用户名: 密码: 验证码:
基于超支化聚合物及包结络合作用的自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有准球形结构的高度支化大分子,在其不规则的分子结构中含有大量内部空穴和末端官能团。由于超支化聚合物独特的拓扑结构和性能特点,它在分子自组装方面的应用引起了众多科研工作者的关注。而在分子自组装的多种驱动力中,主-客体包结络合作用占有重要的地位,环糊精作为第二代主体化合物的代表已经得到了深入的研究。特别是β-环糊精(β-CD)与金刚烷因其包结络合常数高达105,在大分子自组装领域得到了广泛的应用。本课题组在超支化共聚物的理论研究、合成以及自组装等方面已经积累了大量的经验,在此基础上,本文开展了基于超支化聚合物及包结络合作用的自组装研究。将β-CD和金刚烷的包结络合作用引入到亲水或疏水的超支化聚合物体系中,对其在溶液中的自组装行为进行了详细的研究;此外还对超支化聚合物的多级自组装和基于环糊精包结络合作用的有机-无机纳米粒子自组装等方面进行了探索研究。具体研究内容和主要结论概括如下:
     1.金刚烷修饰的疏水性超支化聚醚HBPO-AD与β-环糊精的自组装研究;
     通过阳离子开环聚合及端基改性的方法合成了金刚烷修饰的疏水性超支化聚[3-乙基-3-(羟甲基)氧杂环丁烷](HBPO-AD)。结合包结络合作用和自组装方法,利用HBPO-AD和β-CD在水溶液中制备了具有较窄粒径分布的聚合物胶束,并发现AD/β-CD不同配比对胶束的尺寸和分布影响不大。~1H NMR和TEM结果表明形成的聚合物胶束以HBPO-AD为核,β-环糊精为壳。通过DLS和SEM等测试手段对聚合物胶束进行了详细表征,发现HBPO-AD/β-CD胶束倾向于紧密堆积形成胶子晶体。该聚合物胶束在热陈化条件下可以进一步在溶液中自组装形成二维片状结构,TEM、SEM和AFM结果表明二维片状结构是通过HBPO-AD/β-CD聚合物胶束粒子的紧密堆积和进一步融合形成的。根据表征结果,提出了HBPO-AD/β-CD胶束以及二维片状结构的组装机理,认为HBPO-AD/β-CD胶束的形成是疏水作用、包结络合作用以及氢键作用的共同结果,当升高温度后,HBPO-AD/β-CD胶束溶解性变差以及热陈化温度高于HBPO-AD的玻璃化转变温度是使胶束相互紧密堆积并进一步融合形成二维片状结构的主要原因。
     2.金刚烷改性超支化聚缩水甘油制备温敏性聚合物及自组装研究;
     结合金刚烷改性和包结络合作用,利用亲水性的超支化聚缩水甘油(HPG)制备了一种最低临界溶解温度(LSCT)可调控的温敏性聚合物,并研究了其自组装行为。首先通过1-金刚烷酰氯和HPG的酯化反应合成了一系列不同接枝率的金刚烷改性的超支化聚缩水甘油(HPG-AD),发现HPG-ADs的T_g随着聚合物中金刚烷基团(AD)重量百分含量的增加而线性增加。HPG-AD在水溶液中具有明显的温度响应性,其LSCT对浓度有依赖性,随着聚合物浓度的降低,LCST逐渐升高。结合DLS、变温~1H NMR和TEM等测试手段对HPG-AD的温度响应性和自组装行为进行了详细研究,发现它在水溶液以多胶束聚集(MMA)机理组装形成大的多分子胶束,其LCST转变是由于HPG-AD的亲水疏水平衡被改变,随着温度的升高其疏水性增加导致胶束发生二次聚集形成更大的聚集体的过程。HPG-AD的温敏性还与金刚烷的接枝率有关,在一定AD接枝率范围即亲水疏水平衡范围内,才能够表现出明显的LCST。利用β-CD和金刚烷的包结络合作用可以调控HPG-AD的LCST,通过改变β-CD/AD摩尔比可以调节HPG-AD的LCST在一个很宽的温度范围内变化。采用MTT法对金刚烷改性后聚合物的细胞毒性进行了评价,发现金刚烷基团的引入使HPG的细胞毒性大大增加,但当加入β-CD后,其细胞毒性又可相应地被抑制。
     3. HPG-g-PDMAEMA的合成、自组装及药物释放研究;
     通过阳离子开环聚合和原子转移自由基聚合成功地合成了低接枝率的双亲水性超支化接枝共聚物HPG-g-PDMAEMA。~1H NMR以及GPC结果表明平均每个超支化HPG核上接枝了3条聚甲基丙烯酸-2-(N,N-二甲氨基)乙酯(PDMAEMA)臂,平均臂长27。通过芘荧光探针法、~1HNMR、DLS和TEM等对HPG-g-PDMAEMA的自组装行为进行了详细表征,发现不同于普通pH敏感的线形双亲水性嵌段共聚物,低接枝率的HPG-g-PDMAEMA共聚物在酸性、中性和碱性条件下都能形成胶束。Zeta电位测试表明HPG-g-PDMAEMA形成的胶束中PDMAEMA处在胶束的外表面。以香豆素102为模型药物进一步研究了HPG-g-PDMAEMA胶束在不同pH条件下的药物释放行为,发现溶液pH值在11.5和2.5连续循环改变的条件下该胶束对药物能实现部分“可逆”的释放和包载,可逆程度和溶液的pH值以及药物释放的循环次数有关。由于HPG和PDMAEMA具有较好的生物相容性,预计这类双亲水性超支化接枝共聚物在医药及生物工程领域具有一定的应用价值。
     4.平头状HBPO-star-PEO的多级自组装研究;
     通过阳离子开环聚合的方法合成了平头状的两亲性超支化多臂共聚物HBPO-star-PEO。该聚合物能够在水中自组装形成宏观的二维囊泡膜,单个囊泡的直径可达200μm左右。通过光学显微镜实时观察,发现囊泡膜的形成是一个多级自组装过程,在连续的水合作用下,平头状HBPO-star-PEO先聚集形成小囊泡,这些囊泡经过连续生长融合过程形成巨大的囊泡膜。此外,平头状HBPO-star-PEO和HBPO-star-PDMAEMA复合自组装也能形成二维囊泡膜,随着溶剂的缓慢挥发,可以进一步形成微米管。通过光学显微镜,激光共聚焦显微镜,SEM和TEM对微米管的形貌和形成过程进行了详细的表征,发现这些微米管的直径为2μm左右,长度可达毫米级别。根据光学显微镜实时观察结果提出了由二维囊泡膜到微米管转变的形成机理:大囊泡边界的小囊泡首先发生融合形成纤维结构;而随着溶剂挥发HBPO-star-PEO和HBPO-star-PDMAEMA发生微相分离,在大囊泡表面产生很多新的小囊泡,这些小囊泡进一步以大囊泡边界生成的纤维结构为模板,在大囊泡表面有序的取向并融合,逐渐形成线形排列的微米管结构。
     5.金刚烷修饰的六面体倍半硅氧烷与β-环糊精及其衍生物的自组装研究;
     通过1-金刚烷酰氯与单官能度氨丙基异丁基六面体倍半硅氧烷(POSS)反应合成了金刚烷修饰的六面体倍半硅氧烷(POSS-AD),并研究了它与β-CD、羟丙基-β-环糊精(HP-β-CD)以及水溶性β-环糊精环氧氯丙烷交联聚合物(β-CDEP)在甲苯-水体系中的自组装行为。借助于金刚烷基团与环糊精的包结络合作用,POSS-AD能诱导β-CD在油水两相界面聚集形成组装体薄膜。FT-IR和NMR等表征结果显示组装体薄膜的主要成分是β-CD和甲苯的包结物,据此提出了POSS-AD诱导β-CD在油水界面形成薄膜的自组装机理:POSS-AD和β-CD先在油水两相界面发生包结络合形成单层复合膜,由于β-CD之间有很强的氢键作用,两相界面形成的单层膜可以进一步诱导β-CD和β-CD/甲苯包结物层-层组装形成多层的组装体膜。此外,在超声作用下,POSS-AD与HP-β-CD能在水相中形成胶束,而同样条件下POSS-AD和β-CDEP在水相中却能得到囊泡结构,通过TEM、SEM和~1H NMR对这两种结构进行了初步的研究,认为POSS-AD/β-CDEP体系能稳定更多的甲苯是囊泡结构形成的原因。
Hyperbranched polymers are a novel kind of torispherical irregular macromolecules possessinghighly branched architectures, many inner cavities and a large amount of terminal functional groups.Due to their unique molecular structures and properties, hyperbranched polymers are receiving moreand more attention in self-assembly area. Among different kinds of driving forces leading toself-assembly, the host-guest inclusion plays an important role. Cyclodextrins (CDs) seem to be themost extensively studied host compounds characteristic of a hydrophilic exterior surface andhydrophobic interior cavity. It is well known that β-CDs form strong complexes with damantlygroups for their high association constant (~105), and this interaction has been widely employed inmacromolecular self-assembly. Our group has already got a great deal of experience in the theoreticalresearch, synthesis and self-assembly of hyperbranched copolymer. In this dissertation, investigationsare conducted on the self-assembly based on hyperbranched polymers and inclusion complexation. Thehost-guest interaction between β-CD and adamantine was introduced into the hydrophilic orhydrophobic hyperbranched polymer systems, and their self-assembly behaviors in solution wereinvestigated in details. In addition, the hierarchical self-assembly of hyperbranched polymers and theself-assembly of organic-inorganic nanoparticles based on inclusion complexation have also beenexplored. The main results are summarized as follows.
     1. The self-assembly of damantly-modified hyperbranched polyether HBPO-AD andβ-cyclodextrin;
     The damantly-terminated hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane](HBPO-AD)was synthesized by combination of cationic ring-opening polymerization and end-group modification.Then the narrowly-distributed polymeric micelles were prepared via host-guest inclusion complexationand self-assembly of HBPO-AD and β-CD in aqueous solution. It was found that AD/β-CD molar ratio had a little effect on the micelle size and the size distribution.~1H NMR and TEM results proved that theobtained micelles hold a core-shell structure consisting of the HBPO-AD core and β-CD shell. Thesenarrowly-distributed HBPO-AD/β-CD micelles tended to be tightly packed into colloidal crystals, andcould further self-assemble into two-dimensional sheets in solution after thermal annealing. The TEM,SEM and AFM results demonstrated that the sheets were formed through stacking and fusion of tightlypacked HBPO-AD/β-CD micelles. The self-assembly mechanisms of HBPO-AD/β-CD micelles andtwo-dimensional sheets were proposed according to the detailed characterization results. TheHBPO-AD/β-CD micelles are formed due to strong hydrophobic interaction, inclusion complexationand hydrogen bonding. After heating, the solubility of micelles become weak in water and the micellestend to aggregate together. The thermal annealing temperature is higher than the glass transitiontemperature of HBPO-AD, which help the further fusion process of the tightly packed micelles to formtwo-dimensional sheets.
     2. The thermoresponsive property and self-assembly of damantly-modified hyperbranchedpolyglycerol;
     A novel thermoresponsive polymer based on hyperbranched polyglycerol (HPG) with adjustablelower critical solution temperature (LCST) was prepared via damantly-modification and inclusioncomplexation. HPG-Ads with the different graft ratios were prepared by esterification of HPG with1-adamantanecarbonyl chloride, and the T_gof obtained HPG-Ads increased almost linearly withincreasing the AD content. The HPG-AD showed concentration-dependent LCST phase transition inaqueous solution, and LCST increased gradually with the decrease of polymer concentration. Thethermoresponsive property and self-assembly behavior of HPG-AD were studied in detail by DLS,variable-temperature~1H NMR and TEM. It was found that HPG-AD self-assembled into largemultimolecular micelles in aqueous solution. The LCST transition was originated from the secondaryaggregation of the micelles due to the increased hydrophobicity of HPG-AD and the change ofhydrophilic-hydrophobic balance of HPG-AD on heating. In addition, the thermoresponsibility ofHPG-AD was highly related to the AD graft ratio. Only HPG-AD with a certain AD grafting couldshow a clear LCST. Moreover, the LCST transition could be adjusted via β-CD/AD inclusioncomplexation, and be controlled over a wide temperature range by changing β-CD/AD molar ratio.MTT method was also used to evaluate the cytotoxicity of HPG-AD, and it found that the introductionof damantly groups caused a greatly increase of the cytotoxicity, while its corresponding cytotoxicitycould be inhibited when β-CD was added.
