用户名: 密码: 验证码:
生物可吸收聚酯—聚碳酸酯共聚物的合成及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先制备了丙交酯、乙交酯、三亚甲基碳酸酯等环状单体,然后采用乳酸锌或辛酸亚锡作为催化剂制备了一系列均聚物如聚乳酸(PLLA或PDLLA)、聚羟基乙酸(PGA)、聚三亚甲基碳酸酯(PTMC)、聚己内酯(PCL),和共聚物如聚(乳酸-co-三亚甲基碳酸酯)(PTLLA和PTDLA)、聚(三亚甲基碳酸酯-co-羟基乙酸)(PTGA)、聚(三亚甲基碳酸酯-co-己内酯)(PTCA)、聚乙二醇-b-聚(乳酸-co-三亚甲基碳酸酯)(PTDLA-b-PEG),然后采用DSC、NMR、SEC、ESEM、DMA、Instron拉伸仪和Kr(u|¨)ss表面张力仪等研究了它们的热性能、水降解和酶降解性能、力学性能和形变记忆行为,并通过溶血实验、血小板吸附、MTT法和细胞培养等方法评价了它们的生物相容性。
     乳酸锌合成的PTDLA共聚物为无定形态,玻璃化温度(Tg)随着LA含量的增加而增加。它们不仅能够被水解,而且能够被蛋白酶K所降解,在水解53周后失重率均达到了50%左右,而在酶降解过程中,PTDLA的失重率随着LA含量的增加而逐渐增加,LA单元含量为82%的共聚物PTDLA在酶降解264小时后,失重率达到了91%。同时,共聚物的分子量在水解的初始阶段即迅速降低。LA含量越高,分子量降低越快;在降解后期,分子量下降速度减慢,且趋于一致。酶降解的初始阶段,PTDLA共聚物的分子量也有所降低,而后基本不变。酶降解过程中,共聚物组成基本保持不变;而在水解过程中,LA含量有所降低,这是由于LA单元优先降解所致。LA含量较高的共聚物在酶降解过程中则出现了非均相的孔洞结构,并且随着降解时间的延长,聚合物表面被逐渐溶蚀,孔洞也逐渐深入到聚合物本体。降解过程的研究表明,共聚物的水解是本体溶蚀的过程,而酶解是表面逐步溶蚀的过程。对于相同LA和TMC单元含量的PTDLA共聚物则具有高弹性和形变回复性能,在50%应变的初次拉伸循环后,其残余应变仅为4%,拉伸循环20次后其仍然具有80%以上的应变,形状回复比为83%,起始回复温度在其玻璃化转变湍度Tg附近。Tg充当形变记忆的转变温度,在Tg之上获得临时形状,然后在Tg之下形状被固定,再次在人体温度附近其能够回复到固有形状。
     PTMC均聚物基本不能被水解,也不能够被蛋白酶K降解,其失重率、数均分子量以及表面形貌基本保持不变。但它能够被脂肪酶CA和HP降解,其中在脂肪酶CA中降解最快,在216h后其失重率达到98%,基本上是完全降解的,而在脂肪酶HP中降解较慢,在216h后失重率为22%。分子量均显著降低,分子量分布也变宽,并且在降解过程中出现双峰分布现象。但是,PTGA共聚物在两种脂肪酶中的降解则与PTMC均聚物显著不同,脂肪酶CA几乎不能降解PTGA,216h后失重仅5.8%,分子量及其分布也基本不变。而在脂肪酶HP中降解明显,216h后失重达到了58%,分子量也显著降低,分子量分布显著变宽,并且也出现分子量分布的双峰现象,但共聚物组成却保持不变。ESEM和接触角测试表明,酶首先吸附于聚合物表面,然后使聚合物表面溶蚀而发生降解。
     采用辛酸亚锡催化合成的PTDLA-b-PEG嵌段共聚物,随着EG含量的增加,其玻璃化温度降低,而EG含量较高共聚物能够结晶PTDLA-b-PEG嵌段共聚物的蛋白酶K降解依据不同的LA和EG含量而不同,随着LA含量的降低和EG含量的增加,共聚物的接触角降低、亲水性增强,共聚物变得不容易被降解。Ptd12e12k在200h后的失重率仅为5.6%,分子量及其分布和ESEM观察表明,其在150h的酶降解过程中仅出现了表面低分子量齐聚物的溶蚀。而PLA含量较高的聚合物能够在不同降解时间内达到20%以上,分子量降低但共聚物组成却不变,降解由聚合物表面的溶蚀开始。
     PLLA、PTMC、PCL、PTLLA、PTDLA、PTCA聚合物的溶血率都很小、其中又以PCL和PTCA的溶血率最低,分别为1.5%和1.4%。PLLA、PCL、PTLLA、PTDLA的血小板激活程度比较高,PTMC次之,PTCA的血小板粘附最少、变形最小、血小板激活程度最低,具有很强的抗血小板黏附能力。同时,这些聚合物对ECV304细胞的毒性很低,它能在所有聚合物表面黏附、生长和繁殖,并在5天之内形成一个细胞层,聚合物表面上的细胞形态没有明显变化,但是细胞繁殖速度略低于对照组,而其中又以PTMC和PTDLA为最低,分别为对照组的68%和71%。
     因此,聚酯-聚碳酸酯共聚物,尤其是DLLA和TMC含量相当的聚(乳酸-co-三亚甲基碳酸酯)共聚物,在组织工程支架、体内支架涂层等智能生物材料方面具有良好的应用前景。
Cyclic monomers such as lactide,glycolide and trimethylene carbonate were prepared by polycondensation followed by cyclization.A series of homopolymers such as poly(lactide)(PLLA or PDLLA),poly(glycolide)(PGA),poly(trimethylene carbonate)(PTMC),poly(ε-caprolactone)(PCL) and copolymers such as poly(trimethylene carbonate-co-lactide)(PTLLA and PTDLA),poly(trimethylene carbonate-co-glycolide)(PTGA),poly(trimethylene carbonate-co-caprolactone) (PTCA),poly(ethylene glycol)-b-poly(trimethylene carbonate-co-lactide)(PTDLA-b-PEG) were then synthesized by ring opening polymerization(ROP) of appropriate monomer feeds using zinc lactate or stannous octoate as catalyst.The thermal properties,hydrolytic degradation,enzymatic degradation,mechanical properties and shape memory behavior were investigated by using DSC,NMR,SEC,ESEM,DMA and Instron tensile instrument.The biocompatibility was evaluated from haemolysis experiments,platelet adhesion,MTT assay and cell culture.
     PTDLA copolymers are all amorphous.The glass transition temperature(Tg) increases with increasing LA content.PTDLA copolymers can be degraded not only by pure hydrolysis,but also by proteinase K.The mass loss reaches about 50%after 53 weeks' hydrolytic degradation,while during enzymatic degradation,the mass loss increases with increasing LA content.In particular,PTDLA copolymer containing 82mol.%LA units lost 91%of its initial mass after 264 h in the presence of proteinase K.The molecular weight of PTDLA copolymers rapidly decreases in the initial stage of hydrolytic degradation,followed by slower decrease.The LA content also decreases during hydrolytic degradation.In the case of enzymatic degradation,the molecular weight decreases at the initial stage,and then remains unchanged.The composition also remains unchanged during enzymatic degradation.Heterogeneous cavities are observed on the surface of PTDLA copolymers with high LA contents (>50%),and gradually reach the polymer bulk.It can be concluded that the PTDLA copolymers are degraded through surface erosion during enzymatic degradation.
     The PTDLA copolymer composed of the same TMC and LA contents is highly elastic.The residual strain is approximately 4%after the first cycle at a strain of 50%, and ca.80%recovery even after 20 cycles.The shape recovery ratio is up to 83%. Moreover,the initial recovery temperature is close to the glass transition temperature (Tg).Tg acts as the switch temperature between temporary shape and permanent shape.The temporary shape of the copolymer is formed above the T_g,and fixed below the T_g.The permanent shape can be recovered above the Tg(near body temperature).
     PTMC homopolymer cannot be degraded by pure hydrolysis,or by proteinase K. The mass,molecular weight and surface morphology of PTMC remain pratically unchanged during degradation.In contrast,PTMC can be degraded by lipase CA and lipase HP.Lipase CA is most efficient.The mass loss of PTMC reaches 98%after 216h in lipase CA solution,and 22%lipase HP solution.During enzymatic degradation,the molecular weight significantly decreases and the molecular weight distribution becomes larger.Bimodal molecular weight distributions are observed. The enzymatic degradation of PTGA copolymer with 10%GA units is significantly different from that of PTMC homopolymer.PTGA cannot be degraded by lipase CA. Only 5.8%of mass loss is detetced after 216h,and the molecular weight and its distribution keep constant.In the lipase HP solution,however,the mass loss of PTGA reaches 58%after 216h.Meanwhile,the molecular weight decreases and its distribution becomes broader.Bimodal molecular weight distributions are also obtained.The composition of the PTGA copolymer remains constant.ESEM and contact angle measurements show that the polymers are homogeneously eroded from the surface during enzymatic degradation.
     PTDLA-b-PEG triblock copolymers were synthesized using stannous octoate as catalyst.The glass transition temperature of the copolymers decrease with increasing EG content,while copolymers with high EG contents are crystallizable.During degradation by proteinase K,copolymers with higher EG content or lower LA content degrade at slower rate.In fact,proteinae K can only degrade the PLA component.On the other hand,high EG content leads to increase of the hydrophilicity of the polymer surface as shown by contact angle measurements.During degradation,the molecular weight slightly decreases and the composition remains constant.Changes in surface morphology are observed,in agreement with surface erosion process.
     The haemolysis rate of the PLLA,PTMC,PCL,PTLLA,PTDLA and PTCA polymers is very small,especially that of PCL and PTCA,respectively 1.5%and 1.4%.Adhesion and activation of platelets are observed on the surface of PLLA,PCL, PTLLA,PTDLA films,while less platelets and lower activation are found on PTMC. The most interesting results were obtained with PTCA which exhibited the lowest degree of activation with few adhered platelets,in agreement with its outstanding anti-coagulant properties.Both indirect and direct cytocompatibility studies were performed on the polymers.The relative growth ratio data obtained from the liquid extracts during the 6-day cell culture period indicate that all the polymers present very low cytotoxicity.Microscopic observations demonstrate adhesion,spreading and proliferation of human umbilical vein endothelial cells ECV304 cells.
