt is revealed by electrochemical measurements. Silicon diffusion into liquid cathode is modelled and evolution of diffusion coefficient and Si activity with concentration is deduced by a mathematic approach based on the electrochemical results. Cyclic voltammograms (CVs) showed that the reduction order of ions in Na3AlF6-LiF melts are Si, Al and Na. Maintaining the concentration and adjusting the reduce potetial of Si ions in eletrolyte, Si can be successfully depostied without codeposition of Al and other impurities. Si diffusion coefficient in Al-Si alloy is much less than that in Cu-Si alloy. When the Si concentration in Al-Si alloy are3.230×10-5mol/cm3and6.457×10-5mol/cm3, Si activity coefficiency are0.387and0.435respectively.
     (3) This study demonstrates the feasibility of continous Si alloy and very pure Si production directly from SiO2by electrowinning using liquid electrodes. The influence law of electrolysis parameters, electrolysis cell and electrodes materials on current efficiency of electrowinning and purity of deposits is revealed. Solid deposited Si is more pure than99.9%, the dominant impurities are Al, Fe and Ti. The experimental works with200A scale indicate that the average Si content in Al-Si alloy after electrolysis is found above18%, and the highest Si content in top area of solidified Al-Si alloy is near40%. Compared with the MG-Si, Si crystals in Al-Si alloy prepared from200A and20h electrolysis are much more pure, impurities such as B and P are decreased from5.1and21.4to3.3and10.2ppmw respectively. Moreover, concentration of impurities B, Ti, Ni and Cu are all less than10ppmw.
     (4) Taking advantage of the knowledge of Al electrorefining, the influence law of electrolysis parameters, electrolysis cell and electrodes materials on current efficiency of electrorefining and purity of deposits is revealed. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, re-combination of silicon particles is revealed and yield a larger size Al-Si alloy ball of2cm. Compared with the smelting Al-Si alloy, electrorefined Al-Si alloy shows a remarkable reduction of B and P concentration, decreasing from32.7and32.5to4.8and12.4ppmw respectively. B and P concentration in Si crystals separated from electrorefined Al-Si alloy are as lower as2.2and6.5ppmw respectively. Al-Si alloy obtained from electrochemical methods are more appropriate as raw materials for the alloy solidification refining method.
     (5) A modified horizontal electrorefining cell was developed and the uneven current density distribution does not bring bad influences on the electrochemical process. Aluminum electrorefining could run steady under current density as high as800mA/cm2and current efficiency can reach95%. Under experimental scale, Si electrorefining using horizontal cell indicates that Cu-8wt%Si alloy is more appropriate than A1acting as cathode and collecting the deposited Si.
     (6) An innovative route for production of SoG-Si is raised with the combination of molten salt electrochemical method and alloy solidification physical method. Although this process isn't optimized yet, electrochemical method is believed that can satisfy the demand of high pure raw materials and recycle the high pure Al during the physical production lines. Compared with the Siemens process, this route is simple and saves a great deal of energy, only consuming less than58.4kWh per kg
引文
[1]余思明.半导体硅材料科学[M].武汉:中南工业大学出版社,1990.
    [2]阙端麟.硅材料科学与技术[M].浙江:浙江大学出版社,2000.
    [3]何允平,王恩慧.工业硅生产[M].北京:冶金工业出版社,1989.
    [4]何允平,王金铎.工业硅科技新进展[M].北京:冶金工业出版社,2003.
    [5]何允平.工业硅生产和冶金法太阳能级多晶硅的制取[J].新材料产业,2009(4):52-56.
    [6]何允平.中国工业硅产业升级途径[J].新材料产业,2009(1):36-39.
    [7]范召东,谢择民.星形聚硅氧烷的热稳定性研究和结构表征[J].高分子学报,2000(5):590.
    [8]黄光速,何其佳,江璐霞.聚苯基硅氧烷/聚丙烯酸酯同步互贯网络聚合物阻尼材料[J].高分子材料科学与工程,2001,17(2):133-136.
    [9]吴水珠,曾钫,李凤仙.电光型有机硅聚合物的合成与表征[J].材料研究学报,2001,15(2):257-259.
    [10]郭婉英.多霉净硅烷化反应的研究[J].天津化工,2000(4):10-12.
    [11]陈国斌,唐课文,阎建辉.三种烷基化和硅烷化p-环糊精作为气相色谱固定相的研究[J].化学通报,2001,64(5):296-299.
    [12]王来来,吕士杰,夏春谷.负载(S)-脯氨酸手性固相催化剂制备和在不对称加氢反应中的应用[J].分子催化,2000,14(5):345-349.
    [13]郭瑾,李积和.国内外多晶硅工业现状[J].上海有色金属,2007,28(1):20-25.
    [14]席珍强,杨德仁,陈君.铸造多晶硅的研究进展[J].材料导报,2001,15:67-69.
    [15]邓世杰.硅基太阳电池发展现状[J].世界有色金属,2000,3:7-9.
    [16]魏奎先,戴永年,马文会等.太阳能电池硅转换材料现状及发展趋势[J].轻金属,2006(2):52-56.
    [17]桑田幸也德(日).太阳电池及其应用[M].北京:科学技术出版社,1985:20-23.
