用户名: 密码: 验证码:
我国解决风电充风的组合途径及优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2005年以来,中国风电产业快速发展。截至2013年底,中国风电累计装机容量达到91744.6MW,高居全球首位。中国风电装机主要分布在东北、华北与西北地区,总体呈现出风电大规模集中建设且远离负荷中心的的特点。风电的地理分布特性在一定程度上影响了风电出力的消纳水平。2013年,中国风电弃风电量达到150亿kWh,折合经济损失达到75亿元以上。风电产业严峻的弃风形势在宏观层面不利于风电产业的可持续发展,阻碍发电结构调整的进程,进一步则影响了中国经济低碳化的发展;在微观层面则不利于风电项目经济效益的实现,致使风电开发商难以在计划运行年限内回收投资费用。
     风电消纳是全球性的问题,西方国家均积极开展风电消纳的研究工作。在政策层面出台风电产业发展规划以及与之相适应的激励政策;在经济层面则予以优惠的电价、税收策略;在社会层面则鼓励调峰电源与风电协调调度,引导社会用电转移等;在技术层面则积极发展风机技术、风电预测技术与风电调度技术。各层面的风电消纳途径并非独立存在的一个研究点,各途径的组合可以将各个点串联成线,线与线的交叉则形成风电消纳途径优化的研究面。本文围绕风电消纳的问题,在归纳中国风电产业发展现状的基础上,重点研究了风电弃风对风电项目的经济影响,需求侧协助消纳风电的组合途径优化,发电侧协助消纳风电的组合途径优化,需求侧与发电侧联合协助风电消纳的组合途径优化以及风电消纳途径选择的综合评价。
     关于弃风对风电项目的经济影响,结合不同风电资源区域在不同电价水平、不同利用小时情景下,测算了风电项目资本金利润率、动态投资回收期以及内部收益率状况。测算结果表明在当前风电弃风分布状况下风能资源丰富区域的经济效益较其它区域要低。展望未来中国将逐步收紧在风能资源丰富地区的风电项目投资。
     关于需求侧协助风电消纳的组合途经优化,首先分别针对大用户协助消纳、电力外送以及分时电价三种风电消纳途径对风电消纳的影响展开研究,研究结果表明需求侧风电消纳途径的实施有助于扩大风电的消纳能力,而随着需求侧消纳途径的深化,消纳水平将进一步提高。另外,将需求侧的消纳途径进行组合优化,研究结果表明组合优化能够深化风电消纳水平。
     关于发电侧协助风电消纳的组合途径优化,首先针对风电接入电网后风电对火电的发电绩效的影响以及火电参与调峰程度对风电弃风的影响进行分析,并构建了火电提供辅助服务的经济补偿模型。其次,分别针对储能系统协助消纳与碳交易机制两种风电消纳途径对风电弃风的影响展开研究,研究结果表明发电侧消纳途径的引入有助于解决风电的弃风问题。最后,对储能系统与碳交易机制进行组合,研究其共同作用下风电的弃风状况,优化结果表明发电侧组合途径具有深化风电消纳的实施价值。
     关于需求侧与发电侧联合协助风电消纳的组合途径优化,首先分析了需求侧参与下火电为风电调峰的发电绩效,结果表明需求侧的参与有助于优化发电侧发电效率。进一步,分别针对大用户与储能系统,电力外送与储能系统,分时电价与碳交易机制三种需求侧与发电侧联合优化下,风电的消纳水平展开研究,优化结果表明需求侧消纳途径与发电侧消纳途径的组合有助于扩大风电的消纳水平。
     关于风电消纳途径选择的综合评价,从经济效益、环境效益和社会效益三个角度出发建立了不同消纳方式下风电项目综合效益评价指标体系,并分别采用局部模糊综合评价方法、物元可拓综合评价方法对储能、外送和大用户直购电三类消纳方式下的风电项目综合效益进行算例分析。
Since2005, the wind power industry in China has expanded rapidly. China has91744.6cumulative megawatts of wind capacity by the end of2013and more than any other country in the world. Most wind power installed capacity are distributed in Northeast China, North China and Northwest China, which are far from the load center and shows the characteristics of large-scale construction. The geographic distribution characteristics of wind power influence its consumption level to some extent. In2013, the abandoned quantity of wind power electricity reached15billion kWh, losing7.5billion yuan. On the macro stuff, the severe wind power abandon condition goes against sustainable development of wind power, hinders the adjustment pace of power structure and influences low-carbon development of China's economy. On a microscopic level, this condition is bad for the economic benefit realization of wind power project and it will make power project developers hard to reclaim their investment cost.