     Therefore,copolyester-carbonates,and especially PTDLA,are promising candidate for applications in minimally invasive surgery such as bioresorbable stents or stent coating.
引文
[1]Hench LL,Polak JM.Third generation biomedical materials.Science 2002,295,1014-7.
    [2]Anderson DG,Burdick JA,Langer R.Smart biomaterials.Science 2004,305,1923-4.
    [3]Li S,Vert M.Biodegradable polymers:polyesters.In Encyclopedia of Controlled Drug DeliVery;Mathiowitz,E.,Ed.;John Wiley & Sons:New York,1999;pp 71-93.
    [4]Middleton JC,Tipton AJ.Synthetic biodegradable polymers as medical devices.Med Plastics Biomaterials magazine 1998,16-32.
    [5]Naira LS,Laurencin CT.Biodegradable polymers as biomaterials.Prog Polym Sci 2007,32,762-98.
    [6]Jagur-Grodzinski J.Polymers for tissue engineering,medical devices,and regenerative medicine.Concise general review of recent studies.Polym Adv Technol2006,17,395-418
    [7]Lloyd AW.Interfacial bioengineering to enhance surface.biocompatibility.Med Device Technol2002,13,18-21.
    [8]Pego AP,Van luyn MJA,Brouwer LA,Van Wachem PB,Poot AA,Grijpma DW,Feijen J.In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone:Degradation and tissue response.J Biomed Mater Res 2003,67A,1044-54.
    [9]Pego AP,Poot AA,Grijpma DW,Feijen J.Biodegradable etastomeric scaffolds for soft tissue engineering.J Controlled Release 2003,87,69-79.
    [10]Andronova N,Albetsson A-C.Resilient bioresorbable copolymers based on trimethylene carbonate,L-Lactide,and 1,5-1Dioxepan-2-one.Biomacromolecules 2006,7,1489-95.
    [11]Zhu KJ,Zhang JX,Wang C,Yasuda H,Ichimaru A,Yamamoto K.Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly(L-lactide) and its carbonate copolymers.J Microencapsulation 2003,20,731-43.
    [12]Asplund B,Sperens J,Mathisen T,Hilborn J.Effects of hydrolysis on a new biodegradable co-polymer.J Biomat Sci Polym Ed 2006,17,615-30.
    [13]Kricheldorf HR.Syntheses and application of polylactides.Chemospere 2001,43,49-54.
    [14]Krichelodorf HR,Weegen-Schulz B.Polymers of carbonic acid.ⅪⅤ.high molecular weight poly(trimethylene carbonate) by ring-opening polymerization with butylin chlorides as initiators.J Polym Sci Polym Chem 1995,33,2193-201.
    [15](a) Kricheldorf HR,Dunsing R.Polylactones 8.Mechanism of the cationic polymerization of L,L-dilactide.Makromol Chem 1986,187,1611-25.
    (b) Kricheldorf HR,Kreiser I.Polylactones 11:cationic copolymerization ofglycolide with 1,1-dilactide.Makromol Chem 1987,188,1861-73.
    [16](a) Shibasaki Y,Sanda F,Sanada H,Yokoi M,Endo T.Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate.Macromolecules 2000,33,4316-20.
    (b) Lou X,Detrembleur C,Jerome R.Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer.Macromolecules 2002,35,1190.
    [17]Penczek S.Cationic ring-opening polymerization(CROP) major mechanistic phenomena.J Polym Sci Polym Chem 2000,38,1919-33.
    [18]Matsuo J,Aoki K,Sanda F,Endo T.Substituent effect on the anionic equilibrium polymerization of six-membered cyclic carbonates.Macromolecules 1998,31,4432-4438.
    [19]Matsuo J,Sanda F,Endo T,A novel observation in polymerization behavior of cyclic carbonate.Macromol Chem Phys 1998,199,2489-94.
    [20]Jhurry D,Spassky N,Pensec S,Belleney J.Anionic polymerization of D,L-lactide initiated by lithium diisopropylamide.Polymer 2001,42,9651-6.
    [21]Kricheldorf HR,Kreiser-Saunders I.Polylactones 19.Anionic polymerization of L-lactide in solution.Makromol Chem 1990,191,1057-66.
    [22](a) Kricheldorf,H.R.;Boettcher,C.Polylactones 26.Lithium alkoxide-initiated polymerizations ofL-lactide.Makromol Chem 1993,194,1665-9.
    (b) Kricheldorf,H.R.;Boettcher,C.Polylactones 27.Anionic polymerization of L-lactide.Variation of end groups and synthesis of block copolymers with poly(ethylene oxide).Makromol Chem Macromol Symp 1993,73,47-64.
    [23]Jedlinski Z,Walach W,Kurcok P,Adamus G.Polymerization of lactones 12.Polymerization of L-dilactide and L,D-dilactide in the presence of potassium methoxide.Makromol Chem 1991,192,2051-7.
    [24]Kasperczyk JE.Microstructure analysis of poly(lactic acid) obtained by lithium tertbutoxide as initiator.Macromolecules 1995,28,3937-9.
    [25]Bero M,Dobrzynski P,Kasperczyk J.Synthesis of disyndiotactic polylactide.J Polym Sci Part A Polym Chem 1999,37,4038-42.
    [26]Kricheldorf HR,Lee S R,Weegen-Schulz B.Polymers of carbonic acid 12.Spontaneous and hematin-initiated polymerizations oftrimethylene carbonate and neopentylene carbonate.Macromol Chem Phys 1996,197,1043-54.
    [27]Kuhling S,Keul H,Hocker H.Copolymerization of 2,2-dimethyltrimethylene carbonate with 2-allyloxymethyl-2-ethyltrimethylene carbonate and with caprolactone using initiators on the basis of Li,Al,Zn and Sn.Makromol Chem 1992,193,1207-17.
    [28]Carter KR,Richter R,KricheldorfHR,Hedride JL.Synthesis of amine-terminated aliphatic polycarbonates via Al(Et)Z(OR)-initiated polymerization.Macromolecules 1997,30,6074-6.
    [29]Weilandt KD,Keul H,Hocker H.Synthesis and ring-opening polymerization of 2-acetoxymethyl-2-allkyltrimethylene carbonate and of 2-methoxycarbonyl-2-Methyltrimethylene Carbonate;a comparion with the polymerization of2,2-dimethyl trimethylene carbonate.Macromol Chem Phys 1996,197,3851-68.
    [30]Dechy-Cabaret O,Martin-Vaca B,Bourissou D.Controlled ring-opening polymerization of lactide and glycolide.Chem Rev 2004,104,6147-76.
    [31]Kowalski A,Duda A,Penczek S.Polymerization of L,L-Lactide initiated by aluminum isopropoxide trimer or tetramer,Macromolecules 1998,31,2114-22.
    [32](a) Chabot F,Vert M,Chapelle S,Granger P.Configurational structures of lactic acid stereocopolymers as determined by ~(13)C-(~1H) NMR.Polymer 1983,24,53-9.
    (b) Schwach G,Coudane J,Engel R,Vert M.Ring opening polymerization of D,L-lactide in the presence of zinc metal and zinc lactate.Polym Int 1998,46,177-82.
    [33](a) Kricheldorf HR,Damrau DO.Polylactones 37.Polymerizations of L-lactide initiated with Zn(Ⅱ) L-lactate and other resorbable Zn salts.Macromol Chem Phys 1997,198,1753-66.
    (b)Kreiser-Saunders I,Kricheldorf HR.Polylactones 39.Zn lactate-catalyzed copolymerization of L-lactide with glycolide or ε-caprolactone.Macromol Chem Phys 1998,199,1081-7.
    [34]Kricheldorf HR,Kreiser-Saunders I,Stricker A.Polylactones 48.SnOct_2-initiated polymerizations of Lactide:a mechanistic study.Macromolecules 2000,33,702-9.
    [35]Kowalski A,Duda A,Penczek S.Kinetics and mechanism of cyclic esters polymerization initiated with tin(Ⅱ) octoate.3.Polymerization of L,L-Dilactide.Macromolecules 2000,33,7359-70.
    [36](a) Nijenhuis AJ,Grijpma DW,Pennings AJ.Lewis acid catalyzed polymerization of L-lactide kinetics and mechanism of the bulk polymerization.Macromolecules 1992,25,6419-24.
    (b) Du YJ,Lemstra PJ,Nijenhuis AJ,van Aert HAM,Bastiaansen C.ABA type copolymers of lactide with poly(ethylene glycol),kinetic,mechanistic,and model studies.Macromolecules 1995,28,2124-32.
    (c) In't Veld PJA,Velner EM,van de Witte P,Hamhuis J,Dijkstra PJ,Feijen J.Melt block copolymerization of ε-caprolactone and L-lactide.J Polym Sci Part A Polym Chem 1997,35,219-26.
    (d) Schwach G,Coudane J,Engel R,Vert M.More about the polymerization of lactides in the presence of stannous octoate.J Polym Sci Part A Polym Chem 1997,35,3431.
    [37](a) Duda A,Penczek S,Kowalski A,Libiszowski J.Polymerizations of ε-caprolactone and L,L-dilactide initiated with stannous octoate and stannous butoxide-a comparison.Macromol Symp 2000,153,41-53.
    (b) Kowalski A,Libiszowski J,Duda A,Penczek S.Polymerization of L,L-dilactide initiated by tin(II) butoxide. Macromolecules 2000, 33,1964-71.
    
