用户名: 密码: 验证码:
基于水处理的壳聚糖树脂的制备、表征及功能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水产养殖过程中,仅有20%的饵料转化为动物蛋白,其余的残余饵料和排泄物进入水体,使氮、磷等营养物质含量过高,导致水体的富营养化。水体的富营养化会引发藻类大量繁殖,消耗水中的溶解氧,导致鱼贝类大量死亡;其中有害藻类如赤潮异弯藻,产生的毒素会通过食物链对人体造成伤害,进而引发食品安全问题。
     本文针对水体中存在的主要问题氮磷过量、藻类过量繁殖等问题,以壳聚糖为材料,制备出一系列壳聚糖树脂,为治理养殖水体水质提供新途径。
     1)壳聚糖树脂的孔洞少、脆性大、粒径小等缺点限制了其工业化应用。PEG 2000可以较好地增加壳聚糖树脂的孔洞;通过IPN网络共混技术,将壳聚糖与聚乙烯醇共混,制备了壳聚糖-聚乙烯醇共混树脂(CPR),该树脂具有较好的机械性能。CPR的最优制备条件为:壳聚糖与聚乙烯醇共混比为5:2,戊二醛用量为10 ml/100ml,PEG 2000添加量为1.2%。FTIR分析表明,壳聚糖与聚乙烯醇之间形成了典型的IPN网络结构。壳聚糖与其它吸附剂共混可以制备粒径较大的树脂微球。以硅藻土为例,当壳聚糖、聚乙烯醇、硅藻土三者质量比为5:2:2时,40目以上树脂的质量比重达到88.82%,粒径明显增大。
     2)水体中的氮主要来源于蛋白质,为提高壳聚糖树脂对蛋白质的吸附能力,采用Mannich反应和活化偶联反应,制备了壳聚糖固化单宁树脂(TICR)和壳聚糖-Ce4+固化单宁树脂(TCCR),并优化了制备条件。研究了时间、BSA初始浓度、pH、温度对TICR和TCCR吸附BSA的影响。吸附初始阶段,随着时间的延长,吸附量迅速增加,300 min时达到吸附平衡;随着BSA初始浓度的增加,平衡吸附量不断增加,当树脂吸附位点达到饱和时,增加浓度对平衡吸附量影响不大;pH为6.0时,吸附量最高;温度升高有利于吸附的进行,但影响不明显。
     TICR对BSA的吸附等温线符合Langmuir吸附模型,为优惠吸附。吸附是熵推动的自发吸热过程,升温有利于吸附。吸附属于二级动力学吸附,TICR对BSA的吸附过程由粒子内扩散和液膜扩散联合控制,以粒子内扩散为主。
     3)用金属配位分子印迹法制备了壳聚糖-La(Ⅲ) -印迹磷树脂(CLPR),CLPR平均粒径为粒径300μm。树脂的吸附效果与磷溶液的初始浓度、吸附时间、pH吸附温度有关:随着初始浓度的增加,吸附量不断增加,当吸附达到饱和时,增加浓度对吸附量无显著影响;pH对吸附量影响较大,在酸性条件下,吸附容量大,碱性条件下,吸附量大大降低;温度升高有利于吸附的进行,但对吸附量的影响不明显;吸附初始阶段,随着时间的延长,吸附量迅速增加,60 min后吸附达到平衡。
     CLPR对磷的吸附等温线符合Langmuir吸和Frendlich附模型,为优惠吸附。吸附属于二级动力学吸附,CLPR对磷的吸附过程由表面扩散和颗粒内扩散联合控制。用KOH再生后,连续使用7次,CLPR仍具有很好的吸附性能
     4)制备了壳聚糖-稀土-皂土复合树脂颗粒(CRB),研究其对有害藻赤潮异弯藻细胞的作用机理。结果显示,在低浓度(0.1、0.3 g/L)时,藻细胞可溶性糖含量随处理时间的延长而不断增加。原因是当藻细胞受到损害时,为维持细胞的正常生理功能,细胞出现应急反应,可溶性糖作为细胞的内容物含量增加。高浓度(0.5、0.7、0.9g/L)时,细胞受损严重,自身机能得不到恢复,导致可溶性糖含量降低。蛋白质含量的变化与可溶糖相似。在同一浓度下,赤潮异弯藻细胞中MDA含量随着处理时间的延长而不断增加,相同处理时间时,CRB浓度越高,藻细胞中MDA含量也越高。MDA含量与电导率呈正相关。
     对藻细胞抗氧化系统的研究发现:在低浓度处理初期,藻细胞具有较强的自我保护能力,体内出现应急反应,SOD、POD和CAT三者均表现为增加,其中POD起到主要抵御作用;但随着浓度和作用时间的增加,细胞自身的防御系统不能抵抗外来的侵害,藻细胞受损,功能下降,相应的酶活也下降,直至细胞死亡。
     CRB对有益藻海水小球藻同样具有抑杀作用,当浓度为0.1 g/L时,连续培养5d后,细胞数量仅为初始细胞数的16%。
In aquaculture, only 20% feed were used by aquaculture organisms. The residual feed and the excrement of aquaculture organisms remained in aquaculture water. So the aquaculture water is rich in nitrogen and phosphorus. The higher contents of nitrogen and phosphorus can cause water eutrophication and lead to the excessive growth of algae. Algae consume the dissolved oxygen in water, which can lead to the mass mortality of aquaculture organisms for hypoxia. Some toxic algae can secrete toxins which can transport through food chain to human body, and raise the food safety issues.