    [18]刘祖明,李杰慧,廖华.晶体硅制造技术新进展[C].第八届全国光伏会议论文集,中国轻工杂志社,2004:802-806.
    [19]刘祖明,陈庭金.多晶硅太阳电池[J].太阳能,2000,1:3.5.
    [20]Woditscha P, Koch W. Solar grade silicon feedstock supply for PV industry[J]. Solar Energy Materials&Solar Cells,2000,62:11-26.
    [21]姜建华.无机非金属材料工艺原理[M].北京:化学工业出版社,2005.
    [22]蒋荣华,肖珍.国内外多品硅发展现状[J].半导体技术,2001,26(11):7-10.
    [23]汤传斌.粒状多品硅生产概况[J].有色金属,2001,3:29-31.
    [24]Bathey B R, Cretella M C. Solar-grade silicon[J]. Journal of Materials Science, 1982,17(11):3077-3096.
    [25]Haarberg G M, Tang S. Electrorefining of silicon in molten chloride electrolytes.ppt. TMS2009 138th Annual Meeting & Exhibition.San Francisco, CA,2009.
    [26]Hofstetter J, Leliere J F, del Canzo C, et al. Acceptable contamination levels in solar grade silicon:From feedstock to solar cell[J]. Materials Science and Engineering B,2009,(159-160):299-304.
    [27]Khattak C P, Joyce D B, Schmid F. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon. Final Report, National Renewable Energy Laboratory,2001.
    [28]Nagasana K, Matsushita Y, Kishino S. A new intrinsic gettering technique using microdefects in Czochralski silicon crystal:A new double preannealing technique[J]. Appl. Phys. Lett.,1980,37:622-630
    [29]Abe T, Masui T, harada H, Chikawa J, Defects and properties of Semiconductors: Defect Engineering[M]. Tokyo:edited by Chikasa J, Sumino K, Wada K, 1987,185-195
    [30]杨德仁.硅中氧沉淀的研究[J].材料科学与工程,1990,8(2):13-19
    [31]蒋乐,杨德仁,余学功等.直拉硅中氮在高温退火过程中对氧沉淀的影响[J].物理学报,2003,52(8):2000-2004.
    [32]Wijaranakula Iron W. precipitation at oxygen related bulk de-fects in Czochralski silicon[J]. Appl. Phys.,1996,79:4450-4455.
    [33]Seibt M, Graff K. Characterization of haze-forming precipitates in silicon[J]. Appl. Phys.,1988,63:4444-4450.
    [34]Seibt M, Schroeter W. Precipitation behaviour of nickel in silicon[J]. Phil. Mag. A.,1989,59:337-341.
    [35]Omling P, Emanuelsson P, and Grimmeiss H G. Photoelectron paramagnetic resonance of Pt in silicon[J].Phys. Rev.,1987,11:6202-6205.
    [36]Yonenaga I, Sumino K. Influence of oxygen precipitation along dislocations on the strength of silicon crystals[J]. Appl.Phys.1996,80:734-738.
    [37]Shimizu H, Aoshima T.Thermal Warpage of Large Diameter Czochralski-Grown Silicon Wafers[J]. Appl.Phys,1988,27:2315-2323.
    [38]Joshi D P, Bhatt D P L. Thermophysical properties of heat-of-fusion storage materials for cooling[J]. Solar Energy Materials,1991,22:137-141.
    [39]Moeller H J, Oxygen and carbon precipitation in multicrystalline solar silicon[J]. Solid State Phenom.1996,40:127-132.
    [40]Wang T H, Ciszek T F, Schuyler T. Micro-Defect Effects on Minority Carrier Lifetime in High Purity, Dislocation-Free Silicon Single Crystals[J]. Solar Cells,1988,24:135-138.
    [41]Perichaud I. Gettering of impurities in solar silicon[J]. Solar Energy Materials & Solar cells,2002,72:315-326.
    [42]Perichaud.Getting of impurities in solar cell[J]. Solar Energy Material&Solar Cells,2002,72:315-326.
    [43]Reiss J H, King R R, Mitchell K W. Characterization of diffusion length degradation in Czochralski silicon solar cells[J]. Appl. Phys. Lett,1996, 68:3302-3307.
    [44]Istratov A A, Hieslmair H, Weber E R. Iron contamination in silicon technology [J]. Material Science & Processing,2000,70:489-534.
    [45]Seibt M, Graff K. High-temperature Properties of 3d Transition Elements in Si[J]. Mat. Res. Symp. Proc,1983,130:196-201.
    [46]Goswami D Y. A review and future prospects renenewable energy in the global energy system.In:Goswami. D Y, Zhao Y, eds. Proceedings of ISES Solar World Congress[M]. Beijing:Solar Energy and Human Settlement,2007:3-10.
    [47]Barnham K W J, Mazzer M, Clive B. Resolving the energy crisis:nuclear or photovoltaics[J].Nat Mater,2006,5(3):161-164.
    [48]Lewis N S, Crabtree G, Nozik A J, et al. Basic Reseach Needs for Solar Energy Utilization[C].Report of the Basic Energy Sciences Workshop on Solar energy Utilization, Argonne National Laboratory,2005.
    [49]马文会,戴永年,杨斌,等.太阳能级硅制备新技术研究进展[J].新材料产业2006,(10):12-16.