    [38] Kricheldorf HR, Kreiser-Saunders I, Boettcher C. Polylactones 31. Sn(II) octoate-initiated polymerization of L-lactide: a mechanistic study. Polymer 1995, 36,1253-9.
    
    [39] (a) Zhang X, MacDonald DA, Goosen MFA, McCauley KB. Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxy and carboxylic acid substances. J Polym Sci Part A Polym Chem 1994,32,2965-70. (b) Kricheldorf HR. Tin-initiated polymerizations of lactones: mechanistic and preparative aspects. Macromol Symp 2000, 153,55-65. (c) Majerska K, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerisation initiated with tin(II) octoate 4. Influence of proton trapping agents on the kinetics of E-caprolactone and L,L-dilactide polymerization. Macromol Rapid Commun 2000, 21, 1327-32.(d) Pack JW, Kim SH, Park SY, Lee Y-W, Kim YH. Kinetic and mechanistic studies of L-Lactide polymerization in supercritical chlorodifluoromethane. Macromolecules 2003, 36, 8923-30.
    
    [40] Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL. New paradigms for organic catalysts: The first organocatalytic living polymerization.Angew Chem Int Ed 2001, 40, 2712-5.
    
    [41 ] Myers M, Connor EF, Glauser T, Mock A, Nyce G, Hedrick JL. Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J Polym Sci Part A:Polym Chem 2002, 40, 844-51.
    
    [42 ] Connor EF, Nyce GW, Myers M, Mock A, Hedrick JL. First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc 2002, 124,914-5.
    
    [43 ] Nyce GW, Glauser T, Connor EF, Mock A, Waymouth RM, Hedrick JL. In situ generation of carbenes: A general and versatile platform for organocatalytic living polymerization. J Am Chem Soc 2003,125, 3046-56.
    
    [44] Coulembier O, Dove AP, Pratt RC, Sentman AC, Culkin DA, Mespouille L, Dubois P,Waymouth RM, Hedrick JL. Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Angew Chem Int Ed 2005, 44, 4964.
    
    [45] Csihony S, Culkin DA, Sentman AC, Dove AP, Waymouth RM, Hedrick JL.Single-component catalystinitiators for the organocatalytic ring-opening polymerization of lactide.J Am Chem Soc 2005,127, 9079-84.
    
    [46] Nederberg F, Connor EF, Glausser T, Hedrick JL. Organocatalytic chain scission of poly(lactides): a general route to controlled molecular weight, functionality and macromolecular architecture.Chem Commun 2001,2066-7.
    