     3. Synthesis, self-assembly and drug release property of HPG-g-PDMAEMA;
     A double-hydrophilic hyperbranched graft copolymer, HPG-g-PDMAEMA, was synthesized bycombination of cationic ring-opening polymerization and atom transfer radical polymerization.~1HNMR and GPC analyses showed that each HPG core was grafted3poly(2-(dimethylamino)ethylmethacrylate)(PDMAEMA) arms, with an average arm length of27. The pyrene-based fluorescentprobe method,~1H NMR, DLS and TEM were used to study the self-assembly behavior ofHPG-g-PDMAEMA in aqueous solution. It showed that HPG-g-PDMAEMA could form micelles inacidic, neutral and alkaline aqueous solution, which was different from the self-assembly behavior ofpH-sensitive linear double-hydrophilic block copolymers. The results of zeta potential proved thatPDMAEMA chains existed in the outer surface of the obtained HPG-g-PDMAEMA micelles.Coumarin102was used as a model drug to study the drug loading and releasing properties ofHPG-g-PDMAEMA under pH stimulation. It was found that HPG-g-PDMAEMA micelles couldcontinuously release and re-encapsulate the drug molecules when pH was continuously changedbetween11.5and2.5. However, this process was not totally reversible and the reversibility was relatedto the pH of the solution and the number of cycles. Since both HPG and PDMAEMA have goodbiocompatibility, HPG-g-PDMAEMA is expected to have potential applications in the fields ofmedicine and bioengineering.
     4. The hierarchical self-assembly of a crew-cut amphiphilic hyperbranched copolymerHBPO-star-PEO;
     A crew-cut amphiphilic hyperbranched multiarm copolymer, HBPO-star-PEO, was prepared bycationic ring-opening polymerization. This polymer could self-assemble into macroscopictwo-dimensional vesicle film in water, and the diameter of each vesicle could reach200μm. Throughreal-time observations by optical microscope, we found that the formation of the vesicle film was aninteresting hierarchical self-assembly process. The crew-cut HBPO-star-PEO molecules firstself-assembled into small vesicles, and then these small vesicles interconnected together as a result ofthe successive hydration and fusion to form the giant vesicle film. In addition, the complex of crew-cutHBPO-star-PEO and HBPO-star-PDMAEMA could also self-assemble into two-dimensional vesiclefilm, which further transformed into microtubes during the slow evaporation of solvent. Themorphology and formation process of microtubes were characterized by optical microscope, laserscanning confocal microscope, SEM and TEM. It showed that the diameter of these tubes was about2μm, and the length approached several damantly s. The transition mechanism from two-dimensionalvesicle film to microtubes was proposed according to the real-time observation results by opticalmicroscope. The small vesicles at the border of the large ones first fused into fiber-like structures. With the evaporation of the solvent, microphase separation occurred between HBPO-star-PEO andHBPO-star-PDMAEMA, and many new small vesicles were formed on the surface of the largevesicles. Then these small vesicles oriented orderly with fiber-like structures as templates and graduallyfused. Finally, the linear arrayed microtubes were formed.
     5. The self-assembly behaviors of damantly-modified POSS with β-cyclodextrin and itsderivatives;
     Adamantyl-modified POSS (POSS-AD) was synthesized by esterification of aminopropylisobutylPOSS with1-adamantanecarbonyl chloride. Then the self-assembly behaviors of POSS-AD with β-CD,hydroxypropyl-β-cyclodextrin (HP-β-CD) as well as water-soluble β-cyclodextrin-epichlorohydrincross-linked polymer (β-CDEP) in the toluene-water system were studied. It was found that POSS-ADcould induce β-CD self-assemble into thin films at the oil-water interface driven by the inclusioninteraction between β-CD and damantly groups. FT-IR and NMR analyses proved that the majorcomponent of this thin film was the inclusion complex of β-CD with toluene. Thus an interfaciallyinduced self-assembly mechanism of thin film was proposed. POSS-AD and β-CD formed a monolayerfilm at the oil-water interface as a result of inclusion complexation, which further induced thelayer-by-layer self-assembly of β-CD or β-CD/toluene inclusion complex into multilayer film due tothe strong hydrogen bonds of β-CD. In addition, POSS-AD and HP-β-CD could self-assemble intomicelles in aqueous phase after ultrasonic treatment, while POSS-AD and β-CDEP formed vesiclesunder the same conditions. These two different self-assemblies were characterized by TEM, SEM and~1H NMR, and it was found that POSS-AD/β-CDEP system could stabilize more toluene for theformation of vesicles.
引文
1. Tomalia, D. A.; Frechet, J. M. J., Discovery of dendrimers and dendritic polymers: A briefhistorical perspective. J. Polym. Sci., Part A: Polym. Chem.2002,40(16),2719-2728.
    2. Tomalia, D. A.; Frechet, J. M., Introduction to "Dendrimers and dendritic polymers". Prog. Polym.Sci.2005,30(3-4),217-219.
    3. Voit, B., New developments in hyperbranched polymers. J. Polym. Sci., Part A: Polym. Chem.2000,38(14),2505-2525.
    4. Jikei, M.; Kakimoto, M., Hyperbranched polymers: a promising new class of materials. Prog.Polym. Sci.2001,26(8),1233-1285.
    5. Gao, C.; Yan, D., Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci.2004,29(3),183-275.
    6. Kim, Y. H.; Webster, O. W., Hyperbranched polyphenylenes. Polym. Prepr.(Am. Chem. Soc., Div.Polym. Chem.)1988,29,310-311.
    7. Kim, Y. H.; Webster, O. W., Water-soluble hyperbranched polyphenylene:"A unimolecularmicelle"? J. Am. Chem. Soc.1990,112(11),4592-4593.
    8. Kim, Y. H.; Webster, O. W., Hyperbranched polyphenylenes. Macromolecules1992,25(21),5561-5572.
    9. Jikei, M.; Chon, S. H.; Kakimoto, M.; Kawauchi, S.; Imase, T.; Watanebe, J., Synthesis ofhyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules1999,32(6),2061-2064.
    10. Emrick, T.; Chang, H. T.; Frechet, J. M. J., An A2+B3approach to hyperbranched aliphaticpolyethers containing chain end epoxy substituents. Macromolecules1999,32(19),6380-6382.
    11. Frechet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B.,Self-condensing vinyl polymerization: An approach to dendritic materials. Science1995,269(5227),1080-1083.
    12. Chang, H. T.; Frechet, J. M. J., Proton-transfer polymerization: A new approach to hyperbranchedpolymers. J. Am. Chem. Soc.1999,121(10),2313-2314.
    13. Suzuki, M.; Ii, A.; Saegusa, T., Multibranching polymerization: Palladium-catalyzed ring-openingpolymerization of cyclic carbamate to produce hyperbranched dendritic polyamine.Macromolecules1992,25(25),7071-7072.
    14. Bednarek, M.; Biedron, T.; Helinski, J.; Kaluzynski, K.; Kubisa, P.; Penczek, S., Branchedpolyether with multiple primary hydroxyl groups: polymerization of3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun.1999,20(7),369-372.
    15. Inoue, K., Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci.2000,25(4),453-571.
    16. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science2002,295(5564),2418-2421.
    17. Lehn, J. M., Toward self-organization and complex matter. Science2002,295(5564),2400-2403.
    18. Lehn, J. M., Toward complex matter: Supramolecular chemistry and self-organization. PNAS2002,99(8),4763-4768.
    19. Palermo, V.; Samori, P., Molecular self-assembly across multiple length scales. Angew. Chem. Int.Ed.2007,46(24),4428-4432.
    20. Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V.S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H. W.; Hudson, S. D.; Duan, H.,Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature2002,419(6905),384-387.
    21. Zhang, S. G., Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol.2003,21(10),1171-1178.
    22. Bullock, S. E.; Kofinas, P., Nanoscale battery materials based on the self-assembly of blockcopolymers. J. Power Sources2004,132(1-2),256-260.
    23. Kong, X. X.; Jenekhe, S. A., Block copolymers containing conjugated polymer and polypeptidesequences: Synthesis and self-assembly of electroactive and photoactive nanostructures.Macromolecules2004,37(22),8180-8183.
    24. Boker, A.; Lin, Y.; Chiapperini, K.; Horowitz, R.; Thompson, M.; Carreon, V.; Xu, T.; Abetz, C.;Skaff, H.; Dinsmore, A. D.; Emrick, T.; Russell, T. P., Hierarchical nanoparticle assemblies formedby decorating breath figures. Nat. Mater.2004,3(5),302-306.
    25. Kleitz, F.; Thomson, S. J.; Liu, Z.; Terasaki, O.; Schuth, F., Porous mesostructured zirconiumoxophosphate with cubic (Ia(3)over-bard) symmetry. Chem. Mater.2002,14(10),4134-4144.
    26. Taylor, P.; Xu, C.; Fletcher, P. D. I.; Paunov, V. N., A novel technique for preparation ofmonodisperse giant liposomes. Chem. Commun.2003,(14),1732-1733.
    27. Caruso, F.; Caruso, R. A.; Mohwald, H., Nanoengineering of inorganic and hybrid hollow spheresby colloidal templating. Science1998,282(5391),1111-1114.
    28. Bucknall, D. G.; Anderson, H. L., Polymers get organized. Science2003,302(5652),1904-1905.
    29. Zhang, L.; Eisenberg, A., Multiple morphologies and characteristics of 'crew-cut' micelle-likeaggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am.Chem. Soc.1996,118(13),3168-3181.
    30. Otsuka, H.; Nagasaki, Y.; Kataoka, K., Self-assembly of poly(ethylene glycol)-based blockcopolymers for biomedical applications. Curr. Opin. Colloid Interface Sci.2001,6(1),3-10.
    31. Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A., Advanced drug delivery devices viaself-assembly of amphiphilic block copolymers. Adv. Drug Del. Rev.2001,53(1),95-108.
    32. Won, Y. Y.; Davis, H. T.; Bates, F. S., Giant wormlike rubber micelles. Science1999,283(5404),960-963.
    33. Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A.,Polymersomes: Tough vesicles made from diblock copolymers. Science1999,284(5417),1143-1146.
    34. Jain, S.; Bates, F. S., On the origins of morphological complexity in block copolymer surfactants.Science2003,300(5618),460-464.
    35. Antonietti, M.; Forster, S., Vesicles and liposomes: A self-assembly principle beyond lipids. Adv.Mater.2003,15(16),1323-1333.
    36. Zhang, L.; Eisenberg, A., Multiple morphologies of 'crew-cut' aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers. Science1995,268(5218),1728-1745.
    37. Zhang, L.; Yu, K.; Eisenberg, A., Ion-induced morphological changes in 'crew-cut' aggregates ofamphiphilic block copolymers. Science1996,272(5269),1777-1779.
    38. Zhang, L.; Eisenberg, A., Morphogenic effect of added ions on crew-cut aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules1996,29(27),8805-8815.
    39. Zhang, L.; Eisenberg, A., Formation of crew-cut aggregates of various morphologies fromamphiphilic block copolymers in solution. Polym. Adv. Technol.1998,9(10-11),677-699.