     Therefore, the objectives of this study are to treat the problems in aquaculture water, such as the higher contents of nitrogen and phosphorus, the excessive growth of algae. In this study, a series of chitosan resins are prepared to treat the aquaculture water.
     1) The shortcomings of chitosan resin, small pores, brittle and small particle size, limit its industrial applications. As pore-foaming agent, PEG 2000 can increase the amount of pores inside chitosan resin significantly. Chitosan-PVA blend resin (CPR), is prepared by IPN blend method. CPR has high mechanical strength. The best preparation condition is that the ratio of chitosan and PVA is 5:2, the dosage of glutaraldehyde is 10 ml/100 ml, and the dosage of PEG 2000 is 1.2%. FTIR indicates that it form the typical IPN structure between chitosan and PVA. In addition, chitosan can form larger particle size through blending with other adsorbents. Take diatomite for example, when the ratio of chitosan, PVA and diatomite is 5:2:2, the particle size increased obviously, the particle size larger than 40 mash account for 88.82% of the total chitosan resin.
     2) The nitrogen in aquaculture water is mainly originated from protein. To improve the adsorption ability of chitosan resin for protein, chitosan immobilized tannins resin (TICR) and chitosan-Ce~(4+) immobilized tannins resin (TCCR) were prepared by Mannich reaction and activation coupling reaction, respectively. The influences of several parameters (time, BSA initial concentration, pH and temperature) on the adsorption of TICR and TCCR were investigated. The results show that the adsorption capabilities increase with the increasing of time, and the adsorption equilibrium were achieved after 300 min. And the adsorption capabilities increase with the increasing of BSA initial concentration until the adsorption saturation achieve. The higher temperature is advantageous to the adsorption.
     The adsorption process of TICR for BSA is an endothermic process, and basically follows the Langmuir equation. The adsorption kinetics is satisfied with second-order equation. The adsorption mass transfer process is influenced and controlled by the liquid film diffusion and intraparticle diffusion. The process is mainly controlled by the intraparticle diffusion.
     3) Chitosan-La(Ⅲ)- phosphate ions imprinted resin (CLPR) were prepared by ion-imprinted method. The average particle size of CLPR is 300μm. The influences of time, temperature, initial concentration and pH were investigated. The results show that the adsorption capabilities increase with the increasing of time, and the adsorption equilibrium were achieved after 60 min. And the adsorption capabilities increase with the increasing of BSA initial concentration until the adsorption saturation achieve. And the influence of temperature is not obviously.
     The adsorption process of CLPR for phosphate follows the Langmuir and Frendlich equation. The adsorption kinetics is satisfied with second-order equation. The adsorption mass transfer process is influenced and controlled by the liquid film diffusion and intraparticle diffusion. Using KOH as desorption agent, CLPR can repeat adsorption–desorption cycle seven times.
     4) Chitosan-Re-bentonite resin (CRB) was prepared to inhibit Heterosigma akashiwo. With the treatment of low concentration of CRB (0.1、0.3 g/L), the amount of soluble carbohydrate increased with the increasing of treatment time. The reason is that when Heterosigma akashiwo cells are under stress, the cells show the emergency response to keep the normal cell physiological function. So the soluble carbohydrate contents increase. Under the high concentration of CRB stress, the cells are damaged. So the soluble carbohydrate contents decrease. The change trend of protein is similar to the soluble carbohydrate.
     With the same concentration of CRB, the MDA content of Heterosigma akashiwo cells increases with the increasing of treatment time. With the same treatment time, the MDA content increases with the increasing of CRB concentration. The effects of CRB on the antioxidant system of Heterosigma akashiwo cells are also investigated. The results show that in the initial stage SOD, POD and CAT activities are increased to protect cells, but with the increasing of treatment time and CRB concentration, the cells were damaged seriously, SOD, POD and CAT can not protect the cells.
     The effect of CRB on Chlorella Vulgaris is similar to Heterosigma akashiwo. With the treatment of 0.1 g/L CRB, the number of cells only remains 16%.