     Wind power consumption is a global issue that western countries all do reach about wind power consumption actively. At the policy level, there comes wind power industry development programs and relevant incentive policies; in the aspect of economy, favorable electricity price and tax strategy are given; at the social level, coordinating dispatch between peaking power sources and wind power is encouraged, which guides the shift of social electricity demand; at the technical level, many countries actively develop compressor blower&fan technology, wind power prediction technology and wind power dispatching technology. These aspects are not independent, and they can make different combinations to study how to optimize wind power consumption approach. This article focuses on the problem about wind power consumption, and on the basis of China's wind power industry development situation, it also highlights the abandoned wind's influence on wind power project, wind power's combinatorial optimization consumption under the help of demand side, generation side and both of them.
     Considering the abandoned wind power's economic influence on wind power projects and different wind power resources under different electricity price levels and different utilization hours, this article calculates capital profit margin, dynamic investment pay-back period and internal rate of return. The results show that economic benefit in wind power resource-rich areas is lower than other areas under the present distribution condition of abandoned power. In the future, China will reduce its wind power project investment in wind resource-rich areas
     Considering wind power's combinatorial optimization under the help of demand side, this article pays attention to large consumers'help, power transmission and time-of-use electricity price, and studies on three wind power consumption ways' influence on the consumption. The results show that the implementation of consumption ways of demand side contributes to enlarge wind power's consumption ability. And along with further study on demand side, the consumption level will improve. In addition, the study shows that combinatorial optimization of consumption ways could further the consumption level of wind power.
     Considering wind power's combinatorial optimization under the help of demand side, this article first analyzes the influence which wind electricity exerts on thermal power after wind power is linked into power grid and the influence which thermal power's participation in peak-shaving on the abandoned wind power. And the economic compensation model which is supported auxiliary service by thermal power is built. Besides, focusing on energy storage systems'effect on consumption and the two consumption ways by the existing carbon trading mechanisms, the study shows that the introduce of generation side is beneficial to solve the problem of abandoned wind power. Eventually, the paper combines energy storage system and carbon trading mechanism, and studies the abandoned wind power under their functions. The optimization results shows that combinatorial optimization way has the value to deepen wind power consumption.
     Considering the combinatorial optimization between demand side and generation side, this paper first analyzes the power generation performance of thermal power for wind load under the participation of the demand side, and the results show that the participation of the demand side is conducive to optimize generating efficiency of generation side. This article further studies the level of wind power consumption under three joint optimization of demand side and generation side scenarios:the conbination of lager users and energy storage systems, the conbination of power delivery systems and energy storage systems, the conbination of TOU and carbon trading mechanism. And the results show that the combinatorial optimization between demand side and generation side consumption ways has contributed to enlarge the consumption level of wind power.
     In the aspect of comprehensive assessment about choosing wind power consumption ways, integrative efficiency evaluation index system of wind power projects is built in different consumption ways from economic, environmental and social degrees. And the article employs partial fuzzy comprehensive evaluation method and comprehensive evaluation method of extension nature of matter element, and uses the two methods to analyze comprehensive benefits of wind power projects under the condition of energy storage systems, outside electricity order and large consumers direct purchasing.
引文
[1]中国可再生能源学会风能专业委员会(CWEA),2010年中国风电装机容量[J].风能,2011,(03):34-40.
    [2]中国可再生能源学会风能专业委员会(CWEA),2011年中国风电装机容量[J].风能,2012,(03):40-48.
    [3]Ana C. M., et al. Public-private Partnerships for Wind Power Generation:The Portuguese Case [J]. Energy Policy,2011,39:94-104.