    [50]沈辉,舒碧芬,闻立时.我国太阳能光伏产业的发展机遇与战略对策[J].电池,2005,35(6):430-432.
    [51]赵玉文,王斯成,王文静,等.中国光伏产业发展研究报告(2006—2007),中国可再生能源发展项目办公室,中国可再生能源学会光伏专业委员会,中国可再生能源学会产业工作委员会,2008.
    [52]杨晓光,寇臣锐,汪友华.太阳能LED照明路灯充电器的研制[J].太阳能学报,2010,31(1):67-71.
    [53]崔容强,汪建强,孟凡英.太阳光伏发电之未来[J].可再生能源,2008,3:96-101.
    [54]徐锭明,刘倩茹.推动我国太阳能事业实现又好又快发展[J].中国科技投资,2007,11:21-24.
    [55]胡义康.谈光伏产业后期的发展[J].太阳能,2007,7:4-7.
    [56]赵玉文,吴达成,励旭东.我国光伏产业和市场的发展概况[J].太阳能,2007,3:7-10.
    [57]李华.中国光伏产业发展战略思考[J].财经界,2008,6:19-20.
    [58]王斯成.我国光伏发电有关问题研究[J].中国能源,2007,2:7-11.
    [59]周四清,马超群,李林.太阳能光伏产业可持续发展理论研究思考[J].科技进步与对策,2007,7:88-90.
    [60]Pizzini MA S, Binetti S. From electronic grade to solar grade silicon:chances and challenges in photovoltaics[J]. physica status solidi (a),2005,202(15): 2928-2942.
    [61]Moller H J, Funke C, Rinio M. Multicrystalline silicon for solar cells [J]. Thin Solid Films,2005,487:179-187.
    [62]Goetzberger A, Hebling C. Photovoltaic materials, past, present, future[J]. Solar Energy Materials & Solar Cells,2000,62:1-19.
    [63]Hoffmann W. PV solar electricity industry:Market growth and perspective [J]. Solar Energy Materials and Solar Cells,2006,90(18-19):3285-3311.
    [64]Solarbuzz L L C. Annual World Photovoltaic Market Review by Solarbuzz LLC[R].2007.
    [65]Solarbuzz L L C.Annual World Photovoltaic Market Review by Solarbuzz LLC[R].2008.
    [66]Michael R, Hilary F, Christopher P. Solar Annual 2007[R]. Photon Consulting, 2007.
    [67]Michael R, Mark F, Hilary F. Solar Annual 2008[R]. Photon Consulting,2008.
    [68]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:北京化学工业出版社,2005:34-36.
    [69]Soilad A-K. Silicon for Solar Cells:[Doctoral theses] [D]. Norway:Norwegian university of science and technology,2004.
    [70]Woditsch P, Koch W. Solar grade silicon feedstock supply for PV industry[J]. Solar Energy Materials and Solar Cells,2002,72(1-4):11-26.
    [71]张鸣剑,李润源,代红云.太阳能多晶硅制备新技术研发进展[J].新材料产业,2008(6):29-33.
    [72]梁骏吾.光伏产业面临多晶硅瓶颈及对策[J].科技导报,2006,216:5-7.
    [73]顾列铭.污染和耗能:多晶硅的软肋[J].广东科技,2008,8(193):91-93.
    [74]冶金部北京有色冶金设计院编.半导体材料硅的生产[M].北京:中国工业出版社,1970.
    [75]Hubert A, Aulich F-WS. Crystalline silicon feedstock for solar cells[J]. Progress in Photovoltaics:Research and Applications,2002,10(2):141-147.
    [76]Morita K, Miki T. Thermodynamics of solar-grade-silicon refining[J]. Intermetallics,2003,11(11-12):1111-1117.
    [77]Santen S, ScanArc, Wiersma B. New feedstock materials[C]. http://www.ecn.nl /docs/library/report/2005/rx05022.pdf; 2005
    [78]Delannoy Y. Plasma-refming process to provide solar-grade silicon[J]. Solar Energy Materials&Solar Cells,2002,72:69-75.
    [79]Masaru O. Development of a Technology for Silicon Production by Recycling Wasted Optical Fiber[J]. Ind. Eng. Chem. Res,2004,43:1890-1893.
    [80]Rousseau S. Purification ofMG silicon by thermal plasma process coupled to DC bias of the liquid bath[J]. Solar Energy Materials&Solar Cells,2008,68:56-58.
    [81]Yuge N. Purification ofmetallurgical-grade silicon up to solar grade [J]. Progress inphoyovoltaics:research and applications,2001,9:203-209.
    [82]Pauline H, Janes M G. Thermochemical Analysis for Purification of Polysilicon Melts[C]. Report.Sandia National Laboratories,1999.
    [83]James V D, Pauline H, Janes M G. Silicon Purificafion Melting for Photovoltaic Applications[C]. Report.Sandia National Laboratories,2000.
    [84]Maijer D M, Ikeda T, Cockcroft S L. Mathematical modeling of residual stress formation in electron beam remelting and refining of scrap silicon for the production of solar-grade silicon[J]. Materials Science and Engineering A,2005, 390(1-2):188-201.
