用户名: 密码: 验证码:
大跨度高空连廓风荷载及风振响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着高层建筑形式的多样化发展和对单体建筑使用功能要求的提高,许多工程在单体建筑间采用连接体相连接,形成连体结构。连接体结构往往被设计成空中连廊。往往由于跨度较大,且通常被搁置在高空中,故连廊的结构形式类似于以房屋为支墩的桥。因此当连廊的刚度与主体建筑刚度相比较弱时,连廊的风振分析与抗风设计往往成为设计中的关键问题之一。
     杭州市民中心的主体结构为围绕场地中心环向分布的6幢弧形塔楼,在各塔楼的23层~25层(84.6~92.0m)处通过六座钢结构连廊连成环状连体结构,目前国内外很少有类似的工程经验可供借鉴。本文结合杭州市民中心刚性模型风洞试验,对连体建筑中的连体部位(大跨度高空连廊)风荷载及风振响应进行了深入研究,具体工作如下:
     1.通过杭州市民中心刚性模型风洞试验,分析了大跨高空连廊在不同风向角下的平均风压系数和脉动风压系数的分布规律。
     2.分析了杭州市民中心大跨高空连廊的动力特性,结合风洞试验压力时程数据,采用刚性模型表面瞬时风压积分法对大跨度高空连廊进行了位移和加速度响应分析,最后对大跨度高空连廊的横风向风振性能进行分析。
     本文以试验为基础,理论分析为手段,为研究大跨度连廊的风荷载及风致振动特性提供了一定的依据,并对进一步工作的方向进行了简要的讨论。
Along with the improved requirements for tall building structural types and usage functions, single building are designed to be connected to each other through different skybridges. One of the commonly used joining structure is the skybridge. Because the skybridge is usually long-spanned and high in the air ,the skybridge is similar to a bridge supported by the single building. When the skybridge rigidity is weak comparing with that of the buildings, the wind vibration analysis and wind resistant analysis become very important in the design of skybridge.
    The main body structure of Hangzhou citizen center is composed of arc-shaped towers which distribute around the center wreath,. The six towers are connected to each other through six steel spatial corridors at the 23rd and 25th story of each tower which is at an altitude of about 90 meters. Similar structures are so far rarely met in the domestic and foreign engineering practices. Based on Hangzhou citizens center rigid model wind tunnel test, The surface wind pressure and dynamic wind-induced response analysis are conducted in this paper for the corridor. Main research works as follows:
    1. This paper introduces the details of the wind tunnel of HangZhou citizen center, which is a tall building cluster with skybridge between individual buildings. The results of the skybridge obtained from the wind tunnel test, including the mean pressure coefficients and fluctuating pressure coefficients in different wind directions, are presented.
    2. To establish the dynamic behaviour of the skybridge under wind load, wind vibration response analysis of skybridge is then performed based on the wind tunnel test in time domain. The analysis account for the displacement and acceleration of skybridge. Finally, the behaviour of skybridge in across wind direction analysis is performed.
    Based on the model test, analyzed on theoretical, the thesis gives some credible data to analysis of the wind load and wind-induced response behavious of skybridge. In the finality, the problems requiring further studies are discussed.
引文
[1] 江见鲸,徐志胜.防灾减灾工程学.北京:机械工业出版社,2005
    [2] 张相庭.工程抗风设计计算手册.北京:中国建筑工业出版社,1998
    [3] 项海帆.结构风工程研究的现状和展望[J].振动工程学报.1997.9
    [4] Davenport, A.G (1967), Gust loading factors, J. Struct. Div., ASCE, 93(ST3), 11-34.
    [5] Davenport, A.G. (1993), The generalization and simplification of wind loads and implications for computational methods, J. Wind Eng. Indust. Aerody., 46-47, 409-417.
    [6] Davenport, A.G.(1995), How can we simplify and generalize wind loads?, J. Wind Eng. Indust. Aerody., 54-55,657-669.
    [7] Isyumov N. (1999), Overview of wind action on tall buildings and structures, Wind Engineering into the 21st century, Larsen, Larose & Livesey (eds), 15-28.
    [8] Australia Standard(1989), Minimum Design Loads on Structures, Part 2: Wind Loads.
    [9] American Society of Civil Engineers, ASCE Standard, ASCE7-98(1995): Minimum Design Loads for Buildings and Other Structures.
    [10] Architectural Institute of Japan-AIJ(1993), AIJ Recommendations for Loads on Buildings(English Version).
    [11] 建筑结构荷载规范.北京:中国建筑工业出版社,2002
    [12] National Research Council, Canada (1995), National Building Code of Canada.