引文
[1]王亮梅.海水养殖水的净化处理.水处理技术, 2005,31(10): 80~85
    [2]宋志文,王玮,赵丙辰,等.海水养殖废水的生物处理技术研究进展.青岛理工大学学报, 2006,27(1): 13~17
    [3]张俊新,魏俊峰,何洁,等.用煤渣和沸石处理海水养殖废水的挂膜动力学研究.大连水产学院学报, 2008,23(003): 205~209
    [4]Li H., Miao J., Cui F., et al. Promotion of hexadecyltrimethyleamine bromide to the damage of Alexandrium sp. LC3 by cupric glutamate. Journal of Environmental Sciences, 2006,18(6): 1152~1156
    [5]董磊.羧甲基壳聚糖金属盐/壳聚糖包覆氧化亚铜的制备及其海洋防污性能研究:[博士学位论文].青岛:中国海洋大学,2007
    [6]李洪亮.壳聚糖载铜灭藻剂的研制及其效应研究:[硕士学位论文].重庆:西南大学,2007
    [7]张信连.杉木粉对塔玛亚历山大藻生长的抑制作用及其机理研究:[硕士学位论文].暨南大学,2005
    [8]龚良玉.东海典型赤潮藻生长的生物、化学抑制作用研究. [博士学位论文].青岛:中国海洋大学,2005
    [9]卢红霞,刘福胜,于世涛,等.阳离子聚丙烯酰胺的制备及其絮凝性能.应用化学, 2008,(1): 101~105
    [10]卢红霞,刘福胜,于世涛,等.阳离子聚丙烯酰胺絮凝剂的制备及其絮凝性能.化工环保, 2007,27(4): 374~378
    [11]陈亮,陈东辉.壳聚糖絮凝剂在水处理中的应用.工业水处理, 2000,20(9): 4~8
    [12]唐星华,陈孝娥,万诗贵.壳聚糖及其衍生物在水处理中的研究和应用进展.水处理技术, 2005,31(11): 12~15
    [13]赵丽,王萍.甲壳素和壳聚糖在水处理中的应用.化工环保, 2003,23(4): 213~215
    [14]詹亚力,郭绍辉,吕荣湖.绿色试剂-淀粉改性水处理剂的研究与应用.高分子材料科学与工程, 2003,19(5): 14~18
    [15]曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响.环境科学, 2004,25(5): 148~152
    [16]刘国锋,钟继承,张雷,等.有机改性粘土对铜绿微囊藻的絮凝去除.湖泊科学, 2009,21(3): 363~368
    [17]俞志明,宋秀贤,张波,等.粘土表面改性及对赤潮生物絮凝作用研究.科学通报, 1999, 44(3):308~311
    [18]孙晓霞.粘土矿物及无机絮凝剂对有害赤潮的治理研究. [博士学位论文].青岛:中国科学院海洋研究所,2001
    [19]吴萍,俞志明.吉米奇表面活性剂改性粘土治理赤潮研究.环境科学, 2007,28(1): 80~86
    [20]邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除.环境科学, 2004,25(6): 40~43
    [21]马国红,杜兴华.除藻技术应用现状及发展.渔业现代化, 2007,34(4): 25~27
    [22]李福东,张诚,邹景忠.细菌在浮游植物生长过程中的作用.海洋科学, 1996,6: 30~33
    [23]赵妍,于庆云,周斌,等.小珊瑚藻对赤潮异弯藻的克生效应及其对UV-B辐射增强的响应'.应用生态学报, 2009,20(10): 2558~2562
    [24]陈鸣钊,许京怀.应用浮动生物滤清器除藻研究.上海环境科学, 2000,19(8): 385~387
    [25]戴德渊,张学文,钟丽红,等.水产养殖的危害源分析.饲料研究, 2004,(9): 41~43
    [26]赵桂瑜.人工湿地除磷基质筛选及其吸附机理研究. [博士学位论文].上海:同济大学,2007
    [27]项学敏,卫志强,周集体,等.污水中磷酸根的吸附研究进展.广州环境科学, 2009, 24(4):5~9
    [28]Fytianos K., Voudrias E., Raikos N. Modeling of phosphorus removal from aqueous and wastewater samples using ferric iron. Environmental Pollution, 1998, 101(1): 123~130
    [29]李彬.稀土吸附剂微污染水深度除磷研究. [博士学位论文].昆明:昆明理工大学, 2005
    [30]相会强,智艳生.改性粉煤灰在抗生素废水除磷脱色中的应用.中国非金属矿工业导刊,2005,(3):44~47
    [31]彭进平,赖焕然,程高.改性硅藻土的制备、表征及其在富营养化水体除磷中的应用.生态环境学报, 2010, 19(8): 1936~1940
    [32]李晓东,孙铁珩,李海波,等.人工湿地除磷研究进展.生态学报.2007,27(3): 1226~1232
    [33]张秀芝,张雨山,王静,等.壳聚糖在海水混凝处理过程中的助凝作用研究.化学工业与工程,2010,27(1):38~42
    [34]杨晶,岳钦艳,李颖,等.改性活性炭纤维在含磷废水中的应用.山东大学报,2008,38(1):1~4
    [35] Ning P., Bart H.J., Li B., et al. Phosphate removal from wastewater by model-La (III) zeolite adsorbents. Journal of Environmental Sciences,2008, 20(6): 670~674
    [36]李彬,宁平,陈玉保,等.氧化镧改性沸石除磷脱氮研究.武汉理工大学学报, 2005, 27(9): 56~59
    [37]Sun X.B.,Han J.Z. Study on Modification and Phosphorus-Adsorption Capacity of Zeolite. Advanced Materials Research,2010,113: 757~760
    [38]冼昶华.壳聚糖对水中磷的吸附处理研究.化工时刊, 2008,22(3): 29~31
    [39]贾晓燕.用于废水处理的壳聚糖复合絮凝剂的制备与性能研究. [博士学位论文].重庆:重庆大学. 2004
    [40] Dai J., Yang H., Yan H., et al. Phosphate adsorption from aqueous solutions by disused adsorbents: Chitosan hydrogel beads after the removal of copper (II). Chemical Engineering Journal, 2010,166(3): 970~977
    [41]Yoshikawa T., Morita K. Removal of phosphorus by the solidification refining with Si-Al melts. Science and Technology of Advanced Materials,2003,4(6): 531~537
    [42]佟娟,陈银广,顾国维.鸟粪石除磷工艺研究进展.化工进展, 2007,26(4): 526~530
    [43]刘智晓,秦姝兰,杨蛟云,等.污水处理厂A/O工艺设计及除磷效能.中国给水排水, 2005,21(9):80~82
    [44]徐伟锋,顾国维,张芳.混合液回流比对A/A/O工艺反硝化除磷的影响.化工学报, 2007,58(10): 2619~2623