    [85]Pires J C S, Otubo J, Braga A F B. The purification of metallurgical grade silicon by electron beam melting[J]. Journal of Materials Processing Technology, 2005,169(1):16-20.
    [86]Kemmotsu T, Kimura H, Nagai T. THE REMOVAL RATE OF PHOSPHORUS FROM MOLTEN SILICON[C]. TMS(The Minerals,Metals & Metarials Society), 2009,Supplemental Proceedings:2:277-280.
    [87]Morvan D, Cazard Juvernat I, Amouroux J. Photovoltaic silicon produced by thermal plasma:Influence of atomic hydrogen on oxygen elimination and passivation of the crystal defects[J]. Materials Research Society, 1998,13(10):2709-2720.
    [88]Alemany C, Pateyron B, Li KI. Refining of metallurgical-grade silicon by inductive plasma[J]. Solar Energy Materials and Solar Cells.2002,72(1-4),41-48.
    [89]Delannoy Y, Alemany C, Li KI. Plasma-refining process to provide solar-grade silicon[J]. Solar Energy Materials and Solar Cells,2002,72(1-4):69-75.
    [90]Rousseau S, Benmansour M, Morvan D. Purification of MG silicon by thermal plasma process coupled to DC bias of the liquid bath[J]. Solar Energy Materials and Solar Cells,2007,91(20):1906-1915.
    [91]Xiong H B, Ma Y, Zheng L L. A modified HEM system for optical crystal growth with high melting temperature [J]. Journal of Crystal Growth,2007,299(2):404-412.
    [92]Khattak. C P, Schmid F. Growth of the world's largest sapphire crystals [J]. Journal of Crystal Growth,2001,225:572-579.
    [93]Kim J M, Kim Y K. Growth and characterization of 240 kg multicrystalline silicon ingot grown by directional solidification[J]. Solar Energy Materials and Solar Cells,2004,81(2):217-224.
    [94]Lu C W, Chen J C. Numerical computation of sapphire crystal growth using heat exchanger method[J]. Journal of Crystal Growth,2001,225:274-281.
    [95]尹盛,何笑明.冷等离子体结合湿法冶金制备太阳能级硅材料[J].功能材料,2002,33(3):305.309.
    [96]Application and filing Complete Specification. Improvements in or relating to refining of silicon in a ferrosilicon material. Patent:COlb 852710.
    [97]Santos I C. Purification of metallurgical grade silicon by acid leaching[J]. Hydrometallurgy,1990,23:237-246.
    [98]王宇.硅材料湿法提纯理论分析及工艺优化[J].太阳能学报,1995,16(2):175-179.
    [99]Istratov A A, Buonassisi T, Pickett M D. Control of metal impurities in"dirty"multicrystalline silicon for solar cells [J]. Materials Science and Engineering B,2006,34(1):282-286.
    [100]Takahiro M. Thermodynamic Properties of Titanium and Iron in Molten Silicon[J]. Metallurgical and Materials Transactions B,1997,28:861-867.
    [101]Morita K Kongoli F, Thomas B G. Proceedings of Modeling Control and Optimization in Ferrous and Nonferrous Industry Symposium[M], Minerals, Metals&Mater. Society,2003:49.
    [102]Tomohito S. Thermodynamic Study of the Effect of Calcium on Removal of Phosphorus from Silicon by Acid Leaching Treatment[J]. Metallurgical and Materials Transactions B。 2004,35:277-284.
    [103]Ryoujinoguchi. Thermodynamics of Boron in a Silicon Melt[J]. Metallurgical and Materials Transactions B,1994,25B:903-907.
    [104]Dold P. Analysis of microsegregation in RF-heated float zone growth of silicon-comparison to the radiation-heated process [J]. Metallurgical and Materials Transactions B,2004,261:1-10.
    [105]Muhlbauer A, Muiznieks A, Virbulis J. Analysis of the dopant segregation effects at the floating zone growth of large silicon crystals. [J]. Metallurgical and Materials Transactions B,1997,180:372-380.
    [106]冯瑞华.太阳能级多品硅制备技术与工艺[J].新材料产业,2007,5:59-62.
    [107]Morita K Miki T. Thermodynamics of solar grade silicon refining[J]. Intermetallics,2003,11:1111-1117.
    [108]Dodero M M. Sur la preparation du siliciure de cerium et du siliciure de lanthane par electrolyteignee[J]. Comptes Rendus de l'Academie des sciences,1934,109: 566-568.
    [109]Dennis Elwell. Electrocrystallization of semiconducting materials from molten salt and organic solutions [J]. Journal of Crystal Growth,1981,52:741-752.
    [110]Dennis Elwell, Robert S. Feigelson. Electrodeposition of solar silicon [J]. Solar Energy Materials,1982,6:123-145.
    [111]Rao G M, Elwell D. Electrolytic production of silicon[C]. Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, Pennsylvania).
    [112]JAMES W E. The evolution of technology for light metals over the last 50 years: Al, Mg, and Li[J]. JOM,2007,59(2):30-38.
    [113]TABEREAUX A. Prebake cell technology:A global review[J]. JOM,2000, 52(2):22-28.
    [114]PAWLEK R P. Review of the aluminum reduction sessions, part I[J]. Aluminium,1999,75(7):621-625.