    40. Zhang, L.; Bartels, C.; Yu, Y.; Shen, H.; Eisenberg, A., Mesosized crystal-like structure ofhexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Phys. Rev.Lett.1997,79(25),5034-5037.
    41. Yu, K.; Eisenberg, A., Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilicPS-b-PEO diblock copolymers in solution. Macromolecules1998,31(11),3509-3518.
    42. Cameron, N. S.; Eisenberg, A.; Brown, G. R., Amphiphilic block copolymers as bile acid sorbents:2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-assemblyand application to serum cholesterol reduction. Biomacromolecules2002,3(1),124-132.
    43. Shen, H.; Eisenberg, A., Control of architecture in block-copolymer vesicles. Angew. Chem. Int.Ed.2000,39(18),3310-3312.
    44. Luo, L.; Eisenberg, A., Thermodynamic stabilization mechanism of block copolymer vesicles. J.Am. Chem. Soc.2001,123(5),1012-1013.
    45. Luo, L.; Eisenberg, A., One-step preparation of block copolymer vesicles with preferentiallysegregated acidic and basic corona chains. Angew. Chem. Int. Ed.2002,41(6),1001-1004.
    46. Discher, D. E.; Eisenberg, A., Polymer vesicles. Science2002,297(5583),967-973.
    47. Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D., Novel bowl-shaped morphology ofcrew-cut aggregates from Amphiphilic block copolymers of styrene and5-(N,N-diethylamino)isoprene. Langmuir2002,18(8),3358-3363.
    48. Shen, H.; Eisenberg, A., Block length dependence of morphological phase diagrams of the ternarysystem of PS-b-PAA/dioxane/H2O. Macromolecules2000,33(7),2561-2572.
    49. Shen, H.; Eisenberg, A., Morphological phase diagram for a ternary system of block copolymerPS310-b-PAA52/dioxane/H2O. J. Phys. Chem. B1999,103(44),9473-9487.
    50. Yu, Y.; Zhang, L.; Eisenberg, A., Morphogenic effect of solvent on crew-cut aggregates ofapmphiphilic diblock copolymers. Macromolecules1998,31(4),1144-1154.
    51. Desbaumes, L.; Eisenberg, A., Single-solvent preparation of crew-cut aggregates of variousmorphologies from an amphiphilic diblock copolymer. Langmuir1999,15(1),36-38.
    52. Klok, H. A.; Lecommandoux, S., Supramolecular materials via block copolymer self-assembly.Adv. Mater.2001,13(16),1217-1229.
    53. Jenekhe, S. A.; Chen, X. L., Self-assembled aggregates of rod-coil block copolymers and theirsolubilization and encapsulation of fullerenes. Science1998,279(5358),1903-1907.
    54. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil blockcopolymers. Science1999,283(5400),372-375.
    55. Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G. P., Self-assembled smectic phases in rod-coilblock copolymers. Science1996,273(5273),343-346.
    56. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M., Helicalsuperstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science1998,280(5368),1427-1430.
    57. Cornelissen, J. J. L. M.; Donners, J. J. J. M.; de Gelder, R.; Graswinckel, W. S.; Metselaar, G. A.;Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M., Beta-helical polymers fromisocyanopeptides. Science2001,293(5530),676-680.
    58. Lee, M.; Cho, B. K.; Ihn, K. J.; Lee, W. K.; Oh, N. K.; Zin, W. C., Supramolecular honeycomb byself-assembly of molecular rods in rod-coil molecule. J. Am. Chem. Soc.2001,123(19),4647-4648.
    59. Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.;Rowan, A. E.; Nolte, R. J. M., Vesicles and polymerized vesicles from thiophene-containingrod-coil block copolymers. Angew. Chem. Int. Ed.2003,42(7),772-776.
    60. Hudson, S. D.; Jung, H. T.; Percec, V.; Cho, W. D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S.K., Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science1997,278(5337),449-452.
    61. Percec, V.; Ahn, C. H.; Barboiu, B., Self-encapsulation, acceleration and control in the radicalpolymerization of monodendritic monomers via self-assembly. J. Am. Chem. Soc.1997,119(52),12978-12979.
    62. Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko, S. S., Controllingpolymer shape through the self-assembly of dendritic side-groups. Nature1998,391(6663),161-164.
    63. Percec, V.; Cho, W. D.; Ungar, G., Increasing the diameter of cylindrical and sphericalsupramolecular dendrimers by decreasing the solid angle of their monodendrons via peripheryfunctionalization. J. Am. Chem. Soc.2000,122(42),10273-10281.
    64. Zeng, X. B.; Ungar, G.; Liu, Y. S.; Percec, V.; Dulcey, S. E.; Hobbs, J. K., Supramoleculardendritic liquid quasicrystals. Nature2004,428(6979),157-160.
    65. Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Hummelin,S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonev, S. N.; Vinogradov, S. A.,Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature2004,430(7001),764-768.
    66. Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Heiney, P. A., Self-assembly of dendriticcrowns into chiral supramolecular spheres. J. Am. Chem. Soc.2009,131(3),1294-1304.
    67. Gitsov, I.; Wooley, K. L.; Hawker, C. J.; Ivanova, P. T.; Frechet, J. M. J., Synthesis and propertiesof novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linearpolymers. Macromolecules1993,26(21),5621-5627.
    68. Gitsov, I.; Frechet, J. M. J., Solution and solid-state properties of hybrid linear-dendritic blockcopolymers. Macromolecules1993,26(24),6536-6546.
    69. Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J., Stimuli-responsive supramolecular assemblies oflinear-dendritic copolymers. J. Am. Chem. Soc.2004,126(38),11936-11943.
    70. Van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; Van Genderen, M. H. P.; Meijer, E. W.,Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation.Science1995,268(5217),1592-1595.
    71. Van Hest, J. C. M.; Baars, M. W. P. L.; Elissen-Roman, C.; Van Genderen, M. H. P.; Meijer, E. W.,Acid-functionalized amphiphiles derived from polystyrene-poly(propylene imine) dendrimers,with a pH-dependent aggregation. Macromolecules1995,28(19),6689-6691.
    72. Cheng, C. X.; Huang, Y.; Tang, R. P.; Chen, E. Q.; Xi, F., Molecular architecture effect onself-assembled nanostructures of a linear-dendritic rod triblock copolymer in solution.Macromolecules2005,38(8),3044-3047.
    73. Xie, D.; Jiang, M.; Zhang, G. Z.; Chen, D. Y., Hydrogen-bonded dendronized polymers and theirself-assembly in solution. Chem. Eur. J.2007,13(12),3346-3353.
    74. Schenning, A. P. H. J.; Elissen-Roman, C.; Weener, J. W.; Baars, M. W. P. L.; van der Gaast, S. J.;Meijer, E. W., Amphiphilic dendrimers as building blocks in supramolecular assemblies. J. Am.Chem. Soc.1998,120(32),8199-8208.
    75. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.; Yang, L.; Wei, Y., Fluorescence andaggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromaticchromophores: the effect of dendritic architectures. J. Am. Chem. Soc.2004,126(46),15180-15194.
    76. Wang, B. B.; Zhang, X.; Jia, X. R.; Luo, Y. F.; Sun, Z.; Yang, L.; Ji, Y.; Wei, Y., Poly(amidoamine)dendrimers with phenyl shells: fluorescence and aggregation behavior. Polymer2004,45(25),8395-8402.
    77. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    78. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of giant polymer vesicles with controlledsizes. Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    79. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Real-time hierarchical setf-assembly of large compoundvesicles from an amphiphilic hyperbranched multiarm copolymer. Small2007,3(7),1170-1173.
    80. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of large multimolecularmicelles from hyperbranched star copolymers. Macromol. Rapid Commun.2007,28(5),591-596.
    81. Zhou, Y. F.; Yan, D. Y., Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int.Ed.2005,44(21),3223-3226.
    82. Guo, M. Q.; Hong, H. Y.; Sun, X. Y.; Zhou, Y. F.; Yan, D. Y., Macroscopic three-dimensionalsupramoelcular networks through hierarchical self-assembly of polymer vesicles. Acta Polym. Sin.2008,(4),303-308.
    83. Cheng, H. X.; Yuan, X. J.; Sun, X. Y.; Li, K. P.; Zhou, Y. F.; Yan, D. Y., Effect of Degree ofBranching on the Self-Assembly of Amphiphilic Hyperbranched Multiarm Copolymers.Macromolecules2010,43(2),1143-1147.
    84. Guo, B.; Shi, Z. Q.; Yao, Y.; Zhou, Y. F.; Yan, D. Y., Facile preparation of novel peptosomesthrough complex self-assembly of hyperbranched polyester and polypeptide. Langmuir2009,25(12),6622-6626.
    85. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V. V.,Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem.Soc.2004,126(31),9675-9684.
    86. Ornatska, M.; Peleshanko, S.; Rybak, B.; Holzmueller, J.; Tsukruk, V. V., Supramolecularmultiscale fibers through one-dimensional assembly of dendritic molecules. Adv. Mater.2004,16(23-24),2206-2212.
    87. Ornatska, M.; Bergman, K. N.; Rybak, B.; Peleshanko, E.; Tsukruk, V. V., Nanofibers fromfunctionalized dendritic molecules. Angew. Chem. Int. Ed.2004,43(39),5246-5249.
    88. Liu, C. H.; Gao, C.; Yan, D. Y., Honeycomb-patterned photoluminescent films fabricated byself-assembly of hyperbranched polymers. Angew. Chem. Int. Ed.2007,46(22),4128-4131.
    89. Dong, W. Y.; Zhou, Y. F.; Yan, D. Y.; Mai, Y. Y.; He, L.; Jin, C. Y., Honeycomb-structuredmicroporous films made from hyperbranched polymers by the breath figure method. Langmuir2009,25(1),173-178.
    90. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    91. Jia, Z. F.; Zhou, Y. F.; Yan, D. Y., Amphiphilic star-block copolymers based on a hyperbranchedcore: Synthesis and supramolecular self-assembly. J. Polym. Sci., Part A: Polym. Chem.2005,43(24),6534-6544.
    92. Tian, H. Y.; Deng, C.; Lin, H.; Sun, J. R.; Deng, M. X.; Chen, X. S.; Jing, X. B., Biodegradablecationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization.Biomaterials2005,26(20),4209-4217.
    93. Chen, Y.; Shen, Z.; Frey, H.; Perez-Prieto, J.; Stiriba, S. E., Synergistic assembly of hyperbranchedpolyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. Chem.Commun.2005,(6),755-757.
    94. Zou, J.; Ye, X.; Shi, W., Crosslinkable vesicles self-assembled by amphiphilic hyperbranchedpolyester. Macromol. Rapid Commun.2005,26(21),1741-1745.
    95. You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, P. H., Synthesis of a dendritic core-shell nanostructurewith a temperature-sensitive shell. Adv. Mater.2004,16(21),1953-1957.
    96.童林荟,环糊精化学—基础与应用.科学出版社:北京,2001.
    97.刘育;尤长城;张衡益,超分子化学—合成受体的分子识别与组装.南开大学出版社:天津,2001.
    98. Rekharsky, M. V.; Inoue, Y., Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98(5),1875-1917.
    99. Dodziuk, H., Cyclodextrins and their complexes: chemistry, analytical methods, applications.Wiley-VCH: Weinheim,2006.
    100. Guo, M. Y.; Jiang, M., Macromolecular self-assembly based on inclusion complexation ofcyclodextrins. Prog. Chem.2007,19(4),557-566.
    101.刘育;张衡益;李莉;王浩,纳米超分子化学—从合成受体到功能组装体.化学工业出版社:北京,2004.
    102. Miyauchi, M.; Harada, A., Construction of supramolecular polymers with alternating alpha-,beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem.Soc.2004,126(37),11418-11419.
    103. Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., Chiral supramolecular polymers formedby host-guest interactions. J. Am. Chem. Soc.2005,127(9),2984-2989.