    [45]汪昆平,邓荣森,李伟民,等.氧化沟脱氮除磷强化途径.重庆建筑大学学报, 2006, 28(6): 79~83
    [46]董春娟,潘青业.生物脱氮除磷工艺的现状及发展趋势.太原大学学报, 2002,3(1): 41~45
    [47]刘洪波,李卓,缪强强,等.传统生物除磷脱氮工艺和反硝化除磷工艺对比.工业用水与废水, 2006, 37(6): 4~7
    [48]王培风,张冬梅.SBR工艺用于生活污水除磷脱氮的试验研究.西安科技学院学报, 2003,23(1): 30~33
    [49]张超,吕锡武.SBR工艺中反硝化除磷特性研究.环境科学, 2007,28(10): 2259~2263
    [50]金雪标,俞勇梅.生物法与化学生物法除磷比较.上海师范大学学报:自然科学版, 2002,31(1): 78~82
    [51]李捷,熊必永,张树德,等.亚硝酸盐对聚磷菌吸磷效果的影响.环境科学, 2006,27(4): 701~703
    [52]刘晖,周康群,刘开启,等.利用亚硝酸盐的反硝化除磷菌及影响因素.环境科学与技术, 2006,29(7): 14~16
    [53]豆俊峰,罗固源,季铁军.SUFR脱氮除磷系统中反硝化聚磷菌的性能研究.水处理技术, 2005,31(6): 28~31
    [54]逯多,卿人韦.藻类在不同磷浓度下除磷能力的研究.四川大学学报:自然科学版, 2002,39(6): 1119~1123
    [55]卜雪峰.贝藻处理海水养殖废水的研究.[硕士学位论文].中国海洋大学,2004
    [56]李凤亭,王亮,刘华,等.膜生物反应器在水处理中的应用与新发展.工业水处理, 2005,25(1): 10~13
    [57]黄境维,汤兵.膜生物反应器在废水脱氮除磷中的应用.化工环保, 2007,27(6): 532~535
    [58]付英,于水利.除污染型聚硅酸铁混凝剂除磷.清华大学学报(自然科学版), 2007,47(9): 1489~1494
    [59]尹雯.复合改性除磷剂的制备及用于富营养化水体的试验研究.[硕士学位论文]云南师范大学,2006
    [60]汪玉庭,刘玉红,张淑琴.甲壳素、壳聚糖的化学改性及其衍生物应用研究进展.功能高分子学报, 2002,15(1): 107~114
    [61] Kumar R., Majeti N. A review of chitin and chitosan applications. Reactive and functional polymers, 2000,46(1): 1~27
    [62]No H.K., Park N. Y., Lee S. H.,et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 2002,74(1-2): 65~72
    [63]Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release, 2004,100(1): 5~28
    [64]Varma A., Deshpande S., Kennedy J.. Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 2004.55(1): 77~93
    [65]Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 2004,38(1): 43~74
    [66]Demetgül C., Serin S. Synthesis and characterization of a new vic-dioxime derivative of chitosan and its transition metal complexes. Carbohydrate Polymers, 2008,72(3): 506~512
    [67]张海容,郭祀远,李琳,等.壳聚糖与五种过渡金属离子形成配合物的研究.光谱实验室, 2006,23(5): 1035~1038
    [68]丁纯梅,岳文瑾,苏云,等.壳聚糖与Cd (Ⅱ), Pb (Ⅱ), Ce (Ⅲ), Zr (Ⅳ)配合物的制备及光谱分析.光谱学与光谱分析, 2007,27(6): 1185~1187
    [69]Ngah W., Ghani S. A., Kamari A. Adsorption behaviour of Fe (II) and Fe (III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 2005,96(4): 443~450
    [70]Varma A., Deshpande S., Kennedy J. Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 2004,55(1): 77~93
    [71]凌沛学,荣晓花,张天民.壳聚糖及其衍生物的医药研究进展.食品与药品,2008,10(9): 69~71
    [72]王银松,李英霞,宋妮.壳聚糖及其衍生物在口服制剂中的应用.中国海洋杂志,2003,91(1): 51~54
    [73]周利民,王一平,黄群武,等.改性磁性壳聚糖微球对Cu~(2+)、Cd~(2+)和Ni~(2+)的吸附性能.物理化学学报,2007,23(12):1979~1984
    [74]胡慧玲,苏敏刚,徐江萍.改性壳聚糖的制备及对Cu~(2+)/Pb~(2+)的吸附研究离子交换与吸附.2007,23(3):274~281
    [75]Baimark Y., Srihanam P., Srisuwan Y.,et al. Preparation of porous silk fibroin microparticles by a water-in-oil emulsification‐diffusion method. Journal of Applied Polymer Science, 118(2): 1127~1133
    [76]董海丽,任晓燕.磁性壳聚糖微球对大豆乳清废水中蛋白质的吸附作用.食品科学, 2007,28(7): 205~207
    [77]Wang Y., Wang X., Luo G., et al. Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresource Technology, 2008, 99(9): 3881~3884
    [78]丁纯梅.壳聚糖对印染废水吸附性能的研究.环境与健康,2008, 25(8): 685-690
    [79]汪东风,于丽娜,苏琳,等.一种多功能稀土多糖微粒及其制备工艺.中国专利, CN200510042228.8, 2005
    [80]汪东风,罗轶,杜德红,等.铈配合物对有机磷农药的降解作用.中国海洋大学学报, 2004,34(004): 577~581
    [81]陈辉,张剑波,王维敬,等.壳聚糖固定化云芝漆酶的制备及特性. 2006,42(2): 254~258
    [82]张宾,张莉,于丽娜,等.固定化胰蛋白酶壳聚糖树脂的制备及其对大豆胰蛋白酶抑制剂的吸附性,食品工业科技,2007,28(7):65~68
    [83]李红,王炜军,徐凤彩.壳聚糖微球的制备及其固定化木瓜蛋白酶的研究.华南农业大学学报. 2000,21(2): 49~53
    [84]朱均均,江小华,勇强等.壳聚糖微球固定化β-葡萄糖苷酶的研究.林产化学与工业. 2007, 27(2): 16~20
    [85]汪多仁.壳聚糖的开发与应用进展.世界农药,2010,32(增刊):44~49
    [86]李梦耀,车红荣.膨润土的改性研究及在污水治理中的应用.长安大学学报(建筑与环境科学版),2004,21(2): 42~45