    [115]PAWLEK R P. Review of the aluminum reduction sessions, part II[J]. Aluminium,1999,75(11):1006-1009.
    [116]VANVOREN C, HOMSI P, BASQUIN J L. AP50:The pechiney 500 kA cell[C]. In:ANJIER J L, eds. Light metals 2001. USA:TMS,2001:221-226.
    [117]邱竹贤.21世纪伊始铝电解工业的新进展[J].中国工程科学,2003,5(4):41-46.
    [118]杨晓东,刘雅锋,朱佳明,孙康健.400kA预焙阳极铝电解槽技术研制开发生产实践[J].轻金属,2008,7:23-30.
    [119]李宁,王洪,肖伟峰,肇玉卿,陈军,陈新群.400kA大型预焙阳极铝电槽应用研究[J].轻金属,2008,12:35-38.
    [120]SLEPPY W C, COCHRAN C N. Bench scale electrolysis of alumina in sodium fluoride-aluminum fluoride melts below 900℃[C]. In:Peterson W S, eds. Light metals 1979. USA:TMS,1979:385-395.
    [121]赖延清,刘业翔.电解铝炭素阳极消耗研究评述[J].轻金属,2002,8:3-10.
    [122]卢惠民,邱竹贤.面向21世纪的铝电解清洁生产工艺[J].矿冶,2000,9(4):62-65.
    [123]KVANDE H. Inert electrodes in aluminum electrolysis cells[C]. In:Eckert C E, eds. Light metals 1999. USA:TMS,1999:369-376.
    [124]Monnier R. Electrochemical Extraction and Refining of Silicon [J]. Chimia, 1983,37:109-124.
    [125]Monnier R, Giacometti J C. Recherches sur le raffinage electrolytique du silicium [J]. Helvetica Chimica Acta,1964,47:345-353.
    [126]Monnier R, Barakat D. Contribution a l'etude du comportement de la silice dans les bains de cryolithe fondue [J]. Helvetica Chimica Acta,1957,40:2041-2045.
    [127]Grjotheim K, Matiasovsky K, Fellner P. Electrolytic Deposition of Silicon and of Silicon Alloys Part Ⅰ[J]. Canadian Metallurgical Quarterly,1971,10:79-82.
    [128]Boe G, Grjotheim K, Matiasovsky K. Electrolytic Deposition of Silicon and of Silicon Alloys Part Ⅱ[J]. Canadian Metallurgical Quarterly,1971, 10:179-183.
    [129]Boe G, Grjotheim K, Matiasovsky K. Electrolytic Deposition of Silicon and of Silicon Alloys Part Ⅲ[J]. Canadian Metallurgical Quarterly,1971, 10:281-283.
    [130]Boe G, Grjotheim K, Matiasovsky K. Electrolytic Deposition of Silicon and of Silicon Alloys. Part Ⅳ[J]. Canadian Metallurgical Quarterly,1972,11:463-468.
    [131]Monnier R, Barakat D. US Patens 3219561 and 3254010,1965 and 1966.
    [132]Dlawar Barakat, Geneva, Hans Keller. US Patent 3405043,1968.
    [133]Jan R. Stubergh, Zhonghua Liu. Preparation of pure silicon by electro winning in a bytownite-cryolite melts [J]. Metallurgical and materials transactions B,1996, 27B:895-900.
    [134]HugginsR A, Elwell D. Morphological stability of a Plane interface during electroncrystallization from molten salts [J]. Journal of Crystal Growth,1977, 37:159-162.
    [135]Johnson K E. High Temperature Technology[M].London:Butterworths, 1967:493.
    [136]Raistrick I D,Poris J, Huggins R A. Molten Salt Lithium Cells. In:H.Y. Venkatasetty, Editor, Proceedings of the Symposium on Lithium Batteries[M]. Pennington:The Electrochemical Society,1981:477.
    [137]Robert C. De Mattei, Dennis Elwell, Robert S. Feigelson. Electrodeposition of silicon at temperatures above its melting point [J]. Journal of the Electrochemical Society:Electrochemical science and technology,1981,128:1712-1714.
    [138]Robert C. De Mattei, Dennis Elwell, Robert S. Feigelson. Electrodeposition of molten silicon. US Patent 4292145,1981.
    [139]Uri Cohen, Robert A. Huggins. Silicon Epitaxial Growth by Electrodeposition from Molten Fluorides [J]. Journal of the Electrochemical Society: Electrochemical science and technology,1976,123:381-383.
    [140]李运刚,蔡宗英,翟玉春,等.FL INAK-Na2SiF6熔盐体系中Si的电结晶机理[J].有色金属,2005,57(2):66-68.
    [141]Gopalakrishna M. Rao, Dennis Elwell, Robert S. Feigelson. Electrowinning of Silicon from K2SiF6-Molten Fluoride Systems [J]. Journal of the Electrochemical Society:Electrochemical science and technology,1980,127:1940-1944.
    [142]Gopalakrishna M. Rao, Dennis Elwell, Robert S. Feigelson. Electrocoating of silicon and its dependence on the time of electrolysis [J]. Surface Technology, 1981,13:331-337.
