用户名: 密码: 验证码:
高层建筑结构选型与布置及剪力墙合理数量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济的进一步发展,科学技术水平不断提高,高层建筑的发展速度在逐年增加,高层建筑的重心正逐渐向中国、向亚洲转移。我国高层建筑发展迅速,建筑高度不断增加,建筑功能和类型愈来愈复杂,结构体系更加多样化,地区分布更加广泛。
     结构抗震概念设计对结构的抗震性能起决定性作用,而高层建筑结构的选型与结构布置在结构抗震概念设计中占有极其重要的地位,它们直接影响着结构的安全性与经济性。其中,剪力墙数目的合理确定,是关系到结构的安全和技术经济合理最为关键的问题。
     本文对高层建筑结构选型与布置及剪力墙合理数量进行研究,完成的主要工作有:
     1.在全面总结高层建筑各种结构体系的受力特征的基础上,介绍了结构选型中的主要内容,其包含竖向承重结构选型、水平承重结构选型以及下部结构选型。并以20层高层建筑为例,分别采用框架结构与框架-剪力墙结构方案,探讨了竖向承重结构的选型对高层建筑受力性能的影响。
     2.高层建筑结构的布置包含平面布置、竖向布置以及变形缝设置。在结构平面布置中,用一个规则平面结构布置算例和一个不规则平面结构布置算例,说明了结构布置对结构受力性能的影响。
     3.考察了抗侧力构件布置对结构扭转效应的影响,给出了结构抗扭效应近似计算中扭转刚度的计算公式,通过参数分析,分析了结构抗扭刚度的影响因素,指出了减小结构抗扭效应的途径。结果表明:弹性范围内,构件本身提供的抗扭刚度所占结构总抗扭刚度的比重较小;结构层高与柱高宽比愈小,主要抗侧力构件沿结构周边布置愈分散、均匀,结构的抗扭刚度愈大。实际工程中可通过减小结构所受的外扭矩与提高结构的抗扭刚度来控制高层建筑结构的扭转效应。
     4.从框架-剪力墙结构协同工作的连续化分析原理出发,按照我国现行抗震设计规范,推导了满足层间侧移角限值的抗震剪力墙的计算公式。并给出了在不同抗震等级、场地类别和设计分组情况下的剪力墙合理数量图,讨论了影响剪力墙合理数量的各种因素。该方法简单实用,可用于地震区高层建筑结构的初步设计阶段。
Recently, with the farther development of economy and the continuous progress of technology, the development speed of tall building structures increases year by year. The center of tall buildings is transferring to Asia and China. In our country, tall buildings are developing rapidly, the height is increasing continuously, the function and the style are becoming complex more and more, the structural systems are becoming more various, and the region distributing is broader.
     Conceptual design has the fateful effect on the structural earthquake-resistant performance, and type selection and arrangement of structures in tall buildings take the important action during the earthquake-resistant design, which effect on the structural security and economy. The optimal quantity of shear wall in tall building structures is the key problem in the structural security and economy.
     Type selection and arrangement of tall building structures have been studied. Torsion effect has been analyzed. Optimal quantity of shear wall in shear wall frame structures has been discussed. Main completed work is in the following:
     1. Base on the general summary of the various structural system behaviors, selection of structural types is introduced, which contains vertical bearing structures, horizontal bearing structures and foundations. A 20-story tall building structure is taken for an example to discuss the influence of the vertical structural types on the behaviors of tall building structures by respectively adopting frame structure and frame-shear wall structure.
     2. The structural arrangement contains plane arrangement, vertical arrangement and the set of joints. A regular building structure and an irregular one are taken for examples to discuss the influence of the structural arrangement on the behaviors of tall building structures. 3. The influence of arrangement of the anti-sideways elements on the structural tor- sion was discussed. The formula of structural torsion stiffness was given. The method to decrease the structural torsion effect was found. It is shown that the torsion stiffness of elements take the small proportion of the total structural torsion stiffness during the el- asticity phases. The structural torsion stiffness will increase when the structure is taller and the column section ration of height to width is smaller. The torsion effect of tall bui -lding structures can be controlled by decreasing the moment of torsion and increasing the structural torsion stiffness in practice engineering.