    [87]刘力章,新型膨润土-塑料原料粒状吸附剂的制备及其吸附性能试验研究. [硕士学位论文].广西大学,2005
    [88]Tian S., Jiang P., Ning P., et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Journal, 2009, 151(1-3): 141~148
    [89]苏玉红,王强.有机膨润土对重金属离子的吸附性能研究.新疆有色金属, 2002,25(3): 24~26
    [90]胡六江,李益民.有机膨润土负载纳米铁去除废水中硝基苯.环境科学学报, 2008,28(006):1107~1112
    [91]朱利中,陈宝梁.膨润土吸附材料在有机污染控制中的应用.化学进展,2009,21(2):420~429
    [92]邢少璟,杨维东,刘洁生,等.镧对塔玛亚历山大藻生长的影响.稀土, 2002, 3(5):43~45
    [93]胡勤海,管丽莉.稀土元素对小球藻叶绿素(a)含量及其亚显微结构的影响.中国环境科学, 1996,16(3): 204~207
    [94]Furst A. Hormetic effects in pharmacology: pharmacological inversions as prototypes for hormesis. Health physics, 1987, 52(5): 527~512
    [95]Hong F., Wang F., Meng X. The effect of cerium (III) on the chlorophyll formation in spinach,Biological trace element research, 2002, 89(3): 263~276
    [96]Gao Y.,Zeng F.,Yi A., et al. Research of the entry of rare earth elements Eu3+ and La3+ into plant cell. Biological trace element research, 2003, 91(3): 253~265
    [97]尹海川,林强,涂学炎,等.稀土改性Ag掺杂纳米TiO2对抑制蓝藻生长的研究.昆明理工大学学报:理工版, 2004,29(006): 1~4
    [98]丁文明,黄霞,张力平.水合氧化镧吸附除磷的试验研究.环境科学, 2003,24(5): 110~113
    [99]丁文明,黄霞.铁-铈水合氧化物吸附剂除磷的间歇试验研究.重庆环境科学, 2003,25(11): 65~67
    [100]林海,贾小宇,郭丽丽.沸石除磷复合吸附剂的制备及其性能研究.金属矿山,2010,(10): 154~158
    [101]卢少勇,张烨,王伟,等.镧改性、钠基和钙基膨润土净化污染河水中磷的效果.给水排水, 2009,35(z2):74~78
    [102]江喆,宁平,普红平,等.稀土吸附剂的制备及去除水中氨氮的研究.武汉理工大学学报, 2004,26(6):18~28
    [103]刘伟文,宁平黄,小凤,等.氧化铈改性沸石脱氮的研究.应用化工,2009,(8): 1115~1117
    [104]Wulff G., Sarhan A. The use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Engl, 1972, 11(4): 341~342
    [105]Vlatakis G., Andersson L., Müller R.,et al. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361: 645~647
    [106]Gupta R., Kumar A. Molecular imprinting in sol-gel matrix. Biotechnology advances, 2008, 26(6): 533~547
    [107]Turner N. W., Jeans C. W., Brain K. R., et al. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol Prog, 2006, 22: 1474~1489
    [108]Parmpi P., Kofinas P. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials, 2004, 25(10): 1969~1973
    [109]Panahi R., Vasheghani-Farahani E., Shojaosadati S.A. Separation of L-lysine from dilute aqueous solution using molecular imprinting technique. Biochemical Engineering Journal, 2007, 35(3): 352~356
    [110]Reddy P. S., Kobayashi T., Abe M.,et al. Molecular imprinted Nylon-6 as a recognition material of amino acids. European Polymer Journal, 2002, 38(3): 521~529
    [111]Guo T.Y., Xia Y. O.,Wang J., et al. Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins. Biomaterials, 2005, 26(28): 5737~5745
    [112]Kimhi O., H. Bianco-Peled. Study of the interactions between protein-imprinted hydrogels and their templates. langmuir, 2007,23(11): 6329~6335
    [113]Fu G., Yu H., Zhu J.,et al. Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: A re-examination. Biomaterials, 2008,29(13): 2138~2142
    [114]Chen R., Qin L., Jia M., et al. Novel surface-modified molecularly imprinted membrane prepared with iniferter for permselective separation of lysozyme. Journal of Membrane Science,2010,363(1-2):212~220
    [115]Tan X., Li B., Liew K., et al. Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion. Biosensors and Bioelectronics, 2010, 26(2):868~871
    [116]赵景婵,梁小云,郭治安,等.染料木素分子印迹聚合物的合成与性能研究.西北大学学报:自然科学版, 2007,37(4): 587~590
    [117]孟令芝,余兆菊.染料分子印迹聚硅氧烷的制备及性能研究(I).武汉大学学报:理学版, 2002,48(2): 147~150