    [4]Ru P, et al. Behind the Development of Technology:The Transition of Innovation Modes in China's Wind Turbine Manufacturing Industry [J]. Energy Policy,2012, 43:58-69.
    [5]国家“十二五”科学和技术发展规划[R].北京:国家科技部,2011.
    [6]2010年风电、光伏发电监管情况报告[R].北京:中国电监会,2011.
    [7]王乾坤.国内外风电弃风现状及经验分析[J].华东电力,2012,40(03):378-381.
    [8]白建华,辛颂旭,贾德香,等.中国风电开发消纳及输送相关重大问题研究[J].电网与清洁能源,2010,26(01):14-17.
    [9]刘新东,方科,陈焕远,等.利用合理弃风提高大规模风电消纳能力的理论研究[J].电力系统保护与控制,2012,40(06):35-39.
    [10]张谦,李琥,高松.风电对调峰的影响及其合理利用模式研究[J].南方电网技术,2010,4(06):18-22.
    [11]李丰,张粒子,舒隽,葛晓琳.含风电与储能系统的调峰与经济弃风问题研究[J].华东电力,2012,40(10):1695-1700.
    [12]吕朝阳,张丹庆,李怀玉.我国风电大规模外送协同运行方式研究[J].水电能源科学,2012,30(09):202-205.
    [13]朱向东.目前中国风电弃风现状及对策[J].能源与节能,2012,(10):30,67.
    [14]张卫东.我国风电弃风原因及对策分析[N].中国能源报,2013-05-06(005).
    [15]范思立.从规划源头解决风电弃风顽疾[N].中国经济时报,2013-04-09(002).
    [16]黄宏平.“弃风”顽疾难治风电场须从源头自救[N].中国高新技术产业导报,2013-04-22(A06).
    [17]李成家,陈路.风电弃风与水电弃水因素分析[J].陕西电力,2011,(04):39-41.
    [18]任华,姚秀萍,张新燕,等.风电场弃风电量统计方法研究[J].华东电力,2013,41(10):2148-2152.
    [19]李伟,王群锋,张宏图.解决风电弃风问题的对策研究[J].价格理论与实践.2013,(2):53-54.
    [20]王正明,路正南.我国风电上网价格形成机制研究[J].价格理论与实践,2008,(09):54-55.
    [21]黄辉.优化我国风电价格形成机制的途径研究[J].价格理论与实践,2011,(03):25-26.
    [22]徐伟,杨玉林,李政光,等.甘肃酒泉大规模风电参与电力市场模式及其消纳方案[J].电网技术,2010,34(6):72-77.
    [23]Zhao X, Mark Gordon, Jacob Ostergaard, et al. Towards a Danish Power System with 50% Wind-Smart Grids Activities in Denmark[C] Calgary:Power & Energy Society General Meeting, IEEE,2009.
    [24]Bechberger M, R. eiche D. Renewable energy policy in Germany:Pioneering And exemplary regulations[J]. Energy for Sustainable Development,2004,7(7):47-57.
    [25]李俊峰.2012中国风电发展报告[R].北京:中国环境科学出版社,2012.
    [26]P.E.Morthorst.. Renewable Energy and A Green Certificate Market[J].World Renewable Energy Congress Ⅵ,2000:673-676.
    [27]Peter Melbom. Trading Wind Power at the Nordic Power Pool[J]. Renewable Energy,1999,16(1-4):878-881.
    [28]孟卫东,吉进波,司林波.国外风电产业发展的经验及启示[J].燕山大学学报(哲学社会科学版),2009,10(04):108-113.
    [29]静铁岩,吕泉,郭琳,等.风电系统日间联合调峰运行策略[J].电力系统自动化,2011,35(42):97-104.
    [30]辛颂旭.水电与风电联合运行分析[J].中国电力,2013,46(08):85-89.
    [31]Lund H, Mathiesen B V. Energy System Analysis of 100% Renewable Energy Systems-The Case of Denmark in Years 2030 and 2050 [J]. Energy,2009, 34(5):524-531.