    [13] Gu, M. and Quan, Y. (2004), Across-wind aerodynamic force and aerodynamic damping of typical tall buildings, J. Wind Eng. Indust. Aerody., 92(13), 1147-1165.
    [14] Liang, S. G., Liu, S., Li, Q.S., Zhang L. and Gu, M. (2002), Mathematical model of acrosswind dynamic loads on rectangular tall buildings, J. Wind Eng. Indust. Aerody., 90, 1757-1770.
    [15] Melbourne W.H. and Cheung J.C.K.(1999), Resonant and background crosswind response components in turbulent flow, Wind Engineering into the 21st century, Larsen, Larose & Livesey(eds), 1531-1536.
    [16] Marukawa H., Ohkuma T. & Momomura Y. (1992), Across-wind and torsional acceleration of prismatic high rise buildings, J. Wind Eng. Indust. Aerody., 41-44, 1139-1150.
    [17] Kareem, A. (1982), Acrosswind Response of Buildings, J. Struct. Div., ASCE, 108(4),869-887.
    [18] Katagiri J., Nakamura O., Ohkuma T., Marukawa H., Tsujimoto T. & Kondo K. (1992), Wind-induced later-torsional motion of tall building, J. Wind Eng. Indust. Aerody., 41-44, 1127-1137.
    [19] Liang, S., Li, G., Q.S., Liu, S., Zhang L. and Gu, M. (2004), Torsional Dynamic Wind Load on rectangular tall Buildings, Engineering Structures, 26(1), 129-137.
    [20] Flay, R., Yip, D. and Vickery, B(1999)., Wind induced dynamic response of tall buildings with coupled 3-D modes of vibration, Wind Engineering into the 21st century, Larsen, Larose & Livesey (eds), 645-652.
    [21] Holmes et al. (2003), High frequency base balance technique for tall buildings with torsional and coupled resonant modes, Proc. 11th International Conference on Wind Eng., June 2-5, 2003, Lubbock TX, USA.
    [22] Marukawa H., Kato N., Fujii K. & Tamura Y. (1996), Experimental evaluation of aerodynamic damping of tall buildings, J. Wind Eng. Indnst. Aerndy., 59, 177-190.
    [23] Quan Y., Gu, M. and Tamura, Y., Experimental evaluation of aerodynamic damping of square super high-rise buildings, Wind & Sturctures—An International Journal, 8(5), 2005, 309-324.
    [24] Holmes, J. D.(1994, 1996), Along-wind response of lattice towers—Ⅰ, Ⅱ and Ⅲ, Engineering Structures, 16 and 18, 287-292 and 483-494.
    [25] Lou, W.J., Sun B.N. and Tang, J.C.(2000), Aeroelastic Model Investigation and Spectral Analysis of a Tall Lattice Tower. Advances in Structural Engineering, 3 (2), 119-130.
    [26] 楼文娟,孙炳楠(2000).风与结构的耦合作用及风振响应分析.工程力学,17 (5),16—22.
    [27] Kasperski, Niemann (1992), The L.R.C. (load-response-correlation)-Method: A General Method of Estimating Unfavourable Wind Load Distributions for Linear and Non-linear Structural Behaviour, J. Wind Eng. Indust. Aerody., 41-44, 1753-1763.
    [28] Solari, G. (1990), A Generalized Definition of Gust Factor, J. Wind Eng. Indust. Aerody., 36, 539-548.
    [29] Piccardo, G. and Solari, G. (1998), Closed form prediction of 3-D wind-excited response of slender structures, J. Wind Eng. Indust. Aerody., 74-76, 697-708.
    [30] Zhou, Y. Gu, M.and Xiang, H.F. (1999), Along-wind stailc equivalent wind loads, Ⅰ: unfavorable distributions of wind loads on tall buildings, Ⅱ: Correction of mode shapes, J. Wind Eng. Indust. Aerody., 79, 135-158.
    [31] Zhou, Y., and Kareem, A. (2001), Gust Loading Factor: New Model, J. Struct. Eng., ASCE, 127(2), 168-175
    [32] Zhou, Y., Kareem, A. and Gu, M.(2000), Equivalent Static Buffeting Loads on Structures, J. Struet. Eng., ASCE, 126(8), 989-992.
    [33] English, E. C. and Fricke, F. R. (1999), Interference index and its prediction using a neural network analysis of wind-tunnel data, J. Wind Eng. Indust. Aerody., 83, 567-575.
    [34] Kwok, K.C.S. (1995), Aerodynamics of the tall buildings, a state of the art in wind engineering, Proc. of the 9th International Conf. on Wind Engineering, New Delhi, India, 180-204.