    104. Hasegawa, Y.; Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., Supramolecularpolymers formed from beta-cyclodextrms dimer linked by poly(ethylene glycol) and guest dimers.Macromolecules2005,38(9),3724-3730.
    105. Tellini, V. H. S.; Jover, A.; Garcia, J. C.; Galantini, L.; Meijide, F.; Tato, J. V., Thermodynamics offormation of host-guest supramolecular polymers. J. Am. Chem. Soc.2006,128(17),5728-5734.
    106. Dong, H. Q.; Li, Y. Y.; Cai, S. J.; Zhuo, R. X.; Zhang, X. Z.; Liu, L. J., A facile one-potconstruction of supramolecular polymer micelles from alpha-cyclodextrin andpoly(epsilon-caprolactone). Angew. Chem. Int. Ed.2008,47(30),5573-5576.
    107. Liu, J. H.; Sondjaja, H. R.; Tam, K. C., Alpha-cyclodextrin-induced self-assembly of adouble-hydrophilic block copolymer in aqueous solution. Langmuir2007,23(9),5106-5109.
    108. Huang, J.; Ren, L. X.; Chen, Y. M., pH-temperature-sensitive supramolecular micelles based oncyclodextrin polyrotaxane. Polym. Int.2008,57(5),714-721.
    109. Yuan, R. X.; Shuai, X. T., Supramolecular micellization and pH-inducible gelation of ahydrophilic block copolymer by block-specific threading of alpha-cyclodextrin. J. Polym. Sci.,Part B: Polym. Phys.2008,46(8),782-790.
    110. Joseph, J.; Dreiss, C. A.; Cosgrove, T.; Pedersen, J. S., Rupturing polymeric micelles withcyclodextrins rupturing polymeric micelles with cyclodextrins. Langmuir2007,23(2),460-466.
    111. Park, C.; Lee, I. H.; Lee, S.; Song, Y.; Rhue, M.; Kim, C., Cyclodextrin-covered organic nanotubesderived from self-assembly of dendrons and their supramolecular transformation. PNAS2006,103(5),1199-1203.
    112. Wang, J.; Jiang, M., Polymeric self-assembly into micelles and hollow spheres with multiscalecavities driven by inclusion complexation. J. Am. Chem. Soc.2006,128(11),3703-3708.
    113. Guo, M. Y.; Jiang, M.; Zhang, G. Z., Surface modification of polymeric vesicles via host-guestinclusion complexation. Langmuir2008,24(19),10583-10586.
    114. Tomatsu, I.; Hashidzume, A.; Harada, A., Photoresponsive hydrogel system using molecularrecognition of alpha-cyclodextrin. Macromolecules2005,38(12),5223-5227.
    115. Tomatsu, I.; Hashidzume, A.; Harada, A., Contrast viscosity changes upon photoirradiation formixtures of poly(acrylic acid)-based alpha-cyclodextrin and azobenzene polymers. J. Am. Chem.Soc.2006,128(7),2226-2227.
    116. Wang, Y. P.; Ma, N.; Wang, Z. Q.; Zhang, X., Photocontrolled reversible supramolecularassemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. Angew. Chem. Int. Ed.2007,46(16),2823-2826.
    117. Wang, Y.; Xu, H.; Zhang, X., Tuning the amphiphilicity of building blocks: Controlledself-assembly and disassembly for functional supramolecular materials. Adv. Mater.2009,21(28),2849-2864.
    118. Zou, J.; Tao, F.; Jiang, M., Optical switching of self-assembly and disassembly of noncovalentlyconnected amphiphiles. Langmuir2007,23(26),12791-12794.
    119. Zou, J.; Guan, B.; Liao, X. J.; Jiang, M.; Tao, F. G., Dual reversible self-assembly ofPNIPAM-based amphiphiles formed by inclusion complexation. Macromolecules2009,42(19),7465-7473.
    120. Liu, Z.; Jiang, M., Reversible aggregation of gold nanoparticles driven by inclusion complexation.J. Mater. Chem.2007,17(40),4249-4254.
    121. Luo, C. H.; Zuo, F.; Zheng, Z. H.; Cheng, X.; Ding, X. B.; Peng, Y. X., Tunable smart surface ofgold nanoparticles achieved by light-controlled molecular recognition effection. Macromol. RapidCommun.2008,29(2),149-154.
    122. Choi, H. S.; Ooya, T.; Huh, K. M.; Yui, N., pH-triggered changes in assembling properties ofbeta-cyclodextrin-conjugated poly(epsilon-lysine) complexes. Biomacromolecules2005,6(3),1200-1204.
    123. Wei, H. L.; Yu, H. Q.; Zhang, A. Y.; Sun, L. G.; Hou, D. D.; Feng, Z. G., Synthesis andcharacterization of thermosensitive and supramolecular structured hydrogels. Macromolecules2005,38(21),8833-8839.
    124. Kidowaki, M.; Zhao, C. M.; Kataoka, T.; Ito, K., Thermoreversible sol-gel transition of anaqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin andpolyethylene glycol. Chem. Commun.2006,(39),4102-4103.
    125. Kataoka, T.; Kidowaki, M.; Zhao, C. M.; Minamikawa, H.; Shimizu, T.; Ito, K., Local andnetwork structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) andmethylated alpha-cyclodextrins. J. Phys. Chem. B2006,110(48),24377-24383.
    126. Wintgens, V.; Charles, M.; Allouache, F.; Amiel, C., Triggering the thermosensitive properties ofhydrophobically modified poly(N-isopropylacrylamide) by complexation with cyclodextrinpolymers. Macromol. Chem. Phys.2005,206(18),1853-1861.
    127. Ritter, H.; Sadowski, O.; Tepper, E., Influence of cyclodextrin molecules on the synthesis and thethermoresponsive solution behavior of N-isopropylacrylamide copolymers with adamantyl groupsin the side-chains. Angew. Chem. Int. Ed.2003,42(27),3171-3173.
    128. Schmitz, S.; Ritter, H., Unusual solubility properties of polymethacrylamides as a result ofsupramolecular interactions with cyclodextrin. Angew. Chem. Int. Ed.2005,44(35),5658-5661.
    129. Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H., Switchablehydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymerswith cyclodextrin dimers. Angew. Chem. Int. Ed.2006,45(26),4361-4365.
    130. Zhang, Z. X.; Liu, X.; Xu, F. J.; Loh, X. J.; Kang, E. T.; Neoh, K. G.; Li, J., Pseudo-blockcopolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core andguest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly.Macromolecules2008,41(16),5967-5970.
    131. Castro, R.; Cuadrado, I.; Alonso, B.; Casado, C. M.; Moran, M.; Kaifer, A. E., Multisite inclusioncomplexation of redox active dendrimer guests. J. Am. Chem. Soc.1997,119(24),5760-5761.
    132. Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N., Well-definedassemblies of adamantyl-terminated poly(propylene imine) dendrimers and beta-cyclodextrin inwater. J. Chem. Soc. Perkin Trans.22000,(9),1914-1918.
    133. Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J., Supramolecular layer-by-layerassembly: Alternating adsorptions of guest-and host-functionalized molecules and particles usingmultivalent supramolecular interactions. J. Am. Chem. Soc.2005,127(20),7594-7600.
    134. Crespo-Biel, O.; Dordi, B.; Maury, P.; Peter, M.; Reinhoudt, D. N.; Huskens, J., Patterned, hybrid,multilayer nanostructures based on multivalent supramolecular interactions. Chem. Mater.2006,18(10),2545-2551.
    135. Maury, P.; Peter, M.; Crespo-Biel, O.; Ling, X. Y.; Reinhoudt, D. N.; Huskens, J., Patterning themolecular printboard: patterning cyclodextrin monolayers on silicon oxide using nanoimprintlithography and its application in3D multilayer nanostructuring. Nanotechnology2007,18(4),1-9.
    136. Nijhuis, C. A.; Boukamp, B. A.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N., Electrochemistry offerrocenyl dendrimer-beta-cyclodextrin assemblies at the interface of an aqueous solution and amolecular printboard. J. Phys. Chem. C2007,111(27),9799-9810.
    137. Wang, H.; Wang, S. T.; Su, H.; Chen, K. J.; Armijo, A. L.; Lin, W. Y.; Wang, Y. J.; Sun, J.; Kamei,K.; Czernin, J.; Radu, C. G.; Tseng, H. R., A supramolecular approach for preparation ofsize-controlled nanoparticles. Angew. Chem. Int. Ed.2009,48(24),4344-4348.
    138. Zhu, X. Y.; Chen, L.; Yan, D. Y.; Chen, Q.; Yao, Y. F.; Xiao, Y.; Hou, J.; Li, J. Y., Supramolecularself-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins.Langmuir2004,20(2),484-490.
    1. Russel, W. B.; Saville, D. A.; Schowalter, W. R., Colloidal dispersions. Cambridge UniversityPress: New York,1992.
    2. Matijevi, E., Uniform inorganic colloid dispersions. Achievements and challenges. Langmuir1994,10(1),8-16.
    3. Zhang, H.; Edwards, E. W.; Wang, D.; M hwald, H., Directing the self-assembly of nanocrystalsbeyond colloidal crystallization. Phys. Chem. Chem. Phys.2006,8(28),3288-3299.
    4. Li, W.; Yang, B.; Wang, D. Y., Fabrication of colloidal crystals with defined and complexstructures via layer-by-layer transfer. Langmuir2008,24(23),13772-13775.
    5. Gilbert, R. G., Emulsion polymerization: A mechanistic approach. Academic Press: London,1995.
    6. Asua, J. M., Miniemulsion polymerization. Prog. Polym. Sci.2002,27(7),1283-1346.
    7. Boutonnet, M.; Logdberg, S.; Svensson, E. E., Recent developments in the application ofnanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. ColloidInterface Sci.2008,13(4),270-286.
    8. Walther, A.; Hoffmann, M.; Muller, A. H. E., Emulsion polymerization using Janus particles asstabilizers. Angew. Chem. Int. Ed.2008,47(4),711-714.
    9. Stob er, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micronsize range. J. Colloid Interface Sci.1968,26(1),62-69.
    10. Iler, R. K., The chemistry of silica. Wiley-Interscience: New York,1979.
    11. Arshady, R., Suspension, emulsion, and dispersion polymerization: A methodological survey.Colloid Polym. Sci.1992,270(8),717-732.
    12. Zhang, L.; Eisenberg, A., Multiple morphologies of 'crew-cut' aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers. Science1995,268(5218),1728-1745.
    13. Zhang, L.; Eisenberg, A., Multiple morphologies and characteristics of 'crew-cut' micelle-likeaggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am.Chem. Soc.1996,118(13),3168-3181.
    14. Zhang, G. Z.; Liu, L.; Zhao, Y.; Ning, F. L.; Jiang, M.; Wu, C., Self-assembly of carboxylatedpoly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer chains in water via amicrophase inversion. Macromolecules2000,33(17),6340-6343.
    15. Ikkala, O.; Ten Brinke, G., Functional materials based on self-assembly of polymericsupramolecules. Science2002,295(5564),2407-2409.
    16. Huang, Y.; Li, L.; Fang, Y., Preparation of size-tunable, highly monodisperse particles byself-assembly of N-phthaloylchitosan-g-polycaprolactone molecular bottle brushes. Mater. Lett.2009,63(16),1416-1418.
    17. Harada, A.; Nakanishi, K.; Ichimura, S.; Kojima, C.; Kono, K., Spontaneous formation ofnarrowly-distributed self-assembly from polyamidoamine dendron-poly(l-lysine) blockcopolymers through helix-coil transition of poly(l-lysine) block. J. Polym. Sci., Part A: Polym.Chem.2009,47(4),1217-1223.
    18. Erhardt, R.; Zhang, M. F.; Boker, A.; Zettl, H.; Abetz, C.; Frederik, P.; Krausch, G.; Abetz, V.;Muller, A. H. E., Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid)hemispheres. J. Am. Chem. Soc.2003,125(11),3260-3267.