    [118]Liu B., Wang D., Xu Y., et al. Adsorption properties of Cd (II)-imprinted chitosan resin. Journal of Materials Science, 2010, 469 (5): 1535~1541
    [119]Rao T.P., Kala R., Daniel S.Metal ion-imprinted polymers--Novel materials for selective recognition of inorganics. Analytica chimica acta, 2006,578(2): 105~116
    [120]Rao T.P., Daniel S., Gladis J. M. Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE). TrAC Trends in Analytical Chemistry, 2004,23(1): 28~35
    [121]王金成.苯基脲除草剂及染料木素分子印迹聚合物的制备、识别机理及应用研究.[博士学位论文].中国科学院研究生院(大连化学物理研究所),2006
    [122]韩永萍,林强,王昶.悬浮法制备豆甾醇分子印迹聚合物微球.应用化学,2008, 25(5): 556~559
    [123]刘晋湘,邓启良,张丽华.新型单分散血清白蛋白印迹微球的制备.中国科学B辑:化学, 2009,39(8): 747 ~ 751
    [124]欧俊杰,董靖,吴明火,等.分子印迹整体柱在高效液相色谱和电色谱手性分离中的应用.色谱,2007,25(3):129~134
    [125]许志锋,吴双,吴小辉,等.二茂铁甲酸分子印迹聚合物的制备、识别机理和结合特性.应用化学,2010,27(4):384~389
    [126] Lu C., Zhou W., Han B., et al. Surface-Imprinted Core?Shell Nanoparticles for Sorbent Assays. Anal. Chem., 2007, 79 (14):5457~5461
    [127]Zhang J., Jiang M., Zou L.,et al. Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples. Analytical and Bioanalytical Chemistry ,2006,385(4):780~786
    [128]李礼,胡树国,何锡文.应用分子印迹-固相萃取法提取中药活性成分非瑟酮.高等学校化学学报,2006,27(4):608~611
    [129] Puoci F., Garreffa C., Lemma F.,et al. Molecularly imprinted solid phase extraction for detection of sudan I in food matrices. Food Chemistry,2005,93(2):349~353
    [130]Djozan D., Ebrahimi B. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: Application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Analytica Chimica Acta,2008,616(2):152~159 [ 131 ] Cacho C., Schweitz L., Turiel E., et al. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. Journal of Chromatography A,2008,1179(2):216~223
    [132]胡廷平,张宴铭,郑立辉,等.硅胶表面苯并噻吩分子印迹聚合物的分子识别与吸附性能.燃料化学学报,38(6):722~729
    [133]He C., Zhang Z., He D. ,et al.Chemiluminescence determination of metformin based on hydroxyl radical reaction and molecularly imprinted polymer on-line enrichment. Analytical and Bioanalytical Chemistry,2007,385(1):128~133 [ 134 ]Xiong Y., Zhou H., Zhang Z.,et al.Flow-injection chemiluminescence sensor for determination of isoniazid in urine sample based on molecularly imprinted polymer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,66(2):341~346
    [135]王金成,徐青,薛兴亚,等.苯基脲类除草剂分子印迹聚合物的合成和识别性能研究.高等学校化学学报.2006,27(7):1227~1231
    [136]张静,贺浪冲,傅强.士的宁分子印迹整体柱的制备.分析化学研究报, 2005,33(1):113~116
    [137]李志伟,刘树彬,杨更亮,等.分子印迹整体柱快速分离烟酰胺及烟酸.色谱, 2005, 23(6): 622~625
    [138]江明,晋园,彭彦,等.单分散双酚A分子印迹微球的制备及其色谱性能.分析化学,2008, 8(8):1089~1092
    [139]成国祥,曾令刚.乳液模板法制备含孔材料.热固性树脂, 2001,16(1): 29~32
    [140]李振莹,段宏泉,黄艳萍,等.分子印迹液相色谱整体柱.化学进展,2008, 20(5):747~753
    [141]梁小云.分子印迹聚合物的合成及其应用研究.[硕士学位论文].西北大学, 2007
    [142]Zheng C., Liu Z., Gao R., et al.Recognition of oxytocin by capillary electrochromatography with monolithic tetrapeptide-imprinted polymer used as the stationary phase. Analytical and Bioanalytical Chemistry,2007,388(5-6):1137~1145
    [143]Qu J., Hu L., Hu L.,et al. Determination of phenolic compounds in river water with on-line coupling bisphenol A imprinted monolithic precolumn with high performance liquid chromatography. Talanta,2006,69(4):1001~1006
    [144]Fu Q., Sanbe H., Kagawa C.,et al. Uniformly Sized Molecularly Imprinted Polymer for (S)-Nilvadipine. Comparison of Chiral Recognition Ability with HPLC Chiral Stationary Phases Based on a Protein. Anal. Chem., 2003, 75 (2):191~198
    [145]孙瑞丰,于惠敏,罗晖,等.分子印迹聚合物的制备及孔结构研究.高分子学报, 2005,(2): 248~253