    [47] Li Y, Li QB, Li FX, Zhang HY, Jia L, Yu JY, Fang Q, Cao A. Amphiphilic poly(1-lactide)-b-dendritic poly(l-lysine)s synthesized with a metal-free catalyst and new dendron initiators:chemical preparation and characterization.Biomacromolecules 2006,7,224-31.
    [48]Nederberg F,Lohmeijer BGG,Leibfarth F,Pratt RC,Choi J,Dove AP,Waymouth RM,Hedrick JL.Organocatalytic ring opening polymerization of trimethylene carbonate.Biomacromolecules 2007,8,153-160.
    [49]M indemark J,Hilborn J,Bowden T.End-group-catalyzed ring-opening polymerization of trimethylene carbonate.Macromolecules,2007,40,3315-3517.
    [50](a) Matsumura S,Mabuchi K,Toshima K.Lipase-catalyzed ring-opening polymerization of lactide.Macromol Rapid Commun 1997,18,477-482.
    (b) Matsumura S,Mabuchi K,Toshima K.Novel ring-opening polymerization of lactide by lipase.Macromol Symp 1998,130,285-304.
    (c) Matsumura S,Tsukada K,Toshima K.Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s,Int J Biol Macromol1999,25,161-67.
    [51](a) Kumar A,Gross RA.Candida antartica lipase B catalyzed polycaprolactone synthesis:effects of organic media and temperature.Biomacromolecules 2000,1,133-8.
    (b) Loeker FC,Duxbury CJ,Kumar R,Gao W,Gross RA,Howdle SM.Enzyme-catalyzed ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide.Macromolecules 2004,37,2450-3.
    [52]Matsumura S,Tsukada K,Toshima K.Enzyme-Catalyzed ring-opening polymerization of 1,3-Dioxan-2-one to poly(trimethylene carbonate).Macromolecules,1997,30,3122-3124.
    [53]Gross R A,Kumar A,Kalra B.Polymer synthesis by in vitro enzyme catalysis.Chem Rev 2001,101,2097-2124.
    [54]Lendlein A,Langer R.Biodegradable,elastic shape-memory polymers for potential biomedical applications.Science 2002,296,1673-6.
    [55]Shikinami Y.Shape-memory,biodegradable and absorbable material.US Patent 6281262,2001.
    [56]Langer R,Lendlein A,Schmidt A,Grablowitz H.Biodegradable shape memory polymers.US Patent 6160084,2000.
    [57]Zhu G,Xu Q,Liang G,Zhou H.Shape-memory behaviors of sensitizing radiationcrosslinked polycaprolactone with polyfunctional poly(ester acrylate).J Appl Polym Sci 2005,95,634-9.
    [58]Min C,Cui W,Bei J,Wang S.Biodegradable shape-memory polymer-polylactide-copoly (glycolide-co-caprolactone) multiblock copolymer.Polyrn Adv Tech 2005,16,608-15.
    [59]Nagata M,Sato Y.Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(ε-caprolactone) and poly(L-lactide) segments.J Polym Sci Part A Polym Chem 2005,43,2426-39.
    [60]Wache HM,Tartakowska DJ,Hentrich A,Wagner MH.Development of a polymer stent with shape memory effect as a drug delivery system.J Mater Sci Mater Med 2003,14,109-12.
    [61]Metcalfe A,Desfaits AC,Salazkin I,Yohia LH,Sokolowskic WM,Raymond J.Cold hibernated elastic memory foams for endovascular interventions.Biomaterials 2003,24,491-7.
    [62]Behl M,Lendlein A.Actively moving polymers.Soft Matter 2007,3,58-67.
    [63]Behl M,Lendlein A.Shape memory polymers.Moterials today 2007,10,20-8.
    [64]Lendlein A,Schmidt A,Langer R.AB-polymer networks based on oligo(ε-caprolactone)segments showing shape-memory properties.Proc Natl Acad Sci USA 2001,98,842-7..
    [65]Rickert D,Lendlein A,Schmidt AM,Kelch S,Roehlke W,Fuhrmann R,Franke RP.In vitro cytotoxicity testing of AB-polymer networks based on oligo(ε-caprolactone) segments after different sterilization techniques.J Biomed Mater Res part B 2003,67B,722-31.
    [66]Alteheld A,Feng Y,Kelch S,Lendlein A.Biodegradable,amorphous copolyester-urethane networks having shape-memory behavior.Angew Chem Int Ed 2005,44,1188-92.
    [67]Nagata M,Kitazima I.Photocurable biodegradable poly(ε-caprolactone)/poly(ethylene glycol)multiblock copolymers showing shape-memory properties.Colloid Polym Sci 2006,284,380-6.
    [68]Rickert D,Lendlein A,Kelch S,Moses MA,Franke RP.Expression of MMPs and TIMPs in primary epithelial cell cultures of the upper aerodigestive tract seeded on the surface of a novel polymeric biomaterial.Clin Hemorheol Microcirc 2005,32,117-28.
    [69]Rickert D,Moses MA,Lendlein A,Kelch S,Franke RP.The importance of angiogenesis in the interaction between polymeric biomaterials and surrounding tissue.Clin Hemorheol Microcirc 2003,28,175-81.
    [70]Hornbogen E.Comparison of shape memory metals and polymers.Adv Eng Mater 2006,8,101-6.
    [71]石田正雄.形状记忆树脂.配管技术1989,31,112.
    [72]Lendlein A,Kelch S.Shape-memory polymers.Angew Chem Int Ed 2002,41,2034-57.
    [73]Lendlein A,et al.Shape-memory polymers.In Encyclopedia of Materials:Science and Technology,Buschow KHJ,et al.(eds.),Elsevier,New York,2005.
    [74]Jiang HY,Kelch S,Lendlein A.Polymers move in response to light.Adv Mater 2006,18,1471-5.
    [75]Lin JR,Chen LW.Shape-memorized cross-linked ester-type polyurethane and its mechanical viscoelastic model.J Appl Polym Sci 1999,73,1305-19.
    [76]Conti S,Lenz M,Rumpf M.Modeling and simulation of magnetic-shape-memory polymer composites.J Mech Phys Solid 2007,55,1462-86.
    [77]Liu Y,Gall K,Dunn ML,Greenberg AR,Diani J.Thermomechanics of shape memory polYmers:uniaxial experiments and constitutive modeling,Int J Plasticity 2006,22,279-313.
    [781 Beloshenko VA,Varyukhin VN,Voznyak YV.Electrical properties of carbon-containing epoxy compositions under shape memory effect realization.Composites part A 2005,36,65-70.
    [79]Sharma BK,Gajaev IY,Mattiasson B.Thermosensitive,reversibly cross-linking gels with a shape memory.Angew Chem Int Ed 2000,39,2364-7.
    [80]Poilane C,Delobele P,Lexcellent C,Hayashi S,Tobushi H.Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation,bulging and point membrane deflection tests.Thin SolidFilms 2000,379,156-65.
    [81]Kim BK,Lee SY,Xu M.Polyurethanes having shape memory effects.Polymer 1996,37,5781-93.
    [82]白井良记.三菱重工技报,1988,25,236.
    [83]Irie M.Shape Memory Materials.First Edition.Cambridge,UK:Cambridge University Press,1998,pp 203-19.
    [84]张欢琴.形状记忆聚氨酷弹性体的开发及应用.化工新型材料1997(3):32-33
    [85]白子文,张旭琴,韩雪岗.形状记忆聚氨酷.合成橡胶工业1999,22(3):184-188
    [86]Cho JW,Jung YC,Chung YC,Chun BC.Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement.J Appl Polym Sci 2004,93,2410-5.
    [87]Mondal S,Hu JL.Thermal degradation study of functionalized MWCNT reinforced segmented polyurethane membrane.J Elast Plast 2007,39,81.
    [88]Takahashi T,Hayashi N,Hayashi S.Tructure and properties of shape-memory polyurethane block copolymers.J Appl Polym Sci 1996,60,1061-9.
    [89]Kim H,Lee TJ,Huh JH,Lee DJ.Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments.J Appl Polym Sci 1999,73,345-52.
    [90]Park HS,Kim JW,Lee SH,Kim BK.Temperature-sensitive amorphous polyurethanes.J Macromol Sci Part BPhys 2004,43,447-58.
    [91]Lee BS,Chun BC,Chung YC,Sul K,Cho JW.Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect.Macromolecules 2001,34,6431-7.
    [92]Lin JR,Chen LW.Study on shape-memory behavior of polyether-based polyurethanes.I.Influence of the hard-segment content,J Appl Polym Sci 1998,69,1563-74.
    [93]Lin JR,Chen LW.Study on shape-memory behavior of polyether-based polyurethanes,Ⅱ.Influence of soft-segment molecular weight.J Appl Polym Sci 1998,69,1575-86.
    [94]Jeong HM,Lee SY,Kim BK.Shape memory polyurethane containing amorphous reversible phase. J Mater Sci 2000, 35,1579-83.
    
    [95 ] Chun BC, Cho TK, Chung YC. Blocking of soft segments with different chain lengths and its impact on the shape memory property of polyurethane copolymer. J Appl Polym Sci 2007, 103,1435-41.
    
    [96] Wang HH, Yuen U. Synthesis of thermoplastic polyurethane and its physical and shape memory properties. J Appl Polym Sci 2006,102, 607-15.
    
    [97] Yang JH, Chun BC, Chung YC, Cho JH. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment.Polymer 2003, 44, 3251-8.
    
    [98] Cho JW, Jung YC, Chun BC, Chung YC. Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. J Appl Polym Sci 2004, 92, 2812-6.
    
    [99 ] Yang B, Huang WM, Li C, Li L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006,47, 1348-56.
    