    [143]Gopalakrishna M. Rao, Dennis Elwell, Robert S. Feigelson. Electrodeposition of silicon onto graphite [J]. Journal of the Electrochemical Society: Electrochemical science and technology,1981,128:1708-1711.
    [144]Uri Cohen. Epitaxial growth of silicon or germanium by electrodeposition from molten salts. US patent 3983012,1976.
    [145]Jerry M. Olson, Karen L. Carleton. Process for producing silicon, US Patent 4448651,1984.
    [146]Dennis Elwell, Robert S. Feigelson, Gopalakrishna M. Rao. The Morphology of silicon electrodeposition on graphite substrates [J]. Journal of the Electrochemical Society:Electrochemical science and technology,1983, 130:1021-1025.
    [147]Monnier R, Gopalakrishna M. Rao, Dennis Elwell, et al. Electrodeposition of silicon onto graphite [J]. Journal of the Electrochemical Society:Electrochemical science and technology,1982,129:2867-2868.
    [148]Despic A R, Popov K I. The effect of pulsating potential on the morphology of metal deposits obtained by mass-transport controlled electrodeposition [J]. Journal of Applied Electrochemistry,1971,1:275-278.
    [149]Boen R, Bouteillon J. The electrodeposition of silicon in fluoride melts[J]. Journal of Applied Electrochemistry,1983,13:277-288.
    [150]De Lepinay J, Bouteillon J, Traore S. Electroplating silicon and titanium in molten fluoride media[J]. Journal of Applied Electrochemistry,1987, 17:294-302.
    [151]Okabe T H,Park I, Jacob K T. Production of niobium powder by electronically mediated reaction (EMR) using calcium as a reluctant [J]. Journal of Alloys and Compounds,1999,288:200-210.
    [152]Chen G Z, Fray D J,Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J]. Nature,2000,407:361-364.
    [153]Toshiyuki Nohira, Kouji Yasuda, Yasuhiko Ito. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon [J]. Nat. Mater. 2003,2:397-401.
    [154]Pistorius P C,Fray D J. Formation of silicon by electrodeoxidation, and implications for titanium metal production [J]. The Journal of the South African Institute of Mining and Metallurgy,2006,106:31-42.
    [155]Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, et al. Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon [J]. Electrochimica Acta,2007,53:106-110.
    [156]Toshiyuki Nohira, Kouji Yasuda, Yukio H. Ogata, et al. Direct electrolytic reduction of solid silicon dioxide in molten LiCl-KCl-CaCl2 at 773K[J]. Journal of the Electrochemical Society:Electrochemical science and technology,2005, 152:D208-D212.
    [157]Kouji Yasuda, Toshiyuki Nohira, Yukio H. Ogata. Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode [J]. Electrochimica Acta,2005,51:561-565.
    [158]Toshiyuki Nohira, Kouji Yasuda, Yasuhiko Ito. Effect of electrolysis potential on reduction of solid silicon dioxide in molten CaCl2 [J]. Journal of Physics and chemistry of solids,2005,66:443-447.
    [159]Kouji Yasuda, Toshiyuki Nohira, Koji Amezawa, et al. Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2 [J]. Journal of the Electrochemical Society:Electrochemical science and technology,2005, 152:D69-D74.
    [160]Kouji Yasuda, Toshiyuki Nohira, Keiko Takahashi, et al. Electrolytic reduction of a powder-molded SiO2 pellet in molten CaCl2 and acceleration of reduction by Si addition to the pellet[J]. Journal of the Electrochemical Society: Electrochemical science and technology,2005,152:D232-D237.
    [161]Xiaobo Jin, Pei Gao, Dihua Wang, et al. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium[J]. Electrochemical synthesis, 2004,43:733-736.
    [162]Su-Chul Lee, Jin-Mok Hur, Chung-Seok Seo. Silicon powder production by electrochemical reduction of SiO2 in molten LiCl-Li2O[J]. Journal of Industrial and engineering chemistry,2008,14:651-654.
    [163]Uri Cohen, Robert A. Huggins. Silicon Epitaxial Growth by Electrodeposition from Molten Fluorides [J]. Journal of the Electrochemical Society: Electrochemical science and technology,1976,123:381-383.
    [164]Uri Cohen. Electrodeposition of polycrystalline silicon from a molten fluoride bath and product. US patent 4142947,1979.
    [165]Olson J M,Carleton K L. A Semipermeable Anode for Silicon Electrorefining[J]. Journal of the Electrochemical Society:Electrochemical science and technology, 1981,128:2698-2699.
    [166]Sharma I G,Mukherjee T K. A study on purification of metallurgical grade silicon by molten salt electrorefining [J]. Metallurgical Transactions B,1986.
    [167]Bathey B R, Cretella M C. Review Solar-grade silicon[J]. Journal of materials science,1982,17(11):3077-3096.
    [168]Einhaus R, Sarti D, Hassler C. Purification of low quality silicon feedstock. Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE,2000:221-224.
    [169]Ciszek T F, Schwuttke G H, Yang K H. SOLAR-GRADE SILICON BY DIRECTIONAL SOLIDIFICATION IN CARBON CRUCIBLES[J]. IBM Journal of Research and Development,1979,23(3):270-277.