    [35] Khanduri, A.C., Stathopoulos, T. and Bedard, C. (1998), Wind-induced interference effects on buildings - a review of the state-of-the -art, Engineering Structures, 20(7), 617-630.
    [36] Taniike, Y. and Inoka, H.(1988), Aeroelastic behaviour of a tall building in wakes, J. Wind Eng. Indust. Aerody., 28(1), 317-327.
    [37] Huang, P. and Gu, M.(2005), Experimental study of wind-induced dynamic interference effects between two tall buildings, Wind and Strucrures—An International Journal, 8 (3): 147-162
    [38] Lawson, T.V. (1976), The design of cladding, Building and Enviorment, 11,37-38.
    [39] Dyrbye and Hansen, S.O. (1997), Wind loads on Structures, John Wiley and Sore Inc.
    [40] Li, Q. S., Calderone, I. and Melbourne, W.H. (1999), Probabilistic characteristics of pressure fluctuations in separated and reattaching flows for various flee-stream turbulence, J. Wind Eng. Indust. Aerody., 82, 125-145.
    [41] Schettini, E. and Solari, E.(1998), Probabilistic modeling of maximum wind pressure on structures, J. Wind Eng. Indust. Aerody., 74-76, 1111-1121.
    [42] Kawai, H., Nishimura G. (1996), Characteristics of fluctuating suction and conicalvortices on a flat roof in oblique flow, J. Wind Eng. Indust. Aerody., 60, 211-225.
    [43] Holmes, J. (2004), Wind-tunnel test techniques for low-rise buildings, large roof structures, and windborne debris, Croucher Advances Study Institute on " State-of-the-art Wind Tunnel Modelling and Data Analysis Techniques for Infrastructures and Civil Engineering Applications", 6-10 Dec. 2004, HKUST.
    [44] 周晅毅(2004),大跨度屋盖结构风荷载及风致响应研究,上海:同济大学博士学位论文.
    [45] Matsumoto T.(1992), Aeroelastic modeling of air-supported roofs, J. Wind Eng. Indust. Aerody., 42, 1497-1507.
    [46] Minami H., Okuda Y. & Kawamura S.(1993), Experimental studies on the flutter behavior of membranes in a wind tunnel, Space Structures, London: Thomas Telford, 935-945.
    [47] Sygulski R. (1996), Dynamic stability of pneumatic structures in wind: theory and experiment. J. Fluids and Structures, 10(8), 945-963.
    [48] Gluck, M., Breuer, M., Durst, F., et al.(2001), Computation of fluid-structure interaction on lightweight structures, J. Wind Eng. Indust. Aerody., 89, 1351-1368.
    [49] Sun, B. N., Mao, G. D. and Lou, W.J.(2003), Wind-induced coupling dynamics response of closed membrane structures, Proc. 11th Int. Conf. on Wind Eng., Lubbock, Texas, 2003.6, 813-820.
    [50] 沈世钊,武岳(2002),大跨度张拉结构风致动力响应研究进展,同济大学学报,,30(5),534-538.
    [51] 高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2002.
    [52] 徐培福.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005.
    [53] Emil.Simiu等.风对结构的作用—风工程导论[M].刘尚培,项海帆等译 上海:同济大学出版社.1992.3
    [54] 黄本才.结构抗风分析原理及应用[M]。上海:同济大学出版社.2001.2
    [55] 张相庭.风工程中地貌分类与地面粗糙度指数的研究与应用[J].建筑科学.2000.10
    [56] 周印.高层建筑静力等效风荷载和响应的理论和试验研究[D].同济大学博士论文.1998
    [57] 沈国辉,孙柄楠楼文娟等.对称双塔楼的风荷载分布特征[J].建筑结构学报,2003,(1)
    [58] Kareem A. Measurements of pressure and force fields on building models in simulated atmospheric flows[J]. J wind Eng & IndAerody,1982, 36; 589.
    [59] Kikuchi H, Tamura Y, Ueda H, et al. Dynamic wind pressures acting on a tall building moder-proper orthogonal decomposition [J]. J wind IndAerody, 1997(69—71);631.
    [60] 施宗城,中性大气边界层模拟试验调试方法研究,《同济大学学报》,Vol.22,No.4,1994.
    [61] 黄翔,顾明.用CFX5.5软件模拟体育场弧形挑蓬的平均风荷载[J].同济大学学报,2006,(2)
    [62] Jamal, Ir. Mohamad A, Breukelman, Brian. Petronas towers: Skybridge engineering, construction and monitoring. Proceedings of the Structures Congress and Exposition, Proceedings of the 2003 ASCE/SEI Structures Congress and Exposition: Engineering Smarter, 2003, p 97-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700