    [100] Cho JW, Jung YC, Chung YC, Chun BC. Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. JAppl Polym Sci 2004, 93, 2410-5.
    
    [ 101 ] Booth CJ, Kindinger M, McKenzie HR, Handcock J, Bray AV, Beall GW.Copolyterephthalates containing tetramethylcyclobutane with impact and ballistic properties greater than bisphenol A polycarbonate. Polymer 2006,47, 6398-405.
    
    [102] Zhu G, Liang G, Xu Q, Yu Q. Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J Appl Polym Sci 2003, 90, 1589-95.
    
    [103] Zhu G, Xu S, Wang J, Zhang L. Shape memory behaviour of radiation-crosslinked PCL/PMVS blends. Radiat Phys Chem 2006, 75, 443-8.
    
    [104] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004, 428,487-92.
    
    [ 105 ] Li FK, Hou J, Zhu W, Zhang X, Xu M, Luo XL, Ma DZ, Kim BK. Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J Appl Polym Sci 1996,62,631-8.
    
    [106] Ma ZL, Zhao WG, Liu YF, Shi JR. Synthesis and properties of intumescent, phosphorus-containing, flame-retardant polyesters. J Appl Polym Sci 1997, 63, 1511 -5.
    
    [107] Lendlein A, Kelch S, Kratz K. Kunststoffe mit programmie Gedachtnis. Kunstoffe 2006,2,54-9.
    
    [108] Jeong HM, Ahn BK, Cho SM, Kim BK. Water vapor permeability of shape memory polyurethane with amorphous reversible phase. J Polym Sci part B Polym Phys 2000, 38, 3009-17.
    [109]Lendlein A,Jiang HY,Junger O,Langer,R.Light-induced shape-memory polymers.Nature 2005,434,879-82.
    [110]Vert M,et al.In Y.Doi and K.Fukuda,eds.,biodegradable plastics and polymers,Elsevier,Amsterdam,1994,p 11-23.
    [111]Holland SJ,Jolly AM,Yasin M,Tighe BJ.Polymers for biodegradable medical Devices,Biomaterials 1987,8,289-95.
    [112]Pitt CG,in Vert M,et al.eds.Biodegradable polymers and plastics,Royal Society of.Chemistry,London,1992,pp7-12.
    [113]Li SM.Hydrolytic degradation characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids.J Biomed Mater Res Appl Biomater 1999,48,342-353.
    [114]Seal BL,Otero TC,Panitch A.Polymeric biomaterials for tissue and organ regeneration.Mater Sci EngR 2001,34,147-230.
    [115]Albertsson A-C,Eklund M.Influence of molecular-structure on the degradation mechanism of degradable polymers-in vivtro degradation of poly(trimethylene carbonate),poly(trimethylene carbonate-co-caprolactone),and poly(adipic anhydride).J Appl Polym Sci 1995,57,87-103.
    [116]Zhang Z,Kuijer R,Bulstra SK,Grijpma DW,Feijen J.The in vivo and in vitro degradation behavior of poly(trimethylene carbonate).Biomaterials 2006,27,1741-8.
    [117]Li SM,Garreau H,Vert M.Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media,part 1:poly(DL-lactic acid).J Mater Sci Mater Med 1990,1,123-30.
    [118]Grizzi I,Garreau H,Li SM,Vert M.Biodegradation of devices based on poly(DL-lactic acid):size-dependence.Biomaterials 1995,16,305-11.
    [119]Buchholz B.Analysis and characterization of resorbable dl-lactide-trimethylene carbonate copolyesters.J Mater Sci Mater Med 1993,4,381-8.
    [120]Jie C,Zhu KJ,Shilin Y.Preparation,characterization and biodegradable characteristics of poly(1,3-trimethylene carbonate-co-glycolide).Polym Int 1996,41,369-75.
    [121]Jie C,Zhu KJ.Preparation,characterization and biodegradable characteristics of poly(D,L-lactide-co-1,3-trimethylene carbonate).Polym Int 1997,42,373-9.
    [122]Zhu KJ,Hendren RW,Jensen K,Pitt CG.Synthesis,properties,and biodegradation of poly(1,3-trimethylene carbonate).Macromolecules 1991,24,1736-40.
    [123]Pego AP,Poot AA,Grijpma DW,Feijen J.Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides:Synthesis and properties.J Biomater Sci Polym Ed 2001,12,35-53.
    [ 1241 Pego AP, Poot AA, Grijpma DW, Feijen J. In vitro degradation of trimethylene carbonate based (co)poly mers. Macromol Biosci 2002, 2,411-419
    
    [ 125 ] Reeve MS, McCarthy SP, Downey MJ, Gross RA. Polylactide stereochemistry: effect on enzymic degradability. Macmolecules 1994, 27, 825-31.
    
    [ 126] Li SM, Tenon M, Garreau H, Braud C, Vert M. Enzymatic degradation of stereocopolymers derived from L-, DL- and meso-lactides. Polym Degrad Stab 2000, 67, 85-90.
    
    [127] Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of low-molecular-weight copoly(1-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer 1990, 31, 2006-14.
    
    [ 128] Mochizuki M, Hirano M, Kanmuri Y, Kudo K, Tokiwa Y. Hydrolysis of polycaprolactone fibers by lipase: Effects of draw ratio on enzymatic degradation. J Appl Polym Sci 1995, 55,289-96.
    
    [ 129] Gan Z, Yu D, Zhong Z, Liang Q, Jing X. Enzymatic degradation of poly(ε-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution. Polymer 1999,40, 2859-62.
    
    [130] Lenglet S, Li S, Vert M. Lipase-catalysed degradation of copolymers prepared from 3-caprolactone and DL-lactide. Polym DegradStab 2009, 24, 688-92.
    
    [ 131 ] Gan Z, Liang Q, Zhang J, Jing X. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym Degrad Stab 1997, 56, 209-13.
    
    [ 132] Pitt CG, et al. Poly-3-caprolactone and its copolymers. In: Chasin H, editor. Drugs and the pharmaceutical sciences: biodegradable polymers as drug delivery systems, vol. 45. New York:Marcel Dekker; 1990. p71.
    
    [ 133 ] Zhang Z, Zou S, Vancso GJ, Grijpma DW, Feijen J. Enzymatic Surface Erosion of Poly(trimethylene carbonate) Films Studied by Atomic Force Microscopy. Biomacromolecules 2005, 6, 3404-09.
    
    [134] Bat E, Plantinga JA, Harmsen MC, van Luyn MJA, Zhang Z, Grijpma DW, Feijen J.Trimethylene carbonate and £-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation. Biomacromolecules 2008, 9, 3208-15.
    
    [135] Habraken WJEM, Zhang Z, Wolke JGC, Grijpma DW, Mikos AG, Feijen J, Jansen JA.Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 2008, 29,2464-76.
    
    [ 136] Tokiwa Y, Suzuki T, Takeda K. Two types of lipases in hydrolysis of polyester. Agric Biol Chem 1988, 52, 1937-43.
    