    [32]郑太一,冯利民,王绍然,等.一种计及电网安全约束的风电优化调度方法[J].电力系统自动化,2010,34(15):71-74.
    [33]冯利民,范国英,郑太一,等.吉林电网风电调度自动化系统设计[J].电力系统自动化,2011,35(11):39-43.
    [34]李雪明,行舟,陈振寰,等.大型集群风电有功智能控制系统设计[J].电力系统自动化,2010,34(17):59-63.
    [35]于大洋,宋曙光,张波,等.区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化,2011,35(14):24-29.
    [36]罗卓伟,胡泽春,宋永华,等.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
    [37]徐立中,杨光亚,许昭,等.电动汽车充电负荷对丹麦配电系统的影响[J].电力系统自动化,2011,35(14):18-23.
    [38]孙荣富,张涛,梁吉.电网接纳风电能力的评估及应用[J].电力系统自动化,2011,35(4):70-76.
    [39]吉林电网“十二五”智能化规划[R].长春:吉林省电力有限公司,2010.
    [40]张磊,单志栩.大型热网运行与管理[M].北京:北京水利水电出版社,2010.
    [41]庄孝,姜克.我国纯电动汽车发展路线图的研究[J].汽车工程,2012,34(2):91-97.
    [42]张文亮,武斌,李武峰,等.我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [43]赵俊华,文福拴,杨爱民,等.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10.
    [44]胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [45]Mathiesen B V, Lund H. Comparative Analyses of Seven Technologies to Facilitate the Integration of Fluctuating Renewable Energy Sources [J]. IET Renewable Power Generation,2009,3(2):190-204.
    [46]Aalborg University. Dissemination Strategy on Electricity Balancing for Large Scale Integration of Renewable Energy (DESIRE) [R/OL] http://www.project-desire.Org,2005-06-01.
    [47]The Danish Government. Energy Strategy 2050-from Coal, Oil and Gas to Green Energy [R/OL], http://www.ens.dk/en/info/publications/energy-strategy-2050-coal-oil-gas-green-energy,2011-02-07.
    [48]陈良亮,张浩,悦峰,等.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [49]“新能源和可再生能源开发利用的机制与政策”课题组.中外风电产业支持政策比较[R].2008.
    [50]赵勇强,袁婧婷.中国风电产业政策概览[J].风能,2011,(8):32-34.
    [51]张运洲,胡泊.“三北”地区风电开发、输送及消纳研究[J].中国电力,2012,45(09):1-6.
    [52]李明节.基于国际先进技术的风电调度研究与实践[J].中国电力,2012,45(11):1-6.
    [53]刘开俊.风电并网对电网的影响分析及解决方案[J].中国电力,2012,4(9):7-10.
    [54]蒋莉萍,王乾坤.风电发展政策的国外实践与借鉴[J].中国电力,2012,45(10):7-11.
    [55]王玫,赵晓丽.中国风电发展经济政策回顾与分析[J].中国能源,2011,33(10):10-14.
    [56]白建华,张钦,辛颂旭,等.风电利用水平评价关键指标研究[J].中国电力,2012,45(11):7-12.
    [57]李慧.我国风电政策研究[D].北京:华北电力大学,2011.
    [58]孙立桦.风电企业经济成本评价模型及应用研究[D].北京:华北电力大学,2010.
    [59]杨莉等.甘肃省风电发展现状、问题及对策探析[J].湖南财经高等专科学校学报,2009,25(122):109-112.
    [60]张娟,王云飞.我国风电产业发展的障碍及路径选择[J].特别报道,2010,10:56-57.
    [61]张伯勇,赵秀生.中国风电CDM项目经济性分析[J].可再生能源,2006,126(2):68-71.
    [62]刘岱,庞松岭.风电集中接入对电网影响分析[J].电力系统自动化学报,2011,23(3):157-161.
    [63]陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34.
    [64]张伯明,吴文传,郑太一,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2011,35(1):1-6.
    [65]田廓,曾鸣,鄢帆,等.考虑环保成本和风电接入影响的动态经济调度模型[J].电网技术,2011,35(6):55-59.