    19. Nie, L.; Liu, S. Y.; Shen, W. M.; Chen, D. Y.; Jiang, M., One-pot synthesis of amphiphilicpolymeric Janus particles and their self-assembly into supermicelles with a narrow sizedistribution. Angew. Chem. Int. Ed.2007,46(33),6321-6324.
    20. Wang, J.; Jiang, M., Polymeric self-assembly into micelles and hollow spheres with multiscalecavities driven by inclusion complexation. J. Am. Chem. Soc.2006,128(11),3703-3708.
    21. Muller, A. H. E.; Yan, D. Y.; Wulkow, M., Molecular parameters of hyperbranched polymers madeby self-condensing vinyl polymerization.1. Molecular weight distribution. Macromolecules1997,30(23),7015-7023.
    22. Yan, D. Y.; Zhou, Z. P., Molecular weight distribution of hyperbranched polymers generated frompolycondensation of AB2type monomers in the presence of multifunctional core moieties.Macromolecules1999,32(3),819-824.
    23. Yan, D. Y.; Zhou, Z. P.; Muller, A. H. E., Molecular weight distribution of hyperbranchedpolymers generated by self-condensing vinyl polymerization in presence of a multifunctionalinitiator. Macromolecules1999,32(2),245-250.
    24. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    25. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of giant polymer vesicles with controlledsizes. Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    26. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V. V.,Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem.Soc.2004,126(31),9675-9684.
    27. Tian, H. Y.; Deng, C.; Lin, H.; Sun, J. R.; Deng, M. X.; Chen, X. S.; Jing, X. B., Biodegradablecationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization.Biomaterials2005,26(20),4209-4217.
    28. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    29. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of large multimolecularmicelles from hyperbranched star copolymers. Macromol. Rapid Commun.2007,28(5),591-596.
    30.童林荟,环糊精化学—基础与应用.科学出版社:北京,2001.
    31.刘育;尤长城;张衡益,超分子化学—合成受体的分子识别与组装.南开大学出版社:天津,2001.
    32. Rekharsky, M. V.; Inoue, Y., Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98(5),1875-1917.
    33. Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J., Supramolecular layer-by-layerassembly: Alternating adsorptions of guest-and host-functionalized molecules and particles usingmultivalent supramolecular interactions. J. Am. Chem. Soc.2005,127(20),7594-7600.
    34. Guo, M. Y.; Jiang, M.; Zhang, G. Z., Surface modification of polymeric vesicles via host-guestinclusion complexation. Langmuir2008,24(19),10583-10586.
    35. Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H., Switchablehydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymerswith cyclodextrin dimers. Angew. Chem. Int. Ed.2006,45(26),4361-4365.
    36.侯健,超支化聚合物的制备和功能化.上海交通大学博士学位论文:2000.
    37. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y., Synthesis and supramolecularself-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyethercore. J. Polym. Sci., Part A: Polym. Chem.2008,46(2),668-681.
    38. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Lu, H. W., Effect of reaction temperature on degree ofbranching in cationic polymerization of3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules2003,36(25),9667-9669.
    39. Hawker, C. J.; Lee, R.; Frechet, J. M. J., One-step synthesis of hyperbranched dendritic polyesters.J. Am. Chem. Soc.1991,113(12),4583-4588.
    40. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Hou, J., Quantitative dependence of crystallinity on degree ofbranching for hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane]. New J. Phys.2005,7,42-45.
    41. Magnusson, H.; Malmstrom, E.; Hult, A.; Johansson, M., The effect of degree of branching on therheological and thermal properties of hyperbranched aliphatic polyethers. Polymer2002,43(2),301-306.
    42. Jensen, J. J.; Grimsley, M.; Mathias, L. J., Adamantyl-substituted phenolic polymers. J. Polym.Sci., Part A: Polym. Chem.1996,34(3),397-402.
    43. Chern, Y. T.; Shiue, H. C.; Kao, S. C., Synthesis and characterization of new polyamidescontaining adamantyl and diamantyl moieties in the main chain. J. Polym. Sci., Part A: Polym.Chem.1998,36(5),785-792.
    44. Acar, H. Y.; Jensen, J. J.; Thigpen, K.; McGowen, J. A.; Mathias, L. J., Evaluation of the spacereffect on adamantane-containing vinyl polymer Tg's. Macromolecules2000,33(10),3855-3859.
    45. Zhang, L.; Yu, K.; Eisenberg, A., Ion-induced morphological changes in 'crew-cut' aggregates ofamphiphilic block copolymers. Science1996,272(5269),1777-1779.
    46. Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., Chiral supramolecular polymers formedby host-guest interactions. J. Am. Chem. Soc.2005,127(9),2984-2989.
    47. Schilli, C. M.; Zhang, M. F.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, G.;Muller, A. H. E., A new double-responsive block copolymer synthesized via RAFT polymerization:Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules2004,37(21),7861-7866.
    48. Erhardt, R.; Boker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Muller,A. H. E., Janus micelles. Macromolecules2001,34(4),1069-1075.
    49. Yuan, X. F.; Jiang, M.; Zhao, H. Y.; Wang, M.; Zhao, Y.; Wu, C., Noncovalently connectedpolymeric micelles in aqueous medium. Langmuir2001,17(20),6122-6126.
    50. Wang, J.; Jiang, M., Studies on self-assembly from lightly-crosslinked polymers via inclusioninteraction. Acta Polym. Sin.2007,(10),979-985.
    51. Dong, W. Y.; Zhou, Y. F.; Yan, D. Y.; Li, H. Q.; Liu, Y., PH-responsive self-assembly ofcarboxyl-terminated hyperbranched polymers. Phys. Chem. Chem. Phys.2007,9(10),1255-1262.
    52. Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. C.; Kotov, N. A., Self-assembly of CdTenanocrystals into free-floating sheets. Science2006,314(5797),274-278.
    53. Fang, B.; Walther, A.; Wolf, A.; Xu, Y. Y.; Yuan, J. Y.; Muller, A. H. E., Undulatedmulticompartment cylinders by the controlled and directed stacking of polymer micelles with acompartmentalized corona. Angew. Chem. Int. Ed.2009,48(16),2877-2880.
    1. Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T., Comb-typegrafted hydrogels with rapid de-swelling response to temperature changes. Nature1995,374(6519),240-242.
    2. Bergbreiter, D. E., Using soluble polymers to recover catalysts and ligands. Chem. Rev.2002,102(10),3345-3384.
    3. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Del. Rev.2006,58(15),1655-1670.
    4. Hoffman, A. S.; Stayton, P. S., Conjugates of stimuli-responsive polymers and proteins. Prog.Polym. Sci.2007,32(8-9),922-932.
    5. Tao, L.; Mantovani, G.; Lecolley, F.; Haddleton, D. M., Alpha-aldehyde terminally functionalmethacrylic polymers from living radical polymerization: Application in protein conjugation"pegylation". J. Am. Chem. Soc.2004,126(41),13220-13221.
    6. Ma, H. W.; Hyun, J. H.; Stiller, P.; Chilkoti, A.,"Non-fouling" oligo(ethyleneglycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radicalpolymerization. Adv. Mater.2004,16(4),338-341.
    7. Popescu, D. C.; Lems, R.; Rossi, N. A. A.; Yeoh, C. T.; Loos, J.; Holder, S. J.; Bouten, C. V. C.;Sommerdijk, N. A. J. M., The patterning and alignment of muscle cells using the selectiveadhesion of poly(oligoethylene glycol methyl ether methacrylate)-based ABA block copolymers.Adv. Mater.2005,17(19),2324-2329.
    8. Fujishige, S.; Kubota, K.; Ando, I., Phase transition of aqueous solutions ofpoly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem.1989,93(8),3311-3313.
    9. Sosnik, A.; Cohn, D., Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide)multiblock copolymers. Biomaterials2005,26(4),349-357.
    10. Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.;McCormick, C. L., Direct synthesis of thermally responsive DMA/NIPAM diblock andDMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization.Macromolecules2006,39(5),1724-1730.
    11. Li, Y.; Lokitz, B. S.; McCormick, C. L., Thermally responsive vesicles and their structural"locking" through polyelectrolyte complex formation. Angew. Chem. Int. Ed.2006,45(35),5792-5795.
    12. Sinturel, C.; Vayer, M.; Erre, R.; Amenitsch, H., Nanostructured polymers obtained frompolyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester.Macromolecules2007,40(7),2532-2538.
    13. Xiao, X.; Fu, Y. Q.; Zhou, J. J.; Bo, Z. S.; Li, L.; Chan, C. M., Reversible thermally responsiveand luminescent coil-rod-coil triblock copolymers. Macromol. Rapid Commun.2007,28(9),1003-1009.
    14. Zhang, X. Q.; Li, J. G.; Li, W.; Zhang, A., Synthesis and characterization of thermo-andpH-responsive double-hydrophilic diblock copolypeptides. Biomacromolecules2007,8(11),3557-3567.
    15. Aulenta, F.; Hayes, W.; Rannard, S., Dendrimers: a new class of nanoscopic containers anddelivery devices. Eur. Polym. J.2003,39(9),1741-1771.
    16. Alarcon, C. D. H.; Pennadam, S.; Alexander, C., Stimuli responsive polymers for biomedicalapplications. Chem. Soc. Rev.2005,34(3),276-285.
    17. Kimura, M.; Kato, M.; Muto, T.; Hanabusa, K.; Shirai, H., Temperature-sensitive dendritic hosts:Synthesis, characterization, and control of catalytic activity. Macromolecules2000,33(4),1117-1119.
    18. Kono, K.; Miyoshi, T.; Haba, Y.; Murakami, E.; Kojima, C.; Harada, A., Temperature sensitivitycontrol of alkylamide-terminated poly(amidoamine) dendrimers induced by guest moleculebinding. J. Am. Chem. Soc.2007,129(23),7222-7223.
    19. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y., Synthesis and supramolecularself-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyethercore. J. Polym. Sci., Part A: Polym. Chem.2008,46(2),668-681.
    20. Haba, Y.; Harada, A.; Takagishi, T.; Kono, K., Rendering poly(amidoamine) orpoly(propylenimine) dendrimers temperature sensitive. J. Am. Chem. Soc.2004,126(40),12760-12761.
    21. Haba, Y.; Kojima, C.; Harada, A.; Kono, K., Control of temperature-sensitive properties ofpoly(amidoamine) dendrimers using peripheral modification with various alkylamide groups.Macromolecules2006,39(21),7451-7453.
    22. You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, P. H., Synthesis of a dendritic core-shell nanostructurewith a temperature-sensitive shell. Adv. Mater.2004,16(21),1953-1957.
    23. Liu, H.; Chen, Y.; Shen, Z., Thermoresponsive hyperbranched polyethylenimines withisobutyramide functional groups. J. Polym. Sci., Part A: Polym. Chem.2007,45(6),1177-1184.
    24. Tono, Y.; Kojima, C.; Haba, Y.; Takahashi, T.; Harada, A.; Yagi, S.; Kono, K., Thermosensitiveproperties of poly(amidoamine) dendrimers with peripheral phenylalanine residues. Langmuir2006,22(11),4920-4922.
    25. Parrott, M. C.; Marchington, E. B.; Valliant, J. F.; Adronov, A., Synthesis and properties ofcarborane-functionalized aliphatic polyester dendrimers. J. Am. Chem. Soc.2005,127(34),12081-12089.
    26. Parrott, M. C.; Valliant, J. F.; Adronov, A., Thermally induced phase transition ofcarborane-functionalized aliphatic polyester dendrimers in aqueous media. Langmuir2006,22(12),5251-5255.
    27. Aathimanikandan, S. V.; Savariar, E. N.; Thayumanavan, S., Temperature-sensitive dendriticmicelles. J. Am. Chem. Soc.2005,127(42),14922-14929.