    [137] Nagata M, Kiyotsukuri T, Minami S, Tsutsumi N, Sakai W. Enzymatic degradation of poly(ethylene terephthalate) copolymers with aliphatic dicarboxylic acids and/or poly(ethylene glycol).Eur Polym J 1997,33,1701-5.
    [138]Nagata M,Machida T,akai W,Stsumi N.Synthesis,characterization,and enzymatic degradation studies on novel network aliphatic polyesters.Macromolecules 1998,31,6450-4.
    [139]Abe H,Doi Y.Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid]and its copolymers.Int J Biol Macromol 1999,25,185-92.
    [140]Montaudo G,Rizzarelli P.Synthesis and enzymatic degradation of aliphatic copolyesters.Polym Degrad Stab 2000,70,305-14.
    [141]Nikolic MS,Djonlagic J.Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s.Polym Degrad Stab 2001,74,263-70.
    [142]Zhang Y,Gross RA,Lenz RW.Stereochemistry of the ring-opening polymerization of (S)-.beta.-butyrolactone.Macromolecules 1990,23,3206-12.
    [143]Kemnitzer JE,McCarthy SP,Gross RA.Poly(β-hydroxybutyrate) stereoisomers:a model study of the effects of stereochemical and morphological variables on polymer biological degradability.Macromolecules 1992,25,5927-34.
    [144]Abe H,Matsubara I,Doi Y,Hori Y,Yamaguchi A.Physical properties and enzymic degradability of poly(3-hydroxybutyrate) stereoisomers with different stereoregularities.Macromolecules 1994,27,6018-25.
    [145]Mochizuki M,Mukai K,Yamada K,Ichise N,Murase S,Iwaya Y.Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s.Macromolecules 1997,30,7403-7407.
    [146]Gan Z,Abe H,Doi Y.Crystallization,melting,and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol%ethylene succinate) copolyester Biomacromolecules 2001,2,313-21.
    [147]Cao A,Okamura T,Ishiguro C,Nakayama K,Inoue Y,Masuda T.Studies on comonomer compositional distribution of the bacterial poly(3-hydroxybutyric acid-co-3-hydroxypropionic acid)s and crystal and thermal characteristics of their fractionated component copolyesters.Polymer 2002,43,671-9.
    [148]Betzel C,Pal GP,Saenger W.Three-dimensional structure of proteinase K at 0.15-nm resolution.Eur J Biochem 1988,178,155-71.
    [149]Betzel C,Gourinath S,Kumar P,Kaur P,Perbandt M,Eschenburg S,Singh TP.Structure of a serine protease proteinase K from tritirachium album limber at 0.98(?) resolution.Biochemistry 2001,40,3080-8.
    [150]Jaeger KE,Ransac S,Dijkstra BW,Colson C,van Heuvel M,Misset O.Bacterial lipases.FEMS Microbiol ReV 1994.15.29-63.
    [151] Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS. Catalysis at the interface:the anatomy of a conformational change in a triglyceride lipase. Biochemistry 1992, 31,1532-41.
    
    [152] van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography.Nature 1993, 362, 814-20.
    
    [153] Uppenberg J, Hansen MT, Patkar S, Jones TA. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida Antarctica. Structure 1994, 2, 293-308.
    
    [154]Uppenberg J, ohrner N, Norin M, Hult K, Kleywegt GJ, Patkar S, Waagen V, Anthonsen R,Jones TA. Crystallographic and molecular modeling studies of lipase B from Candida Antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 1995, 34, 16838-51.
    
    [ 155 ] Cygler M, Schrag D. Structure and conformational flexibility of Candida rugosa lipase.Biochem et Biophys Acta 1999, 1441, 205-14.
    
    [156] Turner NA, Needs EC, Khan JA, Vulfson EN. Analysis of conformational states of Candida rugosa lipase in solution: implications for mechanism of interfacial activation and separation of open and closed forms. Biotechnol Bioeng 2001, 72,108-18.
    
    [157] Magnusson A, Hult K, Holmquist M. creation of an enantioselective hydrolase by engineered substrate assisted catalysis. J Am Chem Soc 2001, 123, 4354-5.
    
    [158] Hermoso J, Pignol D, Kerfeler B, Crenon I, Chapus C, Fontecilla-Camps JC. Lipase activation by nonionic detergents. J Biol Chem 1996, 271,18007-16.
    
    [159] Hermoso J, Pignol D, Penel S, Roth M, Chapus C, Fontecilla-Camps JC. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO J 1997, 16,5531-6.
    
    [160] MacDonald RT, McCarthy SP, Gross RA. Enzymatic degradability of poly(lactide):effects of chain stereochemistry and material crystallinity. Macromolecules 1996, 29, 7356-61.
    
    [161] Cai H, Dave V, Gross RA, McCarthy SP. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci Polym Phys 1996, 34,2701-8.
    
    [162] Li S, McCarthy SP. Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 1999, 32,4454-6.
    
    [163] Matsumura S, Harai S, Toshima K. Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer, trimethylene carbonate: a new strategy for sustainable polymer recycling using an enzyme. Macromol Rapid Commun 2001, 22,215-8.
    