    [146]Glad M., Reinholdsson P., Mosbach K. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. Reactive Polymers, 1995, 25(1): 47~54
    [147]Yoshimatsua K., Reimhultc K., Krozer A., et al.Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Analytica Chimica Acta,2007,584(1):112~121
    [148]Henrik Kempe, Maria Kempe. Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromolecular rapid communications, 2004,25(1): 315~320 [ 149 ]Matsui J.,Fujiwara K.,Ugata S.,et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. Journal of Chromatography A, 2000, 889(1-2): 25~31
    [150]赖家平,卢春阳,何锡文.水溶液微悬浮聚合法制备酸性药物吲哚美辛分子印迹微球及其色谱表征.高等学校化学学报, 2003,24(7): 1175~1179
    [151]Ye L., Ramstrom O., Mosbach K. Molecularly imprinted polymeric adsorbents for byproduct removal. Analytical Chemistry, 1998, 70(14): 2789~2795
    [152]Zhang L.,Cheng G.,Fu C., et al. Adsorption and regeneration properties of tyrosine-imprinted polymeric beads. Adsorption Science & Technology, 2003, 21(8): 775~785
    [153]Hosoya K., Frechet J.M.J. Influence of the seed polymer on the chromatographic properties of size monodisperse polymeric separation media prepared by a multi-step swelling and polymerization method. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(8): 2129~2141
    [154]Tsukagoshi K., Yu K.Y., Maeda M., et al. Metal ion-selective adsorbent prepared by surface-imprinting polymerization. Bulletin of the Chemical Society of Japan, 1993, 66(1): 114~120 [155 ]成国祥,张立永,付聪.种子溶胀悬浮聚合法制备分子印迹聚合物微球.色谱, 2002,20(2):102~107
    [156]Bonini F, Piletsky S, Turner A., et al. Surface imprinted beads for the recognition of human serum albumin. Bio-sens Bioelectron, 2007, 22: 2322~2328
    [157]朱晓兰.久效磷分子印迹聚合物的研究与应用.[博士学位论文].安徽:中国科学技术大学,2006
    [158]Sellergren B., Lepistoe M., Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society, 1988, 110(17): 5853~5860
    [159]武利庆.分子印迹聚合物亲和性和选择性的理论预测与调控. [博士学位论文].北京:北京大学,2005
    [160]谭天伟,贺小进,杜卫霞.壳聚糖金属离子印迹树脂的吸附模型.化工学报, 2001,52(2):176~178
    [161]马豫峰,蔡继业.壳聚糖与牛血清白蛋白分子印迹聚合物的制备与表征.高分子材料科学与工程, 2007, 23(2): 235~237
    [162]汪东风,于丽娜,苏琳,等.壳聚糖铈配合物微粒在苹果汁生产的应用研究.稀土, 2006,27(1): 11~14
    [163]李海燕,汪东风,Siaka D.,等.球状壳聚糖树脂对茶多酚的吸附热力学和动力学研究.茶叶科学,2009,29(4): 313~318
    [164]刘炳杰,汪东风,孙继鹏,等.交联壳聚糖树脂对扇贝裙边酶解液中镉的脱除研究.安徽农业大学学报, 2010(1): 11~14
    [165]曲荣君.新型螯合树脂的设计、合成及性能研究. [博士学位论文].天津:天津大学,2003 [ 166 ]李沁华,孙娜.多孔壳聚糖膜材料的制备及性能研究.生物医学工程学杂志, 1999,16(Z1):113~114
    [167]常海涛.壳聚糖/聚乙烯醇复合药物缓释微球制备工艺的研究.精细与专用化学品, 2008,16(14): 21~23
    [168]Kumar U., Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technology, 2006, 97(1): 104~109
    [169]张力平.多酚型大孔吸附树脂的制备及吸附机理的研究.[博士论文].北京林业大学,2005
    [170]王玉恒,寇正福,江邦和,等.大孔球形纤维素载体固定化单宁的制备及其对蛋白质的吸附性能.离子交换与吸附, 2007,23(4): 360~367 [ 171 ]Huang R., Chen G., Sun M., et al. Preparation and characteristics of quaternized chitosan/poly (acrylonitrile) composite nanofiltration membrane from epichlorohydrin cross-linking. Carbohydrate Polymers, 2007, 70(3): 318~323
    [172]Shi Q.H.,Tian Y.,Dong X.Y., et al. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption. Biochemical Engineering Journal, 2003,16(3): 317~322
    [173]Patwardhan A.V., Ataai M.M. Site accessibility and the pH dependence of the saturation capacity of a highly cross-linked matrix immobilized metal affinity chromatography of bovine serum albumin on chelating superpose. Journal of Chromatography A, 1997, 767(1-2): 11~23
    [174]谭帼馨,崔英德,肖楚民.牛血清白蛋白在NVP/HEMA无规共聚物水凝胶上的吸附研究.离子交换与吸附,2004,20(3):199~204