    [170]Yoshikawa T, Morita K. Removal of phosphorus by the solidification refining with Si-Al melts[J]. Science and Technology of Advanced Materials, 2003,4(6):531-537.
    [171]Yoshikawa T, Morita K. Refining of Si by the solidification of Si-Al melt with electromagnetic force[J]. ISIJ International,2005,45(7):967-971.
    [172]Yoshikawa T, Arimura K, Morita K. Boron removal by Titanium addition in solidification refining of silicon with Si-Al melt[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2005, 36(6):837-842.
    [173]Yoshikawa T, Morita K. Refining of silicon during its solidification from a Si-Al melt[J]. Journal of Crystal Growth,2009,311(3):776-779.
    [174]Dominik Sollmann. Pure and simple[J]. PHOTON International,2009, 5:110-113.
    [175]Nichol S. US Patent Applications 20110044877,20100329959,20100254879, 20100233064,20090274607 and 20090092535.
    [176]宁建文,党建平.铝电解精炼发展的综述[J].轻金属,2005(8):37-39,45.
    [177]Mishra B, Olson DL. Molten salt applications in materials processing[J]. Journal of Physics and Chemistry of Solids,2005,66(2-4):396-401.
    [178]张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006.
    [179]捷利马尔斯基,Ю.K.,马尔科夫,Б.X.熔盐电化学[M].上海:上海科学技术出版社,1964.
    [180]段淑贞,乔芝郁.熔盐化学——原理和应用[M].北京:冶金工业出版社,1990.
    [181]Wurm. J. European Conference Development of Molten Salts Applications[C]. Geneva, Battelle,1973:62-69.
    [182]Matiasovsky K,Lubyova Z, Danek V. Electrolytic metal-plating in fused salts [J]. Electrodeposition and Surface Treatment,1972,1:43-57.
    [183]Brookes H C,Inman D. Voltammetric Investigations of CaCl2-KCl Melts at 700 ℃ [J]. Journal of the Electrochemical Society:Electrochemical science and technology,1988,135:373-377.
    [184]Duan Shuzhen, Inman D, Scheward J A. Brit. UK Patent Appl. G.B 8619173, 1986; UK Patent GB2193508A,1988.
    [185]顾学范,段淑贞,陈冰等.四氯化钛熔盐电解制取海绵钛——在阴极篮筐内海绵钛生长过程的研究[J].稀有金属,1988,7(3):91-96.
    [186]Duan Shuzhen, Gu Xuefan, Du Yuansheng, et al. The Electrode Process of Titanium Subchlorides and Electrodeposition of Titanium in LiCl-KCl Fused Salts[J]. Rare metals,1989,8(4):6-11.
    [187]捷利马尔斯基,ЮO.K.,马尔科夫,Ъ.X.熔盐电化学[M].上海:上海科学技术出版社,1964.
    [188]谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998.
    [189]孙鸿儒.《稀有金属手册》(上).《稀有金属手册》编辑委员会编著[M].北京:冶金工业出版社,1992:82.
    [190]C. E. Wicks, F. E. Block. Thermodynamic properties of 65 Elements-their oxides, halides, carbides, and nitrides [M]. Washington:United States Government Printing,1963.
    [191]陆瑞生,刘效疆.热电池[M].北京:国防工业出版社,2005.
    [192]别略耶夫A И,热姆邱仁娜EA,费尔散诺娃JIA.熔盐物理化学.胡方华,沈时英校[M].北京:中国工业出版社,1963:146-174.
    [193]http://www.factsage.cn/fact/phase_diagram.php?file=Cu-Si.jpg&dir=FScopp.
    [194]李荻.电化学原理[M].北京:北京航空航天大学出版社,1999.
    [195]陈襄武.钢铁冶金物理化学[M].北京:冶金工业出版社,1990:326-321.
    [196]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997,53-55.
    [197]Zhang L, Du Y, Ouyang Y, Xu H, Liu Y. Atomic mobilities, diffusivities and simulation of diffusion growth in the Co-Si system[J]. Acta Materialia,2008, 56(15):3940-3950.
    [198]Zhang L J, Du Y, Steinbach I, Chen Q, Huang B Y. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification[J]. Acta Materialia,2010,58(10):3664-3675.
    [199]Liu D D, Zhang L J, Du Y, Xu H H. Assessment of atomic mobilities of Al and Cu in fcc Al-Cu alloys [J]. Calphad,2009,33(4):761-768.
    [200]Dybkov V I. Interaction of 18Cr-10Ni Stainless Steel with Liquid Aluminum[J]. Materials Science,1990,25 (8):3615-3633.
    [201]Tsao C L, Chen S W. Interfacial Reactions in the Liquid Diffusion Couples of Mg/Ni,Al/Ni and Al/(Ni)-Al2O3 Systems[J]. Materials Science 1995,30 (20):5215-5222.
    [202]Pekguleryuz M O, Gruzleski J E. Dissolution of Reactive Strontium-containing Alloys in Liquid Aluminium and A356 Melts [J]. Metallurgical Transactions, 1989,20B(6):815-831.
    [203]曾大新,苏俊义,陈勉已.固体金属在液态金属中的熔化与溶解[J].铸造技术,2000,1:33-36.
    [204]Sylvie R S, Gerard S P. Solubility and diffusion of metallic iron in liquid Bi metal at 450℃[J]. Electrochemistry Communication.2004,6:944-954.