    [66]曾鸣,吕春泉,邱柳青.风电并网时基于需求侧响应的输电规划模型[J].电网技术,2011,35(4):129-134.
    [67]周明,冉瑞江,李庚银.风电并网系统可用输电能力的评估[J].中国电机工程学报,2010,30(22):14-21.
    [68]张宏宇,印永华.大规模风电接入后的系统调峰充裕性评估[J].中国电机工程学报,2011,31(22):26-31.
    [69]ALEXIADIS M C, DOKOPOULOS P S, SAHSAMANOGLOU H S. Wind Speed and Power Forecasting Based on Correlation Modalism [J]. IEEE Transactions on Energy Conversion,1999,14(3):836-842.
    [70]FEIJOO A E, CIDRAS J. Modeling of Wind Farms in the Load Flow Analysis [J]. IEEE Transactions on Power Systems,2002,15(1):110-115.
    [71]PERRU T, THIRINGER T. Modeling of Wind Turbines for Power System Studies[J]. IEEE Transactions on Power Systems,2002,14(4):1132-1139.
    [72]王小海,齐军,侯佑华.内蒙古电网大规模风电并网运行分析和发展思路[J].电力系统自动化,2011,35(22):90-97.
    [73]韩涛,卢继平,乔梁,等.大型并网风电场储能容量优化方案[J].电网技术,2010,34(1):169-173.
    [74]崔杨,姜珊,刘青山.东北地区风电跨区消纳及其经济性分析[J].东北大学学报,2013,33(4):89-94.
    [75]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自化,2010,34(6):32-36.
    [76]Ramteen S I. Evaluating the Impacts'of Real Time Pricing on the Cost and Value of Wind Generation [J]. IEEE Trans on Power Systems,2010,25 (2):741-748.
    [77]Dirk Westermann, Andreas John. Demand Matching Wind Power Generation With Wide-Area Measurement And Demand-Side Management [J]. IEEE Trans On Energy Conversion,2007,22 (1):145-149.
    [78]艾欣,刘晓.基于需求响应的风电消纳机会约束模型研究[J].华北电力大学学报,2011,38(3):18-20.
    [79]徐国丰,黄民翔,斐旭.华东大规模风电消纳模式研究[J].华东电力,2011,39(7):1045-1048.
    [80]程路,白建华,贾德香,等.国外风电并网特点及对我国的启示[J].中外能源,2011,16(6):30-34.
    [81]刘德伟,黄越辉.西班牙风电高比例消纳研究及启示[J].可再生能源,2011,33(3):25-28.
    [82]Danish Energy Agency (DEA). Energy Statistics 2010[J/OL].[2012-05-31] http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/ Annual%20Statistics/Documents/Energy%20Statistics%,2010-10.
    [83]国家能源局.国能新能[2012]195.号:国家能源局关于印发风电发展十二五规划的通知[EB/OL], http://www.nea.gov.cn/2012-06/01/c_131624884.Htm,2012-06-01
    [84]国家电力监管委员会.重点区域风电消纳监管报告[R].北京:国家电力监管委员会,2012.
    [85]国家能源局.关于做好2013年风电并网和消纳相关工作的通知[R].北京:国家能源局,2013.
    [86]Albadi H M, El-Sa E F. Overview of Wind Power Intermittency Impacts on Power Systems [J]. Electric Power Systems Research.2009,10(35):1-6.
    [87]Ackermann T. Wind Power in Power Systems [M]. Chi Chester:Wiley-Blackwell, 2005.
    [88]Truewind A. An Analysis of the Impacts of Large-Scale Wind Generation on the Ontario Electricity System[R]. New York:Albany,2005.
    [89]Smith J, Milligan M, Dcmeo E, et al. Utility Wind Integration and Operating Impact State of Threat [J]. IEEE Transactions on Power Systems.2007,22(3):900-908.
    [90]Ortega-Vazquez M'Kirschen D. Estimating the Spinning Reserve Requirements in Systems Significant Wind Power Generation Penetration [J]. Transactions on Power Systems.2009,24(1):114-124.