    28. Jia, Z. F.; Chen, H.; Zhu, X. Y.; Yan, D. Y., Backbone-thermoresponsive hyperbranched polyethers.J. Am. Chem. Soc.2006,128(25),8144-8145.
    29. Li, W.; Zhang, A.; Schluter, A. D., Thermoresponsive dendronized polymers with tunable lowercritical solution temperatures. Chem. Commun.2008,(43),5523-5525.
    30. Li, W.; Zhang, A.; Chen, Y.; Feldman, K.; Wu, H.; Schluter, A. D., Low toxic, thermoresponsivedendrimers based on oligoethylene glycols with sharp and fully reversible phase transitions. Chem.Commun.2008,(45),5948-5950.
    31. Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schluter, A. D., Thermoresponsive dendronizedpolymers. Macromolecules2008,41(10),3659-3667.
    32. Frey, H.; Haag, R., Dendritic polyglycerol: A new versatile biocompatible material. Rev. Mol.Biotechnol.2002,90(3-4),257-267.
    33. Wilms, D.; Stiriba, S. E.; Frey, H., Hyperbranched polyglycerols: From the controlled synthesis ofbiocompatible polyether polyols to multipurpose applications. Acc. Chem. Res.2010,43(1),129-141.
    34. Calderon, M.; Quadir, M. A.; Sharma, S. K.; Haag, R., Dendritic polyglycerols for biomedicalapplications. Adv. Mater.2010,22(2),190-218.
    35. Sunder, A.; Kramer, M.; Hanselmann, R.; Mulhaupt, R.; Frey, H., Molecular nanocapsules basedon amphiphilic hyperbranched polyglycerols. Angew. Chem. Int. Ed.1999,38(23),3552-3555.
    36. Kramer, M.; Stumbe, J. F.; Turk, H.; Krause, S.; Komp, A.; Delineau, L.; Prokhorova, S.; Kautz,H.; Haag, R., pH-responsive molecular nanocarriers based on dendritic core-shell architectures.Angew. Chem. Int. Ed.2002,41(22),4252-4256.
    37. Turk, H.; Shukla, A.; Rodrigues, P. C. A.; Rehage, H.; Haag, R., Water-soluble dendriticcore-shell-type architectures based on polyglycerol for solubilization of hydrophobic drugs. Chem.Eur. J.2007,13(15),4187-4196.
    38. Xu, S. J.; Luo, Y.; Graeser, R.; Warnecke, A.; Kratz, F.; Hauff, P.; Licha, K.; Haag, R.,Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnosticagents. Biorg. Med. Chem. Lett.2009,19(3),1030-1034.
    39. Siegers, C.; Biesalski, M.; Haag, R., Self-assembled monolayers of dendritic polyglycerolderivatives on gold that resist the adsorption of proteins. Chem. Eur. J.2004,10(11),2831-2838.
    40. Mecking, S.; Thomann, R.; Frey, H.; Sunder, A., Preparation of catalytically active palladiumnanoclusters in compartments of amphiphilic hyperbranched polyglycerols. Macromolecules2000,33(11),3958-3960.
    41. Sablong, R.; Schlotterbeck, U.; Vogt, D.; Mecking, S., Catalysis with soluble hybrids of highlybranched macromolecules with palladium nanoparticles in a continuously operated membranereactor. Adv. Synth. Catal.2003,345(3),333-336.
    42. Wan, D. C.; Fu, Q.; Huang, J. L., Synthesis of a thermoresponsive shell-crosslinked3-layeronion-like polymer particle with a hyperbranched polyglycerol core. J. Polym. Sci., Part A: Polym.Chem.2005,43(22),5652-5660.
    43. Wan, D. C.; Pu, H. T., Synthesis of a thermoresponsive platinum nanocomposite using athree-layer onion-like polymer as template. Mater. Lett.2007,61(16),3404-3408.
    44. Ranganathan, K.; Deng, R.; Kainthan, R. K.; Wu, C.; Brooks, D. E.; Kizhakkedathu, J. N.,Synthesis of thermoresponsive mixed arm star polymers by combination of RAFT and ATRP froma multifunctional core and its self-assembly in water. Macromolecules2008,41(12),4226-4234.
    45. Shen, Y.; Kuang, M.; Shen, Z.; Nieberle, J.; Duan, H. W.; Frey, H., Gold nanoparticles coated witha thermosensitive hyperbranched polyelectrolyte: Towards smart temperature and pH nanosensors.Angew. Chem. Int. Ed.2008,47(12),2227-2230.
    46. Kojima, C.; Yoshimura, K.; Harada, A.; Sakanishi, Y.; Kono, K., Synthesis and characterization ofhyperbranched poly(glycidol) modified with pH-and temperature-sensitive groups. BioconjugateChem.2009,20(5),1054-1057.
    47. Guo, Z.; Zhang, Y. W.; Huang, W.; Zhou, Y. F.; Yan, D. Y., Terminal modification with1-adamantylamine to endow hyperbranched polyamidoamine with thermo-/pH-responsiveproperties. Macromol. Rapid Commun.2008,29(21),1746-1751.
    48. Rekharsky, M. V.; Inoue, Y., Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98(5),1875-1917.
    49. Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., Chiral supramolecular polymers formedby host-guest interactions. J. Am. Chem. Soc.2005,127(9),2984-2989.
    50. Andersson, B. S.; Aw, T. Y.; Jones, D. P., Mitochondrial transmembrane potential and pH gradientduring anoxia. Am. J. Physiol. Cell Ph.1987,252(4),21-24.
    51. Burton, J. D., The MTT assay to evaluate chemosensitivity. Methods mol. med.2005,110,69-78.
    52. Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H., Switchablehydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymerswith cyclodextrin dimers. Angew. Chem. Int. Ed.2006,45(26),4361-4365.
    53. Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A., Cationic polymerization of glycidol: Coexistenceof the activated monomer and active chain end mechanism. Macromolecules1994,27(2),320-322.
    54. Wang, X. L.; Chen, J. J.; Hong, L.; Tang, X. Z., Synthesis and ionic conductivity of hyperbranchedpoly(glycidol). J. Polym. Sci., Part B: Polym. Phys.2001,39(19),2225-2230.
    55.王思光;程海星;周永丰;颜德岳,烷基链封端的两亲性超支化聚缩水甘油的合成及自组装.功能高分子学报2008,21(02),128-132.
    56. Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R., Controlled synthesis of hyperbranchedpolyglycerols by ring-opening multibranching polymerization. Macromolecules1999,32(13),4240-4246.
    57. Kainthan, R. K.; Muliawan, E. B.; Hatzikiriakos, S. G.; Brooks, D. E., Synthesis, characterization,and viscoelastic properties of high molecular weight hyperbranched polyglycerols.Macromolecules2006,39(22),7708-7717.
    58. Wilms, D.; Wurm, F.; Nieberle, J.; Bohm, P.; Kemmer-Jonas, U.; Frey, H., Hyperbranchedpolyglycerols with elevated molecular weights: A facile two-step synthesis protocol based onpolyglycerol macroinitiators. Macromolecules2009,42(9),3230-3236.
    59. Jensen, J. J.; Grimsley, M.; Mathias, L. J., Adamantyl-substituted phenolic polymers. J. Polym.Sci., Part A: Polym. Chem.1996,34(3),397-402.
    60. Chern, Y. T.; Shiue, H. C.; Kao, S. C., Synthesis and characterization of new polyamidescontaining adamantyl and diamantyl moieties in the main chain. J. Polym. Sci., Part A: Polym.Chem.1998,36(5),785-792.
    61. Acar, H. Y.; Jensen, J. J.; Thigpen, K.; McGowen, J. A.; Mathias, L. J., Evaluation of the spacereffect on adamantane-containing vinyl polymer Tg's. Macromolecules2000,33(10),3855-3859.
    62. Schild, H. G., Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci.1992,17(2),163-249.
    63. Gan, L. H.; Cai, W. S.; Tam, K. C., Studies of phase transition of aqueous solution ofpoly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry andspectrophotometry. Eur. Polym. J.2001,37(9),1773-1778.
    64. Lutz, J. F.; Akdemir, O.; Hoth, A., Point by point comparison of two thermosensitive polymersexhibiting a similar LCST: Is the age of poly(NIPAM) over? J. Am. Chem. Soc.2006,128(40),13046-13047.
    65. Zhao, C. L.; Winnik, M. A.; Riess, G.; Croucher, M. D., Fluorescence probe techniques used tostudy micelle formation in water-soluble block copolymers. Langmuir1990,6(2),514-516.
    66. Astafieva, I.; Zhong, X. F.; Eisenberg, A., Critical micellization phenomena in blockpolyelectrolyte solutions. Macromolecules1993,26(26),7339-7352.
    67. Kabanov, A. V.; Nazarova, I. R.; Astafieva, I. V.; Batrakova, E. V.; Alakhov, V. Y.; Yaroslavov, A.A.; Kabanov, V. A., Micelle formation and solubilization of fluorescent probes inpoly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules1995,28(7),2303-2314.
    68. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    69. Radowski, M. R.; Shukla, A.; Berlepsch, H.; Bottcher, C.; Pickaert, G.; Rehage, H.; Haag, R.,Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew.Chem. Int. Ed.2007,46(8),1265-1269.
    70. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of large multimolecularmicelles from hyperbranched star copolymers. Macromol. Rapid Commun.2007,28(5),591-596.
    71. Corkhill, P. H.; Jolly, A. M.; Ng, C. O.; Tighe, B. J., Synthetic hydrogels:1. Hydroxyalkyl acrylateand methacrylate copolymers-water binding studies. Polymer1987,28(10),1758-1766.
    72. Barnes, A.; Corkhill, P. H.; Tighe, B. J., Synthetic hydrogels:3. Hydroxyalkyl acrylate andmethacrylate copolymers: surface and mechanical properties. Polymer1988,29(12),2191-2202.
    73. Cheng, H.; Shen, L.; Wu, C., LLS and FTIR studies on the hysteresis in association anddissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules2006,39(6),2325-2329.
    74. Miyauchi, M.; Harada, A., Construction of supramolecular polymers with alternating alpha-,beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem.Soc.2004,126(37),11418-11419.
    75. Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J., Supramolecular layer-by-layerassembly: Alternating adsorptions of guest-and host-functionalized molecules and particles usingmultivalent supramolecular interactions. J. Am. Chem. Soc.2005,127(20),7594-7600.
    76. Wang, J.; Jiang, M., Polymeric self-assembly into micelles and hollow spheres with multiscalecavities driven by inclusion complexation. J. Am. Chem. Soc.2006,128(11),3703-3708.
    77. Ritter, H.; Sadowski, O.; Tepper, E., Influence of cyclodextrin molecules on the synthesis and thethermoresponsive solution behavior of N-isopropylacrylamide copolymers with adamantyl groupsin the side-chains. Angew. Chem. Int. Ed.2003,42(27),3171-3173.
    78. Zhang, Z. X.; Liu, X.; Xu, F. J.; Loh, X. J.; Kang, E. T.; Neoh, K. G.; Li, J., Pseudo-blockcopolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core andguest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly.Macromolecules2008,41(16),5967-5970.
    79. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application toproliferation and cytotoxicity assays. J. Immunol. Methods1983,65(1-2),55-63.
    80. Sgouras, D.; Duncan, R., Methods for the evaluation of biocompatibility of soluble syntheticpolymers which have potential for biomedical use:1-Use of the tetrazolium-based colorimetricassay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity. J. Mater. Sci. Mater.Med.1990,1(2),61-68.
    1. Bronstein, L. M.; Sidorov, S. N.; Berton, B.; Sedlak, M.; Colfen, H.; Antonietti, M.,Double-hydrophilic block copolymers: New opportunity in hybrid preparation. Abstr. Paper Am.Chem. Soc.1999,217, U446-U446.
    2. Colfen, H., Double-hydrophilic block copolymers: Synthesis and application as novel surfactantsand crystal growth modifiers. Macromol. Rapid Commun.2001,22(4),219-252.