    [205]Johanna Sabine Becker,Hans-Joachim Dietze, Inorganic trace analysis by mass spectrometry,1998, Part B:1475-1506.
    [206]陈新坤.电感耦合等离子体光谱法原理和应用[M].天津:南开大学出版社,1987.
    [207]朱光辉,王光灿ICP-AES同时测定高纯碲中钙、铈和钛[J].光谱实验室,2005,22(4):773-774.
    [208]武汉大学化学系编.仪器分析[M].北京:高等教育版社,2001.
    [209]谢华林.基体分离ICP-AES法测定电解铜中杂质元素[J].冶金分析,2003,23(1):12-13.
    [210]Fortin S, Gerhardt M, Gesing A J. Physical modelling of bubble behaviour and gas release from aluminum reduction cell anodes. In:McGeer J P, eds. Light Metals 1984. Los Angeles, CA, USA:Metallurgical Soc of AIME, 1984.721-741.
    [211]Shekhar R, Evans J W. Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells:Part Ⅱ. Flow and inter-polar resistance in cells with a grooved anode[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1994,25(3):341-349.
    [212]Shekhar R, Evans J W. Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells:Part I. Flow in cells with a flat anode[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,1994,25(3):333-340.
    [213]Shekhar R, Evans J W. Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells. In:Blckert C M, eds. Light Metals 1990. Anaheim, CA, USA:TMS,1990.243-248.
    [214]Shekhar R, Evans J W. Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells:Part Ⅲ. Predicting the performance of advanced hall cells [J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1996, 27(1):19-27.
    [215]Solheim A, Thonstad J. Model experiments of mass transfer at the electrolyte-gas interface in aluminium cells. In:Zabreznik R D, eds. Light Metals 1987. Denver, CO, USA:Metallurgical Soc of AIME,1987.239-245.
    [216]Solheim A, Thonstad J. Model cell studies of gas induced resistance in Hall-Heroult cells. In:Miller R E, eds. Light Metals 1986. New Orleans, LA, USA:Metallurgical Soc of AIME,1986.397-403.
    [217]冯乃祥,孙阳,刘刚.铝电解槽热场、磁场和流场及其数值计算[M].沈阳:东北大学出版社,2001.143-180.
    [218]吴建康,黄珉,黄俊.铝电解槽电解质-铝液流动及铝液表面变形计算[J].中国有色金属学报,2003,13(1):241-244.
    [219]黄俊,吴建康,姚世焕.铝电解磁流体流动的数值计算[J].有色冶炼,2002,(6):25-26.
    [220]周萍,梅炽,周乃君.三种湍流模型对A1电解槽内A1液流场预测的比较及其工业测试[J].金属学报,2004,40(1):77-82.
    [221]刘伟,李劫,赖延清.铝电解槽电磁流场的数学建模与应用[J].中国有色金属学报,2008,18(5):909-916.
    [222]刘伟.铝电解槽多物理场数学建模及应用研究[D].长沙:中南大学,2008.
    [223]Kiss L I, Perron A L, Poncsak S.The bubble laden layer around inert anodes[J]. In:Sorlie M, eds. Light Metals 2007. Orlando, FL, USA:TMS,2007.495-500.
    [224]Li X P, Li J, Lai Y Q. Mathematical simulation of gas induced bath flow in drained aluminum reduction cell[J]. Transactions of Nonferrous Metals Society of China,2004,14(6):1221-1226.
    [225]Li X P, Li J, Lai Y Q. Physical modeling of gas induced bath flow in drained aluminum reduction cell[J]. Transactions of Nonferrous Metals Society of China,2004,14(8):1017-1022
    [226]夏小霞.铝电解槽内电解质流场的数值模拟研究[D].长沙:中南大学,2005.
    [227]刘业翔,李劫.现代铝电解[M].北京:冶金工业出版社2008.
    [228]何小凤,李运刚,李智慧.KCl-NaCl-NaF-(SiO2)熔盐体系初晶温度的研究[J].有色金属(冶炼部分),2008(4):12-15.
    [229]Reddy R G. Emerging Technologies in Extraction and Processing of Metals [J]. Metall. Mater. Trans. B,2003,34B(2):137-152.
    [230]胡迟译.铝精炼法[J].轻金属,2000(8):37-39.
    [231]贾芳.三层液电解法生产中的节电技术[J].新疆有色金属,2003(3):49-50.
    [232]李勇.我国三层液铝电解精炼技术的现代及发展趋势[J].轻金属,2001(11):33-35.
    [233]Mitsuhiro Kondo(日本).日本高纯铝的生产[J].王祝堂译,吕轻校.轻金属,1991(9):34-36.
    [234]宁建文,李劫.我国三层液铝电解精炼技术的现状与发展[J].有色矿业,2005,21(116):25-26.
    [235]曲直.精铝市场预测及生产技术发展动向[J].世界有色金属,1999(5):40-41.
    [236]Solheim A, Rolseth S. Metall. Mater. Trans,1996; 10(B):739.
    [237]Craig W B. In:Peterson R D ed., Light Metals Proceedings. Nashville:Miner. Metals & Mater. Soc of USA,2000:391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700