    [164] Tsutsumi C, Nakagawa K, Shirahama H, Yasuda H. Enzymatic degradations of copolymers of L-lactide with cyclic carbonates.Macromol Biosci 2002,2,223-32.
    [165]Tsutsumi C,Nakagawa K,Shirahama H,Yasuda H.Biodegradations of statistical copolymers composed of D,L-lactide and cyclic carbonates.Polym Int 2003,52,439-47.
    [1]Dechy-Cabaret O,Martin-Vaca B,Bourissou D.Controlled ring-opening polymerization of lactide and glycolide.Chem Rev 2004,104,6147-6176
    [2]Schwach G,Coudane J,Engel R,Vert M.More about the polymerization of lactides in the presence of stannous octoate.J Polym Sci Part A 1997,35,3431-40.
    [3]Levis RJ.Sax's dangerous properties of industrial materials.New York:Van Nostrand Reinhold,1992.
    [4]Salanki Y,D'eri Y,Platokhin A.The neurotoxicity of environmental pollutants:the effects of tin(Sn~(2+)) on acetylcholine-induced currents in greater pond snail neurons.Neurosci Behav Physiol 2000,30,63-73.
    [5]Schwach G,Coudane J,Engel R,Vert M.Zn lactate as initiator of DL-lactide ring opening polymerization and comparison with Sn octoate.Polym Bull 1996,37,771-776.
    [6]Kreiser-Saunders I,kricheldorf HR.Polylactones,39.Zn lactate-catalyzed copolymerization of L-lactide with glycolide or epsi-caprolactone.Macromol Chem Phys 1998,199,1081-7.
    [7]Bero M,Dobrzynski P,Kasperczyk J.Application of zirconium(Ⅳ) acetylacetonate to the copolymerization of glycolide with ε-caprolactone and lactide.Polym Bull 1999,42,131-9.
    [8]Dobrzynski P,Kasperczyk J,Janeczek H,Bero M.Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds.1.copolymerization of glycolide with L-Lactide initiated by Zr(Acac)_4.Macromolecules 2001,34,5090-8.
    [9]Dobrzynski P,Kasperczyk J,Janeczek H,Bero M.synthesis of biodegradable glycolide/L-Lactide copolymers using iron compounds as initiators.Polymer 2002,43,2595-601.
    [10]Zhang Z,Kuijer R,Bulstra SK,Grijpma DW,Feijen J.The in vivo and in vitro degradation behavior of poly(trimethylene carbonate).Biomaterials 2006,27,1741-8.
    [11]Pospiech D,Komber H,Jehnichen D,H(a|¨)ussler L,Eckstein K,Scheibner H,Janke A,Kricheldorf HR,Petermann O.Multiblock copolymers of L-Lactide and trimethylene carbonate.Biomacromolecules 2005,6,439-446.
    [12]Zhu KJ,Hendren RW,Jensen K,Pitt CG.Synthesis,properties,and biodegradation of poly(1,3-trimethylene carbonate).Macromolecules 1991,24,1736-1740.
    [13]何曼君,陈维孝,董西侠编.高分子物理.复旦大学出版社,1990.
    [14]Fox G.Influence of diluent and copolymer compounds on the glass temperature of a polymer system.Bull Am Phys Soc 1956,1,123.
    [15]Hariharan R,Pinkus AG.Useful NMR solvent mixture for polyesters:trifluoroacetic acid-d/chloroform-d.Polym Bull 1993,30,91-5.
    [16]Kricheldorf HR,Thomas M,Jonte JM.Polylactones 2 Copolymerization of glycolide with β3-propiolactone,γ-butyrolactone or δ-valerolactone.Makromol Chem 1985,186,955-76.
    [17]Kenley RA,Lee MO,Mahoney ⅡITR,Sanders LM.Poly(lactide-co-glycolide)decomposition kinetics in vivo and in vitro.Macromolecules 1987,20,2398-403
    [18]Kricheldorf HR,Kreiser-Saunders I,Stricker A.Polylactones 48.SnOct_2-initiated polymerizations of Lactide:a mechanistic study.Macromolecules 2000,33,702-9.
    [19]Kowalski A,Duda A,Penczek S.Kinetics and mechanism of cyclic Esters polymerization initiated with tin(Ⅱ) octoate.3.Polymerization of L,L-Dilactide.Macromolecules 2000,33,7359-70.
    [20](a) Nijenhuis AJ,Grijpma DW,Pennings AJ.Lewis acid catalyzed polymerization of L-lactide kinetics and mechanism of the bulk polymerization.Macromolecules 1992,25,6419-24.(b) Du YJ,Lemstra PJ,Nijenhuis AJ,van Aert HAM,Bastiaansen C.ABA type copolymers of lactide with poly(ethylene glycol).kinetic,mechanistic,and model studies.Macromolecules 1995,28,2124-32.(c) In't Veld PJA,Velner EM,van de Witte P,Hamhuis J,Dijkstra PJ,Feijen J.Melt block copolymerization of ε-caprolactone and L-lactide.J Polym Sci Part A Polym Chem 1997,35,219-26.
    [21](a) Duda A,Penczek S,Kowalski A,Libiszowski J.Polymerizations of ε-caprolactone and L,L-dilactide initiated with stannous octoate and stannous butoxide-a comparison.Macromol Symp 2000,153,41-53.(b) Kowalski A,Libiszowski J,Duda A,Penczek S.Polymerization of 1,1-Dilactide Initiated by Tin(Ⅱ) Butoxide.Macromolecules 2000,33,1964-71.
    [1]Pego AP,Van luyn MJA,Brouwer LA,Van Wachem PB,Poot AA,Grijpma DW,Feijen J.In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone:Degradation and tissue response.J Biomed Mater Res 2003,67A,1044-54.
    [2]Pego AP,Poot AA,Grijpma DW,Feijen J.Biodegradable elastomeric scaffolds for soft tissue engineering.J Controlled Release 2003,87,69-79.
    [3]Andronova N,Albetsson A-C.Resilient bioresorbable copolymers based on trimethylene carbonate,L-Lactide,and 1,5-Dioxepan-2-one.Biomaeromolecules 2006,7,1489-95.
    [4]Zhu KJ,Zhang JX,Wang C,Yasuda H,Ichimaru A,Yamamoto K.Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly(L-lactide) and its carbonate copolymers.J Microencapsulation 2003,20,731-43.
    [5]Asplund B,Sperens J,Mathisen T,Hilborn J.Effects of hydrolysis on a new biodegradable co-polymer.J Biomat Sci Polym Ed 2006,17,615-30.
    [6]Hua JJ,Gebarowska K,Dobrzynski P,Kasperczyk J,Wei J,Li SM.Influence of chain microstructure on the hydrolytic degradation of copolymers from 1,3-trimethylene carbonate and L-lactide.J Polym Sci Part A Polym Chem 2009,47,3869-79.
    [7]Pospiech D,Komber H,Jehnichen D,H(a|¨)ussler L,Eckstein K,Scheibner H,Janke A,Kricheldorf HR,Petermann O.Multiblock copolymers of L-lactide and trimethylene carbonate.Biomacromolecules 2005,6,439-46.
    [8]Zhu KJ,Hendren RW,Jensen K,Pitt CG.Synthesis,properties,and biodegradation of poly(1,3-trimethylene carbonate).Macromolecules 1991,24,1736-40.
    [9]何曼君,陈维孝,董西侠编.高分子物理.复旦大学出版社,1990.
    [10]Fox G.Influence of diluent and copolymer compounds on the glass temperature of a polymer system.Bull Am Phys Soc 1956,1,123.
    [11]Holland S J,Jolly A M,Yasin M,Tighe B J.Polymers for biodegradable medical Devices.Biomaterials 1987,8,289-95.
    [12](a) Pego AP,Poot AA,Grijpma DW,Feijen J.Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides:Synthesis and properties.J Biomater Sci Polym Ed 2001,12,35-53.(b) Pego AP,Poot AA,Grijpma DW,Feijen J.In vitro degradation oftrimethylene carbonate based(co)polymers.Macromol Biosci 2002,2,411-9.
    [13]Stridsberg K,Albertsson A-C.Changes in chemical and thermal properties of the tri-block copolymer poly(L-lactide-b-1,5-dioxepan-2-one-b-L-lactide) during hydrolytic degradation.Polymer 2000,41,7321-30.
    [14]Albertsson A-C,Eklund M.Influence of molecular-structure on the degradation mechanism of degradable polymers-in vitro degradation of poly(trimethylene carbonate),poly(trimethylene carbonate-co-caprolactone),and poly(adipic anhydride).J Appl Polym Sci 1995,57,87-103.
    [15]Nikolic MS,Djonlagic J.Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s.Polym Degrad Stab 2001,74,263-70.
    [16]Nagata M,Kiyotsukuri T,Minami S,Tsutsumi N,Sakai W.Enzymatic degradation of poly(ethylene terephthalate) copolymers with aliphatic dicarboxylic acids and/or poly(ethylene glycol).Eur Polym J 1997,33,1701-5.
    [17]Nagata M,Machida T,Sakai W,Tsutsumi N.Synthesis,characterization,and enzymatic degradation studies on novel network aliphatic polyesters.Macromolecules 1998,31,6450-4.
    [18]Yoshie N,Fujiwara M,Kasuya K.Effect of monomer composition and composition distribution on enzymatic degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate).Macromol Chem Phys 1999,200,977-82.
    [19]Montaudo G,Rizzarelli P.Synthesis and enzymatic degradation of aliphatic copolyesters.Polym Degrad Stab 2000,70,305-14.
    [20]Cao A,Okamura T,Ishiguro C,Nakayama K,Inoue Y,Masuda T.Studies on comonomer compositional distribution of the bacterial poly(3-hydroxybutyric acid-co-3-hydroxypropionic acid)s and crystal and thermal characteristics of their fractionated component copolyesters.Polymer 2002,43,671-9.
    [21]Mochizuki M,Mukai K,Yamada K,Ichise N,Murase S,Iwaya Y.Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s.Macromolecules 1997,30,7403-7.
    [22]Tokiwa Y,Suzuki T,Takeda K.Two types of lipases in hydrolysis of polyester.Agric.Biol.Chem.1988,52,1937-43.
    [23]Zhang Y,Gross RA,Lenz RW.Stereochemistry of the ring-opening polymerization of (S)-β-butyrolactone.Macromolecules 1990,23,3206-12.
    [24]Kemnitzer JE,McCarthy SP,Gross RA.Poly(β-hydroxybutyrate) stereoisomers:a model study of the effects of stereochemical and morphological variables on polymer biological degradability.Macromolecules 1992,25,5927-34.
    [25]Abe H,Matsubara I,Doi Y,Hori Y,Yamaguchi A.Physical properties and enzymic degradability of poly(3-hydroxybutyrate) stereoisomers with different stereoregularities.Macromolecules 1994,27,6018-25.
    [26]Gan Z,Abe H,Doi Y.Crystallization,melting,and enzymatic degradation of biodegradable poly(butylene succinate-co-14mol%ethylene succinate) copolyester. Biomacromolecules 2001,2,313-21.
    [27]Li SM,Girard A,Garreau H,Vert M.Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents.Polym Degrad Stab 2001,71,61-7.
    [28]Reeve MS,McCarthy SP,Downey MJ,Gross RA.Polylactide stereochemistry:effect on enzymic degradability.Macromolecules 1994,27,825-31.
    [29]Li SM,Liu L J,Garreau H,Vert M.Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers.Biomacromolecules 2003,4,372-77.
    [30]Zhao ZX,Yang L,Hu YF,He Y,Wei J,Li SM.Enzymatic degradation of block copolymers obtained by sequential ring opening polymerization of L-lactide and ε-caprolactone.Polym DegradStab 2007,92,1769-77.
    [31]Li SM,Tenon M,Garreau H,Braud C,Vert M.Enzymatic degradation of stereocopolymers derived from L-,DL- and meso-lactides.Polym Degrad Stab 2000,67,85-90.
    [32]Morbitzer L,Hespe H.Correlations between chemical structure,stress-induced crystallization,and deformation behavior of polyurethane elastomers.J Appl Polym Sci 1972,16,2697-708.
    [33]Zini E,Scandola M,Dobrzynski P,Kasperczyk J,Bero M.Shape memory behavior of novel(L-lactide-glycolide-trimethylene carbonate) terp01ymers.Biomacromolecules 2007,8,3661-7.
    [1] Reeve MS, McCarthy SP, Downey MJ, Gross RA. Polylactide stereochemistry:effect on enzymic degradability. Macromolecules 1994,27, 825-31.
    