    3. Dou, H. J.; Kang, S., Double-hydrophilic block copolymers and their self-assembly. Prog. Chem.2005,17(5),854-859.
    4. Kabanov, A. V.; Kabanov, V. A., Interpolyelectrolyte and block ionomer complexes for genedelivery: Physicochemical aspects. Adv. Drug Delivery Rev.1998,30(1-3),49-60.
    5. Colfen, H.; Antonietti, M., Crystal design of calcium carbonate microparticles usingdouble-hydrophilic block copolymers. Langmuir1998,14(3),582-589.
    6. Sedlak, M.; Antonietti, M.; Colfen, H., Synthesis of a new class of double-hydrophilic blockcopolymers with calcium binding capacity as builders and for biomimetic structure control ofminerals. Macromol. Chem. Phys.1998,199(2),247-254.
    7. Antonietti, M.; Breulmann, M.; Goltner, C. G.; Colfen, H.; Wong, K. K. W.; Walsh, D.; Mann, S.,Inorganic/organic mesostructures with complex architectures: Precipitation of calcium phosphatein the presence of double-hydrophilic block copolymers. Chem. Eur. J.1998,4(12),2493-2500.
    8. Bronstein, L. M.; Sidorov, S. N.; Gourkova, A. Y.; Valetsky, P. M.; Hartmann, J.; Breulmann, M.;Colfen, H.; Antonietti, M., Interaction of metal compounds with 'double-hydrophilic' blockcopolymers in aqueous medium and metal colloid formation. Inorg. Chim. Acta1998,280(1-2),348-354.
    9. Qi, L. M.; Li, J.; Ma, J. M., Biomimetic morphogenesis of calcium carbonate in mixed solutionsof surfactants and double-hydrophilic block copolymers. Adv. Mater.2002,14(4),300-303.
    10. Martin, T. J.; Prochazka, K.; Munk, P.; Webber, S. E., pH-dependent micellization ofpoly(2-vinylpyridine)-block-poly(ethylene oxide). Macromolecules1996,29(18),6071-6073.
    11. Butun, V.; Billingham, N. C.; Armes, S. P., Unusual aggregation behavior of a novel tertiary aminemethacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueoussolution. J. Am. Chem. Soc.1998,120(45),11818-11819.
    12. Liu, S. Y.; Billingham, N. C.; Armes, S. P., A schizophrenic water-soluble diblock copolymer.Angew. Chem. Int. Ed.2001,40(12),2328-2331.
    13. Liu, S. Y.; Armes, S. P., Polymeric surfactants for the new millennium: A pH-responsive,zwitterionic, schizophrenic diblock copolymer. Angew. Chem. Int. Ed.2002,41(8),1413-1416.
    14. Cai, Y. L.; Armes, S. P., A Zwitterionic ABC triblock copolymer that forms a "Trinity" of micellaraggregates in aqueous solution. Macromolecules2004,37(19),7116-7122.
    15. Voit, B., New developments in hyperbranched polymers. J. Polym. Sci., Part A: Polym. Chem.2000,38(14),2505-2525.
    16. Jikei, M.; Kakimoto, M., Hyperbranched polymers: A promising new class of materials. Prog.Polym. Sci.2001,26(8),1233-1285.
    17. Gao, C.; Yan, D., Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci.2004,29(3),183-275.
    18. Wurm, F.; Nieberle, J.; Frey, H., Double-hydrophilic linear-hyperbranched block copolymersbased on poly(ethylene oxide) and poly(glycerol). Macromolecules2008,41(4),1184-1188.
    19. Ranganathan, K.; Deng, R.; Kainthan, R. K.; Wu, C.; Brooks, D. E.; Kizhakkedathu, J. N.,Synthesis of thermoresponsive mixed arm star polymers by combination of RAFT and ATRP froma multifunctional core and its self-assembly in water. Macromolecules2008,41(12),4226-4234.
    20. Wurm, F.; Kemmer-Jonas, U.; Frey, H., Hyperbranched-linear-hyperbranched ABA-type blockcopolymers based on poly(ethylene oxide) and polyglycerol. Polym. Int.2009,58(9),989-995.
    21. Tang, X. Z.; Pan, C. Y., Double hydrophilic block copolymers PEO-b-PGA: Synthesis, applicationas potential drug carrier and drug release via pH-sensitive linkage. J. Biomed. Mater. Res. A2008,86A (2),428-438.
    22. Luo, Y. L.; Wang, A. R.; Yuan, J. F.; Gao, Q. Y., Preparation, characterization and drug releasebehavior of polyion complex micelles. Int. J. Pharm.2009,374(1-2),139-144.
    23. Frey, H.; Haag, R., Dendritic polyglycerol: A new versatile biocompatible material. Rev. Mol.Biotechnol.2002,90(3-4),257-267.
    24. Wilms, D.; Stiriba, S. E.; Frey, H., Hyperbranched polyglycerols: From the controlled synthesis ofbiocompatible polyether polyols to multipurpose applications. Acc. Chem. Res.2010,43(1),129-141.
    25. Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A., Cationic polymerization of glycidol: Coexistenceof the activated monomer and active chain end mechanism. Macromolecules1994,27(2),320-322.
    26. Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R., Controlled synthesis of hyperbranchedpolyglycerols by ring-opening multibranching polymerization. Macromolecules1999,32(13),4240-4246.
    27. Wang, X. L.; Chen, J. J.; Hong, L.; Tang, X. Z., Synthesis and ionic conductivity of hyperbranchedpoly(glycidol). J. Polym. Sci., Part B: Polym. Phys.2001,39(19),2225-2230.
    28.王思光;程海星;周永丰;颜德岳,烷基链封端的两亲性超支化聚缩水甘油的合成及自组装.功能高分子学报2008,21(02),128-132.
    29. Kainthan, R. K.; Muliawan, E. B.; Hatzikiriakos, S. G.; Brooks, D. E., Synthesis, characterization,and viscoelastic properties of high molecular weight hyperbranched polyglycerols.Macromolecules2006,39(22),7708-7717.
    30. Wilms, D.; Wurm, F.; Nieberle, J.; Bohm, P.; Kemmer-Jonas, U.; Frey, H., Hyperbranchedpolyglycerols with elevated molecular weights: A facile two-step synthesis protocol based onpolyglycerol macroinitiators. Macromolecules2009,42(9),3230-3236.
    31. Sun, X. Y.; Yang, X. H.; Liu, Y. H.; Wang, X. L., Synthesis and characterization of a multiarm starpolymer. J. Polym. Sci., Part A: Polym. Chem.2004,42(10),2356-2364.
    32. Royappa, A. T.; Vogt, M. L.; Sharma, V., Composition and long-term stability of polyglycidolprepared by cationic ring-opening polymerization. J. Appl. Polym. Sci.2004,91(2),1344-1351.
    33. Holter, D.; Burgath, A.; Frey, H., Degree of branching in hyperbranched polymers. Acta Polym.1997,48(1-2),30-35.
    34. Yan, D. Y.; Muller, A. H. E.; Matyjaszewski, K., Molecular parameters of hyperbranched polymersmade by self-condensing vinyl polymerization.2. Degree of branching. Macromolecules1997,30(23),7024-7033.
    35.李明;杨晓慧;刘允航;王新灵,保护法提高超支化聚缩水甘油的羟基反应率.上海交通大学学报2005,(11),92-96.
    36. Astafieva, I.; Zhong, X. F.; Eisenberg, A., Critical micellization phenomena in blockpolyelectrolyte solutions. Macromolecules1993,26(26),7339-7352.
    37. Kabanov, A. V.; Nazarova, I. R.; Astafieva, I. V.; Batrakova, E. V.; Alakhov, V. Y.; Yaroslavov, A.A.; Kabanov, V. A., Micelle formation and solubilization of fluorescent probes inpoly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules1995,28(7),2303-2314.
    38. Zhao, C. L.; Winnik, M. A.; Riess, G.; Croucher, M. D., Fluorescence probe techniques used tostudy micelle formation in water-soluble block copolymers. Langmuir1990,6(2),514-516.
    39. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    40. Radowski, M. R.; Shukla, A.; von Berlepsch, H.; Bottcher, C.; Pickaert, G.; Rehage, H.; Haag, R.,Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew.Chem. Int. Ed.2007,46(8),1265-1269.
    41. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of large multimolecularmicelles from hyperbranched star copolymers. Macromol. Rapid Commun.2007,28(5),591-596.
    42. Ma, Q. G.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L., Two-dimensional, shell-cross-linkednanoparticle arrays. J. Am. Chem. Soc.2001,123(19),4627-4628.
    43. Tu, Y. F.; Wan, X. H.; Zhang, H. L.; Fan, X. H.; Chen, X. F.; Zhou, Q. F.; Chau, K. C.,Self-assembled nanostructures of rod-coil diblock copolymers with different rod lengths.Macromolecules2003,36(17),6565-6569.
    44. Bruining, M. J.; Blaauwgeers, H. G. T.; Kuijer, R.; Pels, E.; Nuijts, R. M. M. A.; Koole, L. H.,Biodegradable three-dimensional networks of poly(dimethylamino ethyl methacrylate). Synthesis,characterization and in vitro studies of structural degradation and cytotoxicity. Biomaterials2000,21(6),595-604.
    45. Plamper, F. A.; Ruppel, M.; Schmalz, A.; Borisov, O.; Ballauff, M.; Muller, A. H. E., Tuning thethermoresponsive properties of weak polyelectrolytes: Aqueous solutions of star-shaped and linearPoly(N,N-dimethylaminoethyl methacrylate). Macromolecules2007,40(23),8361-8366.
    46. Munoz-Bonilla, A.; Fernandez-Garcia, M.; Haddleton, D. M., Synthesis and aqueous solutionproperties of stimuli-responsive triblock copolymers. Soft Matter2007,3(6),725-731.
    47. Gohy, J. F.; Creutz, S.; Garcia, M.; Mahltig, B.; Stamm, M.; Jerome, R., Aggregates formed byamphoteric diblock copolymers in water. Macromolecules2000,33(17),6378-6387.
    48. Lee, H. I.; Wu, W.; Oh, J. K.; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.;Matyjaszewski, K., Light-induced reversible formation of polymeric micelles. Angew. Chem. Int.Ed.2007,46(14),2453-2457.
    1. Lehn, J. M., Perspectives in supramolecular chemistry: From molecular recognition towardsself-organisation. Prog. Biophys. Mol.Biol.1996,65, Pl4-Pl4.
    2. Lehn, J. M., Toward complex matter: Supramolecular chemistry and self-organization. PNAS2002,99(8),4763-4768.
    3. Service, R. F., How far can we push chemical self-assembly. Science2005,309(5731),95-95.
    4. Choi, I. S.; Bowden, N.; Whitesides, G. M., Macroscopic, hierarchical, two-dimensionalself-assembly. Angew. Chem. Int. Ed.1999,38(20),3078-3081.
    5. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F.M.; Lowe, J. K. L.; Meijer, E. W., Reversible polymers formed from self-complementarymonomers using quadruple hydrogen bonding. Science1997,278(5343),1601-1604.
    6. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A.,Supramolecular materials: Self-organized nanostructures. Science1997,276(5311),384-389.
    7. Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I., Conversion of supramolecular clusters tomacromolecular objects. Science1999,283(5401),523-526.
    8. Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; M ller, M.; Sheiko, S. S., Controllingpolymer shape through the self-assembly of dendritic side-groups. Nature1998,391(6663),161-164.
    9. Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O.,Switching supramolecular polymeric materials with multiple length scales. Science1998,280(5363),557-560.
    10. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I., Scaffolding of polymers by supramolecularnanoribbons. Adv. Mater.2002,14(3),198-203.
    11. Kosonen, H.; Valkama, S.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Ikkala, O.,One-dimensional optical reflectors based on self-organization of polymeric comb-shapedsupramolecules. Eur. Phys. J. E2003,10(1),69-75.