    [91]Bludszuweit H, Dominguez-Navarro J A, Lombard A. Statistical Analysis of Wind Power Forecast Error [J]. IEEE Transactions on Power Systems.2008,23(9): 983-991.
    [92]Gubne J. Probability and Random Processes for Electrical and Computer Engineers [M] Cambridge:Cambridge University Press,2006.
    [93]Lange M, Focken U. Physical Approach to Short-Term Wind Power Prediction [M]. Berlin:Springer,2006.
    [94]General Electric International Inc. Ontario Wind Integration Study-a Report Prepared for Ontario Power Authority Independent Electricity System Operator and the Canadian Wind Energy Association[R]. New York:Schenectady,2006.
    [95]Henrik L, Woodrow W. Management of Fluctuations in Wind Power and CHP Comparing Two Possible Danish Strategies[J], Energy,2002,27:471-483.
    [96]Thorbjorn V A. Integration of 50% wind power in a CHP-based power system [D], Denmark:Department of Electrical Engineering,2009.
    [97]吕泉,王伟,李卫东,等.基于调峰能力分析的电网弃风情况评估方法[J].电网技术,2013,37(7):1887-1894.
    [98]龙虹毓,马建伟,吴锴,等.含热电联产和风电机组的电网节能调度[J].电力自动化设备,2011,31(11):18-22.
    [99]龙虹毓,马建伟,张竞博,等.基于采暖需求侧管理的电网节能调度研究[J].电力需求侧管理,2011,13(1):14-27.
    [100]Danish Energy Agency. Technology data for energy plants[M]. Denmark: Emergent, dk,2010.
    [101]肖先勇.电力技术经济原理[M].北京:中国电力出版社,2010.
    [102]王汝武.电厂节能减排技术[M].北京:化学工业出版社,2008.
    [103]MATHIESEN B V, LUND H. Comparative Analyses of Seven Technologies to Facilitate the Integration of Fluctuating Renewable Energy Sources [J].IET Renewable Power Generation,2009,3(2):190-204.
    [104]孙奉仲,杨祥良,高明,等.热电联产技术与管理[M].北京:中国电力出版社,2008.
    [105]刘志真.热电联产[M].北京:中国电力出版社,2006.
    [106]杨天华,周俊虎,曹欣玉,等.热电比在热电厂节能分析中的应用[J].电站系统工程,2001,17(6):329-332.
    [107]樊泽国,杨曦,李金刚,等.热电联产机组热电比拟合函数的推导计算方法[J].内蒙古电力技术,2011,31(5):13-16.
    [108]FuY, Shahidehpour M. Fast SCUC for Large-Scale Power Systems [J]. IEEE Trans on Power Systems,2007,22(4):2144-2151.
    [109]王漪,薛永锋,邓楠.供热机组以热定电调峰范围的研究[J].中国电力,2010,34(3):86-90.
    [110]US Department of Energy. Benefits of Demand Response in Electricity and Recommendations for Achieving Them:a Report to the United States Congress Pursuant to Section 1252 of Energy Policy Act of 2006 [EB/OL]. http: //www.oe.energy.gov/DocumentsandMedia/congress_1252d. pdf,2007-05-21.
    [111]S. Covino. Demand Side Response 21st Century Style [A].2003 IEEE Power Engineering Society General Meeting[C]. IEEE,2003:2280-2284.
    [112]J. H. Doudna. Overview of California ISO Summer 2000 Demand Response Programs[A].Proceedings of IEEE Power Engineering Society Winter Meeting[C]. Piscataway (NJ),2000:228-233.
    [113]Lawrence D J.2001 Performance of New York ISO Demand Response Programs[A].2002 IEEE Power Engineering Society Winter Meeting[C]. New York(NY), USA,2002:995-998.
    [114]FER C. Assessment of Demand Response and Advanced Metering:2007 Staff Report [R], In. Federal Energy Regulatory Commission,2007.
    [115]张钦,王锡凡,王建学,等.电力市场下需求响应研究综述[J].电力系统自动化,2008,32(3):97-106.
    [116]S Bornstein, J Biishnell,C R Knittel. Market Power in Electricity Market:Beyond Concentration Measures [EB/OL]. http://www.ucei.berkeley.edu/PDF/pwpOSqr. Pdf,1999-02-01.