    [2] Li S, Tenon M, Garreau H, Braud C, Vert M. Enzymatic degradation of stereocopolymers derived from L-, DL- and meso-lactides. Polym Degrad Stab 2000, 67, 85-90.
    [31 Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of low-molecular-weight copoly(L-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer 1990, 31, 2006-14.
    
    [4] Mochizuki M, Hirano M, Kanmuri Y, Kudo K, Tokiwa Y. Hydrolysis of polycaprolactone fibers by lipase: Effects of draw ratio on enzymatic degradation. J Appl Polym Sci 1995, 55,289-96.
    
    [5] Gan Z, Yu D, Zhong Z, Liang Q, Jing X. Enzymatic degradation of poly(s-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution. Polymer 1999,40, 2859-62.
    [6] Lenglet S, Li S, Vert M. Lipase-catalysed degradation of copolymers prepared from 3-caprolactone and DL-lactide. Polym DegradStab 2009, 24, 688-692.
    [7] Gan Z, Liang Q, Zhang J, Jing X. Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym DegradStab 1997, 56, 209-13.
    [8] Zhang Z, Zou S, Vancso GJ, Grijpma DW, Feijen J. Enzymatic surface erosion of poly(trimethylene carbonate) films studied by atomic force microscopy. Biomacromolecules 2005,6, 3404-09.
    
    [ 9] Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006, 27, 1741-8.
    [10] Bat E, Plantinga JA, Harmsen MC, van Luyn MJA, Zhang Z, Grijpma DW, Feijen J.Trimethylene carbonate and s-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation. Biomacromolecules 2008, 9, 3208-15.
    
    [11] Habraken WJEM, Zhang Z, Wolke JGC, Grijpma DW, Mikos AG, Feijen J, Jansen JA.Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 2008, 29, 2464-76.
    
    [12] (a) Matsumura S, Mabuchi K, Toshima K. Lipase-catalyzed ring-opening polymerization of lactide. Macromol Rapid Commun 1997,18, 477-477-482. (b) Matsumura S, Mabuchi K, Toshima K.Novel ring-opening polymerization of lactide by lipase. Macromol Symp 1998,130, 285-304. (c) Matsumura S, Tsukada K, Toshima K. Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s. Int J Biol Macromol 1999,.25,161-67.
    [13]Matsumura S,Harai S,Toshima K.Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer,trimethylene carbonate:a new strategy for sustainable polymer recycling using an enzyme.Macromol Rapid Commun 2001,22,215-8.
    [14]Tsutsumi C,Nakagawa K,Shirahama H,Yasuda H.Enzymatic degradations of copolymers of L-lactide with cyclic carbonates.Macromol Biosci 2002,2,223-32.
    [15]Tsutsumi C,Nakagawa K,Shirahama H,Yasuda H.Biodegradations of statistical copolymers composed of D,L-lactide and cyclic carbonates.Polym Int 2003,52,439-47.
    [16]Li S.Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.J Biomed Mater Res Part B Appl Biomat 1999,48B,342-53.
    [17]Pego AP,van Luyn MJA,Brouwer LA,van Wachem PB,Poot AA,Grijpma DW,Feijen J.In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or ε-caprolactone:degradation and tissue response.J Biomed Mater Res Part A 2003,67A,1044-54.
    [18]Li S,Liu LJ,Garreau H,Vert M.Lipase-catalyzed biodegradation of poly(ε-caprolactone)blended with various polylactide-based polymers.Biomacromolecules 2003,4,372-7.
    [19]Zhao ZX,Yang L,Hu YF,He Y,Wei J,Li SM.Enzymatic degradation of block copolymers obtained by sequential ring opening polymerization of L-lactide and ε-caprolactone.Polym Degrad Stab 2007,92,1769-77.
    [20]Zhao ZX,Yang L,Hua JJ,Wei J,Gachet S,Ghzaoui AE,Li SM.Relationship between enzyme adsorption and enzyme-catalyzed degradation of polylactides.Macromol Biosci 2008,8,25-31.
    [1]Joseph JG.Polymers for tissue engineering,medical devices,and regenerative medicine.Concise general review of recent studies.Polym Adv Technol 2006,17,395-418.
    [2]曾伟杰,凌友,支晓兴.心血管支架材料生物力学及生物相容性特征[J].中国组织工程研究与临床康复 2008,12,2531-2534.
    [3]Lloyd AW.Interfacial bioengineering to enhance surface biocompatibility.Med Device Technol 2002,13,18-21.
    [4]奚廷斐,王春仁.生物材料表面粘附的血小板形态变化及分类研究[J].北京生物医学工程 1990,9,149-147.
    [5]黄嘉.聚醚砜、磺化聚醚砜血液净化膜材生物相容性的研究[M].四川大学博士学位论文,1999.
    [6]Seifert B,Romaniuk B,Groth T.Covalent immobilization of hirudin improves the haemocompatibility of polylactide-polyglycolide in vitro.Biomaterials 1997,18,1495-1502.
    [7]Hietala EM,Maasilta P,Juuti A,Nuutinen JP,Harjula ALJ,Salminen US,Lassila R.Platelet deposition on stainless steel,spiral,and braided polylactide stents.A comparative study.Thrombosis & Haemostasis 2004,92,1394-1401.
    [8]Cho HH,Hart DW,Matsumura K,Tsutsumi S,Hyon SH.The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing poly(L-lactide-co-ε-caprolactone)as stent-coating materials.Biomaterials 2008,29,884-893.
    [9]Meng S,Zhong W,Chou LL,Wang QH,Du QG.Phosphorylcholine end-capped poly-ε-caprolactone:A novel biodegradable material with improved antiadsorption property.J Appl Polym Sci 2007,103,989-997.
    [10]Hietala EM,Maasilta P,Valimaa T,Harjula ALJ,Tormala P,Salminen US,Lassila R.Platelet responses and coagulation activation on polylactide and heparin-polycaprolactone-L-lactide-coated polylactide stent struts.J Biomed Mater Res 2003,67A,785-791.
    [11]Athanasiou KA,Niederauer GG,Agrawal CM.Sterilization,toxicity,biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.Biomaterials 1996,17,93-102.
    [12]Peppas NA,Langer R.New challenges in biomaterials.Science 1994,263,1715-1720.
    [13]Mikos AQ,Lyman MD,Freed LE,Langer R.Wetting ofpoly(L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture.Biomaterial 1994,15,55-58
    [14]Asplund B,Sperens J,Mathisen T,Hilborn J.Effects of hydrolysis on a new biodegradable co-polymer,J Biomat Sci Polym Ed 2006,17,615-630.
    [15]Fabre T,Schappacher M,Bareille R,Dupuy B,Soum A,Bertrand-Barat J,Baquey C.Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer-Part 2: in vitro cytocompatibility analysis and in vivo EDI cell response of a new nerve guide. Biomaterials 2001,22, 2951-2958.
    
    [16] Pego AP, Vleggeert-Lankamp CLAM, Deenen M, Lakke EAJF, Grijpma DW, Poot AA,Feijen J. Adhesion and growth of human Schwann cells on trimethylene carbonate (co)polymers. J Biomed Mater Res 2003, 67A, 876-885.
    
    [17] Serrano MC, Portoles MT, Vallet-Regi M, Izquierdo I, Galletti L, Comas JV, Pagani R.Vascular endothelial and smooth muscle cell culture on NaOH-treated poly(epsilon-caprolactone) films: A preliminary study for vascular graft development. Macromol Biosci 2005, 5,415-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700