    12. Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M., Mastering molecular matter. Supramoleculararchitectures by hierarchical self-assembly. J. Mater. Chem.2003,13(11),2661-2670.
    13. Keizer, H. M.; Sijbesma, R. P., Hierarchical self-assembly of columnar aggregates. Chem. Soc. Rev.2005,34(3),226-234.
    14. Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Hummelin,S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonev, S. N.; Vinogradov, S. A.,Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature2004,430(7001),764-768.
    15. Seeman, N. C., DNA in a material world. Nature2003,421(6921),427-431.
    16. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil blockcopolymers. Science1999,283(5400),372-375.
    17. Ulijn, R. V.; Smith, A. M., Designing peptide based nanomaterials. Chem. Soc. Rev.2008,37(4),664-675.
    18. Yang, Y. L.; Wang, C., Hierarchical construction of self-assembled low-dimensional moleculararchitectures observed by using scanning tunneling microscopy. Chem. Soc. Rev.2009,38(9),2576-2589.
    19. Sakurai, S. I.; Okoshi, K.; Kumaki, J.; Yashima, E., Two-dimensional hierarchical self-assembly ofone-handed helical polymers on graphite. Angew. Chem. Int. Ed.2006,45(8),1245-1248.
    20. Stepanenko, V.; Wurthner, F., Hierarchical self-assembly of cyclic dye arrays into two-dimensionalhoneycomb nanonetworks. Small2008,4(12),2158-2161.
    21. Nomura, F.; Inaba, T.; Ishikawa, S.; Nagata, M.; Takahashi, S.; Hotani, H.; Takiguchi, K.,Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior tomembrane fusion. PNAS2004,101(10),3420-3425.
    22. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of giant polymer vesicles with controlledsizes. Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    23. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Real-time hierarchical setf-assembly of large compoundvesicles from an amphiphilic hyperbranched multiarm copolymer. Small2007,3(7),1170-1173.
    24.侯健,超支化聚合物的制备和功能化.上海交通大学博士学位论文:2000.
    25. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of large multimolecularmicelles from hyperbranched star copolymers. Macromol. Rapid Commun.2007,28(5),591-596.
    26. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y., Synthesis and supramolecularself-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyethercore. J. Polym. Sci., Part A: Polym. Chem.2008,46(2),668-681.
    27. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    28. Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y., Temperature-responsive phase transition of polymervesicles: Real-time morphology observation and molecular mechanism. J. Phys. Chem. B2007,111(6),1262-1270.
    29. Menger, F. M.; Gabrielson, K. D., Cytomimetic organic chemistry: Early developments. Angew.Chem. Int. Ed.1995,34(19),2091-2106.
    30. Menger, F. M.; Angelova, M. I., Giant vesicles: Imitating the cytological processes of cellmembranes. Acc. Chem. Res.1998,31(12),789-797.
    31. Siegel, D. P.; Epand, R. M., The mechanism of lamellar-to-inverted hexagonal phase transitions inphosphatidylethanolamine: Implications for membrane fusion mechanisms. Biophys. J.1997,73(6),3089-3111.
    32. Menger, F. M.; Peresypkin, A. V., Strings of vesicles: Flow behavior in an unusual type of aqueousgel. J. Am. Chem. Soc.2003,125(18),5340-5345.
    33. Guo, M. Q.; Hong, H. Y.; Sun, X. Y.; Zhou, Y. F.; Yan, D. Y., Macroscopic three-dimensionalsupramoelcular networks through hierarchical self-assembly of polymer vesicles. Acta Polym. Sin.2008,(4),303-308.
    34. Mao, J.; Ni, P. H.; Mai, Y. Y.; Yan, D. Y., Multicompartment micelles from hyperbranchedstar-block copolymers containing polycations and fluoropolymer segment. Langmuir2007,23(9),5127-5134.
    35. Ornatska, M.; Peleshanko, S.; Rybak, B.; Holzmueller, J.; Tsukruk, V. V., Supramolecularmultiscale fibers through one-dimensional assembly of dendritic molecules. Adv. Mater.2004,16(23-24),2206-2212.
    36. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V. V.,Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem.Soc.2004,126(31),9675-9684.
    37. Ornatska, M.; Bergman, K. N.; Rybak, B.; Peleshanko, E.; Tsukruk, V. V., Nanofibers fromfunctionalized dendritic molecules. Angew. Chem. Int. Ed.2004,43(39),5246-5249.
    38. Zhou, Y. F.; Yan, D. Y., Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc.2005,127(30),10468-10469.
    39. Binder, W. H.; Barragan, V.; Menger, F. M., Domains and rafts in lipid membranes. Angew. Chem.Int. Ed.2003,42(47),5802-5827.
    40. Lipowsky, R.; Dimova, R., Domains in membranes and vesicles. J. Phys. Condens. Mat.2003,15(1), S31-S45.
    41. Li, L.; Liang, X. Y.; Lin, M. Y.; Qiu, F.; Yang, Y. L., Budding dynamics of multicomponent tubularvesicles. J. Am. Chem. Soc.2005,127(51),17996-17997.
    1. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T., Silsesquioxanes. Chem. Rev.1995,95(5),1409-1430.
    2. Lorenz, V.; Fischer, A.; Edelmann, F. T., Silsesquioxane chemistry,6: The first berylliumsilsesquioxane: synthesis and structure of [Cy7Si7O12BeLi]2·2THF. Inorg. Chem. Commun.2000,3(6),292-295.
    3. Edelmann, F. T.; Giessmann, S.; Fischer, A., Silsesquioxane chemistry,5. Retention of the Cu4O4core upon formation of the first copper(I) silsesquioxane from tetrameric copper(I)-t-butoxide.Inorg. Chem. Commun.2000,3(11),658-661.
    4. Edelmann, F. T.; Giessmann, S.; Fischer, A., Silsesquioxane chemistry,4. Silsesquioxanecomplexes of Titanium(III) and Titanium(IV). J. Organomet. Chem.2001,620(1-2),80-89.
    5. Lorenz, V.; Fischer, A.; Edelmann, F. T., Silsesquioxane chemistry. Part10. Silsesquioxanesilanolate complexes of samarium and scandium. J. Organomet. Chem.2002,647(1-2),245-249.
    6. Abe, Y.; Gunji, T., Oligo-and polysiloxanes. Prog. Polym. Sci.2004,29(3),149-182.
    7. Cassagneau, T.; Caruso, F., Oligosilsesquioxanes as versatile building blocks for the preparation ofself-assembled thin films. J. Am. Chem. Soc.2002,124(27),8172-8180.
    8. Jeoung, E.; Carroll, J. B.; Rotello, V. M., Surface modification via 'lock and key' specificself-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified goldsurfaces. Chem. Commun.2002,(14),1510-1511.
    9. Carroll, J. B.; Frankamp, B. L.; Rotello, V. M., Self-assembly of gold nanoparticles throughtandem hydrogen bonding and polyoligosilsequioxane (POSS)-POSS recognition processes. Chem.Commun.2002,(17),1892-1893.
    10. Zheng, L.; Hong, S.; Cardoen, G.; Burgaz, E.; Gido, S. P.; Coughlin, E. B., Polymernanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds.Macromolecules2004,37(23),8606-8611.
    11. Leu, C. M.; Chang, Y. T.; Wei, K. H., Synthesis and dielectric properties of polyimide-tetheredpolyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine.Macromolecules2003,36(24),9122-9127.
    12. Zeng, K.; Fang, Y.; Zheng, S., Organic-inorganic hybrid hydrogels involvingpoly(N-isopropylacrylamide) and polyhedral oligomeric silsesquioxane: Preparation and rapidthermoresponsive properties. J. Polym. Sci., Part B: Polym. Phys.2009,47(5),504-516.
    13. Zeng, K.; Wang, L.; Zheng, S., Rapid deswelling and reswelling response ofpoly(N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks withpolyhedral oligomeric silsesquioxane-capped polyethylene oxide amphiphilic telechelics. J. Phys.Chem. B2009,113(35),11831-11840.
    14. Rekharsky, M. V.; Inoue, Y., Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98(5),1875-1917.
    15. Miyauchi, M.; Harada, A., Construction of supramolecular polymers with alternating alpha-,beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem.Soc.2004,126(37),11418-11419.
    16. Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., Chiral supramolecular polymers formedby host-guest interactions. J. Am. Chem. Soc.2005,127(9),2984-2989.
    17. Wintgens, V.; Charles, M.; Allouache, F.; Amiel, C., Triggering the thermosensitive properties ofhydrophobically modified poly(N-isopropylacrylamide) by complexation with cyclodextrinpolymers. Macromol. Chem. Phys.2005,206(18),1853-1861.
    18. Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J., Supramolecular layer-by-layerassembly: Alternating adsorptions of guest-and host-functionalized molecules and particles usingmultivalent supramolecular interactions. J. Am. Chem. Soc.2005,127(20),7594-7600.
    19. Wang, J.; Jiang, M., Polymeric self-assembly into micelles and hollow spheres with multiscalecavities driven by inclusion complexation. J. Am. Chem. Soc.2006,128(11),3703-3708.
    20. Tellini, V. H. S.; Jover, A.; Garcia, J. C.; Galantini, L.; Meijide, F.; Tato, J. V., Thermodynamics offormation of host-guest supramolecular polymers. J. Am. Chem. Soc.2006,128(17),5728-5734.
    21. Liu, Z.; Jiang, M., Reversible aggregation of gold nanoparticles driven by inclusion complexation.J. Mater. Chem.2007,17(40),4249-4254.
    22. Wang, H.; Wang, S. T.; Su, H.; Chen, K. J.; Armijo, A. L.; Lin, W. Y.; Wang, Y. J.; Sun, J.; Kamei,K.; Czernin, J.; Radu, C. G.; Tseng, H. R., A supramolecular approach for preparation ofsize-controlled nanoparticles. Angew. Chem. Int. Ed.2009,48(24),4344-4348.
    23.刘育;张衡益;李莉;王浩,纳米超分子化学—从合成受体到功能组装体.化学工业出版社:北京,2004.
    24. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Chen, Y., Synthesis and supramolecularself-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyethercore. J. Polym. Sci., Part A: Polym. Chem.2008,46(2),668-681.
    25. Liu, S.; Guo, J. W., Structure analysis, solubility and thermodynamics properties of adamantane.Chin. J. Energ. Mater.2006,14(6),485-490.
    26. Renard, E.; Deratani, A.; Volet, G.; Sebille, B., Preparation and characterization of water solublehigh molecular weight beta-cyclodextrin-epichlorohydrin polymers. Eur. Polym. J.1997,33(1),49-57.
    27. Crini, G.; Cosentino, C.; Bertini, S.; Naggi, A.; Torri, G.; Vecchi, C.; Janus, L.; Morcellet, M.,Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose(beta-cyclodextrin) crosslinked with epichlorohydrin. Carbohydr. Res.1998,308(1-2),37-45.
    28.童林荟,环糊精化学—基础与应用.科学出版社:北京,2001.
    29. Zhu, X. Y.; Chen, L.; Yan, D. Y.; Chen, Q.; Yao, Y. F.; Xiao, Y.; Hou, J.; Li, J. Y., Supramolecularself-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins.Langmuir2004,20(2),484-490.
    30. Coleman, A. W.; Nicolis, I.; Keller, N.; Dalbiez, J. P., Aggregation of cyclodextrins: Anexplanation of the abnormal solubility of beta-cyclodextrin. J. Inclusion Phenom. Mol. Recognit.Chem.1992,13(2),139-143.
    31. Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev.1997,97(5),1325-1357.
    32. Buvari-Barcza, A.; Barcza, L., Changes in the solubility of beta-cyclodextrin on complexformation: Guest enforced solubility of beta-cyclodextrin inclusion complexes. J. Incl. Phenom.Macro2000,36(3),355-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700