    [175]Donia A.M., Atia A.A., Elwakeel K.Z. Selective separation of mercury (II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde. Journal of Hazardous Materials, 2008, 151(2-3): 372~379
    [176]Tunali S., ?zcan A. S., ?zcan A., et al. Kinetics and equilibrium studies for the adsorption of Acid Red 57 from aqueous solutions onto calcined-alunite. Journal of Hazardous Materials, 2006, 135(1-3): 141~148
    [177]Ngah W.S.W., Ghani S. A., Kamari A. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 2005, 96(4): 443~450
    [178]Guo T., Xia Y., Hao G., et al. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials, 2004, 25(27): 5905~5912
    [179] Ahmad A., Chan C.Y., Abd Shukor S.R., et al. Adsorption kinetics and thermodynamics of [beta]-carotene on silica-based adsorbent. Chemical Engineering Journal, 2009, 148(2-3): 378~384
    [180]龙超,李爱民,胡大波.应用Polanyi吸附势理论描述超高交联树脂对多环芳烃的吸附.中国科学B辑:化学, 2008, 38(1):72~78
    [181]王重,史作清.酚醛型吸附树脂吸附VB12的热力学研究.功能高分子学报, 2003,16(1): 1~5
    [182]?zacar M., Sengil I.A. Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of Hazardous Materials, 2003, 98(1-3): 211~224
    [183]Basso M., Cerrella E., Cukierman A. Activated carbons developed from a rapidly renewable biosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous solutions. Ind. Eng. Chem. Res, 2002, 41(2): 18~189 [ 184 ]Ramesh A., Hasegawa H., Sugimoto W. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 2008,99: 3801~3809
    [185]Popuri S.R.,Vijaya Y.,Boddu V.M., et al. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 2009,100(1): 194~199
    [186]Sankararamakrishnan N., Dixit A., Iyengar L.,et al. Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresource Technology, 2006, 97(18): 2377~2382
    [187]马红梅,朱志良,张荣华,等.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究.离子交换与吸附, 2006,22(6): 519~526
    [188]李海燕,汪东风,于丽娜,等.球状壳聚糖树脂对柠檬酸的吸附行为.过程工程学报, 2009, 9(1): 12~17
    [189]张晓华.微波消解法用于工业循环水总磷测定的研究.化工科技, 2009,17(6): 55~57
    [190]裴广玲.金属离子印迹聚合物微球研究.[博士学位论文].天津大学,2003
    [191]Ramesh A., Hasegawa H., Sugimoto W., et al. Adsorption of gold (III), platinum (IV) andpalladium (II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 2008, 99(9): 3801~3809
    [192]Wang L., Zhang J., Zhao R., et al. Adsorption of Pb (II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresource Technology, 101(15): 5808~5814
    [193]宋娴丽,孙耀,张前前,等.赤潮异弯藻对牙鲆早期发育的影响.海洋水产研究, 2005, 26(2): 26~30
    [194]Yu Z.M., Zou J.Z., Ma X.N. Application of clays to removal of red tide organisms II. Coagulation of different species of red tide organisms with montmorillonite and effect of clay pretreatment. Chinese Journal of Oceanology and Limnology, 1994, 12: 316~324
    [195]Calvelo S., Liberatore S. Applicability of in situ or transplanted lichens for assessment of atmospheric pollution in Patagonia, Argentina. Journal of atmospheric chemistry, 2004, 49(1): 199~210 [ 196 ]邹华,潘纲,阮文权.壳聚糖改性粘土絮凝除藻的机理探讨.环境科学与技术,2007,30(5):8~9
    [197]吴春笃,侯纯莉,杨峰,等.海泡石/膨润土改性壳聚糖对景观水絮凝效果的研究.生态环境, 2008, 17(1): 50~54
    [198]Zong Z., Kimuria Y., Yamane H. Characterization of chemical and solid state structures of acylated chitosans. Polymer, 2000, 41(3): 899~906
    [199]于丽娜,汪东风,胡维胜,等.球状壳聚糖树脂的制备及其吸附热力学研究.中国海洋大学学报, 2008,38(1): 27~32
    [200]于丽娜.壳聚糖树脂的制备、表征及应用研究. [博士学位论文].中国海洋大学,2008
    [201]焉翠蔚,肖宜华,朱岩松,等.多效唑对2种海洋微藻生长和抗氧化酶活性的影响.中国海洋大学学报, 2008,38(2): 291~296 [ 202 ]张庭廷,郑春艳,何梅,等.亚油酸对铜绿微囊藻的抑制机理.中国环境科学, 2009,(4):419~424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700