    [117]张宇波,罗先觉,邹晓松,等.发电市场势力研究与交易方式对发电市场势力影响的分析[J].中国电机工程学报,2004,24(4):18-23.
    [118]A Johnsen, S K Verma, C Wolfram. Zonal Pricing and Demand-Side Bidding in the Norwegian Electricity Market 1999[EB/OL], http://www.ucei. berkeley.edu/ ucei,1999-06-29.
    [119]D S Kirschen, G Strbac, P Cumperayot, e. al. Factoring the Elasticity of Demand in Electricity Prices[J]. IEEE Transactions on Power Systems,2000,15(2):612-617.
    [120]秦侦芳,岳顺民,余赔羲,等.零售端电力市场中的电量电价弹性矩阵[J].电力系统自动化,2004,28(05):16-19.
    [121]陈暗勇,付超.统一价格和PAB竞价的实验分析[J].电力系统自动化,2007,31(04):12-17.
    [122]曹世光,李卫东,柳焯,等.计及直接负荷控制的动态优化调度模型[J].中国电机工程学报,1998,18(3):160-162.
    [123]曾鸣.多类负荷最优调度的数学模型及其应用[J].中国电力,1997,30(9):30-32.
    [124]王建学,王锡凡,张显,等.电力市场和过渡期电力系统可中断负荷管理(二)——可中断负荷运营[J].电力自动化设备,2004,24(6):1-5.
    [125]吴集光,刘俊勇,牛怀平,等.调峰电价与可中断负荷联动机制研究[J].中国电力,2005,38(2):59-63.
    [126]于娜,于继来,王承民.高峰期网络受阻约束调度的可中断负荷优化模型[J].上海交通大学学报,2009,43(11):1818-1822.
    [127]刘昌,姚建刚,余虎,等.一种新型的电网输电阻塞管理模式[J].电网技术,2005,29(12):16-21.
    [128]李海英,李渝曾,张少华.可中断负荷参与输电阻塞管理的模型与算法[J].电力系统自动化,2006,30(10):17-21.
    [129]Newcomer Adam, Blumsacka Seth, Apt Jay, et al. Electricity Load and Carbon Dioxide Emissions:Effects of a Carbon Price in the Short Term [A]. Proceedings of the Annual Hawaii International Conference on System Sciences[C]. USA:Inst of Elec and Elec Eng Computer Society,2008:179.
    [130]张国新,王苗蓓.引入需求响应的电力市场运行研究及对我国电力市场改革的思考[J].电力自动化设备,2008,28(10):28-33.
    [131]王建学,王锡凡,别朝红.电力市场中的备用问题[J].电力系统自动化,2001,25(15):7-11.
    [132]孙听,童明光,赵庆波,等.二级备用辅助服务市场中可中断负荷管理模型研究[J].中国电机工程学报,2004,24(3):35-38.
    [133]吴集光,刘俊勇,牛怀平,等.电力市场环境下最优备用容量的确定[J].电力系统自动化,2005,29(15):10-13.
    [134]葛炬,张粒子.可中断负荷参与的备用市场帕累托优化模型[J].电力系统自动化,2006,30(09):34-37.
    [137]Meyer T, Luther J. On the Correlation of Electricity Spot Market Prices and Photovoltaic Electricity Generation [J]. Energy Conversion and Management,2004, 45(17):2639-2644.
    [136]李晓军,谭忠富,王绵斌,等.考虑用户参与下电网公司购买备用的优化模型[J].电力系统及其自动化学报,2007,19(2):9-14.
    [137]房芳.基于绿色经济的风火电联合运营规划及效益评价研究[D].华北电力大学,2013. [138]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(04):41-47.[139]黎孟岩.风电接入后电网联络线功率调控与调度对策研究[D].华北电力大学,2012.[140]艾欣,刘晓.基于需求响应的风电消纳机会约束模型研究[J].华北电力大学学报(自然科学版),2011,38(03):17-22+35.[141]陈海级,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化方法.电力系统自动化,2006,30(2):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700