     4. Based on the principle of continuous analysis of interactive frame-shear wall structures and the current Chinese code for seismic design of buildings, a series of formulas are deduced strictly from the allowable horizontal rotation. Furthermore, the figures that show the optimal quantity of shear wall under various ground categories, anti-earthquake grades and design groups are given, and some kinds of influence factors are discussed. This method is proved that it is accurate and convenient enough for use
引文
[1] Monograph on Planning and Design of Tall Buildings, Vols, CB, CL, PC, SB, SC, and ASCE, 1980
    [2] B. S. Smith and A. Coull. Tall Building Structures: Analysis and Design, John Wiley & Sons, Inc. 1991
    [3] L. (Ed.). Bcedle. Second Century of the Skyscraper. Council on Tall Buildings and Urban Habitat, Van Nostrand Reinhold, New York, 1988
    [4] L. (Ed.). Bcedle. Developments in Tall Buildings. Council on Tall Buildings and Urban Habitat, Hutchinson Ross, Stroudsburg, PA, 1983
    [5] D. P. Billington and M. (Eds.). Goldsmith. Techniques and Aesthetics in the Design of Tall Buildings. Institute for the Study of the High-Rise Habitat. Lehigh University, Bethlehem, PA, 1986
    [6] C. W. Condit. The Two Centuries of Techniques Evolution Underlying the Skyscraper. In Second Century of the Skyscraper. Council on Tall Buildings and Urban Habitat, Van Nostrand Reinhold, New York, 1988, 11-24
    [7] 包世华.新编高层建筑结构.北京:中国水利水电出版社,2001
    [8] 沈蒲生.高层建筑结构设计.北京:中国建筑工业出版社,2006
    [9] JGJ3-91, 钢筋混凝土高层建筑设计与施工规程
    [10] JBJ 3-2002 , 高层建筑混凝土结构技术规程
    [11] 方鄂华.高层建筑钢筋混凝土结构概念设计.北京:机械工业出版社,2004
    [12] 李娟,曾辉,沈宇等.世界已建成的最高 100 幢建筑最新排名.见:第 14 届全国工程学术会议论文集(第Ⅲ册).北京:工程力学杂志社,2005,506-510
    [13] 徐风波,魏清,谭光宇等.我国内地已建成的最高 100 幢建筑最新排名.见:第 14届全国工程学术会议论文集(第Ⅲ册).北京:工程力学杂志社,2005,563-567
    [14] 沈蒲生.高层建筑结构疑难释疑. 北京:中国建筑工业出版社,2003
    [15] 张炳华.土建结构优化设计.上海:同济大学出版社,1986
    [16] 穆翠玲,王文均,陈存恩.框剪结构抗震剪力墙数量的优化准则证明.世界地震工程,2003,19(1):154-157
    [17] 李刚,程耿东.基于可靠度和功能的框架-剪力墙结构抗震优化设计.计算力学学报,2001,18(3):290-294
    [18] 赵西安.钢筋混凝土高层建筑结构设计.北京:中国建筑工业出版社,1992
    [19] 魏忠泽,秦桂娟.框剪结构体系中剪力墙合理数量.沈阳建筑工程学院学报,1996,12(2):220-227
    [20] 贺友双.框剪结构最优抗震墙量及自振周期计算法.工程抗震,1992,24(1):10-14
    [21] 黄世敏,魏琏,程绍革.地震区框架-剪力墙结构最优剪力墙数量的研究.工程抗震, 2003,35(1):1-5
    [22] 王全凤.剪力墙最优刚度及其计算机实现.华侨大学学报(自然科学版),1999,20(3):249-253
    [23] W. W. Frischmann and S. S. Prabhu. Planning Concepts Using Shear Walls. In Buildings, A. Coull and B. Stafford Smith (Eds.). Pergamon Press. Oxford, 1967, 49-79
    [24] 徐培福,傅学怡,王翠坤等.复杂高层建筑结构设计.北京:中国建筑工业出版社,2005
    [25] M. D. Vanderbilt and W. G. Corley. Frame Analysis of Concrete Building. Conc. Int. 5(12). 1983, 33-43
    [26] 王心田,高向玲,蔡惠菊等.建筑结构概念与设计. 天津:天津大学出版社,2004
    [27] 傅学怡.带转换层高层建筑结构设计建议.建筑结构学报,1999,20(2):28-42
    [28] Xu Peifu, Wu Lianzhong, Hao Ruikun. Investigation of Seismic Behavior of Shear Wall Structural System for Low Cost Housing, 8th World Conference on Earthquake Engineering, San Francisco, 1984
    [29] Xu Peifu, Hao Ruikun, Wu Lianzhong. Seismic Resistant Design of Shear Wall Structure with Large Space Ground Floor , Third International Conference on Tall Buildings, Hong Kong, Guangzhou, 1984
    [30] 惠卓,秦卫红,吕志涛.一种新型的高层建筑结构体系—巨型建筑结构体系.东南大学学报,1999,29(4A):197-203
    [31] 沈祖炎,陈荣毅.巨型结构的应用与发展.同济大学学报,2001,29(3):258-262
    [32] P. V. Banavalkar. Concept and Application of Spine Structures for High-Rise Buildings. Habitat and High-Rise, Tradition and Innovation. Proceeding of the 5th World Congress,CTUBH1995.5, Amsterdam, The Netherlands
    [33] 刘建文,沈蒲生.高层建筑结构选型与布置对受力性能的影响.工程力学(增刊),2005,468-473
    [34] 郭长城.建筑结构振动计算.北京:中国建筑工业出版社,1982
    [35] 张连德,王泽军,卫云亭.钢筋混凝土偏压扭构件非线性全过程分析.建筑结构学报,1990,11(2) :16-272
    [36] 张连德,陈为滢,卫云亭.低周反复扭矩作用下钢筋混凝土双向偏压构件抗扭性能的研究.土木工程学报,1993,26(2) :29-373
    [37] 张国顺.钢筋混凝土双向偏压构件抗扭性能的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学土木工程学院,1989
    [38] 赵嘉康,张连德,卫云亭.钢筋混凝土压、弯、剪、扭构件受扭性能的研究.土木工程学报,1993,26(1) :20-30
    [39] 秦卫红.钢筋混凝土压、弯、剪构件在反复扭矩作用下抗扭性能的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学土木工程学院,19893
    [40] 刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993
    [41] 方鄂华,钱嫁茹,叶列平.新编高层建筑结构.北京:中国建筑工业出版社, 2003
    [42] 刘建文,孟焕陵,沈蒲生. 抗侧力构件对结构扭转效应的影响. 湖南大学学报(自然科学版增刊),2006,(33)3
    [43] 沈蒲生.一级注册结构工程师考试手册(上册).北京:中国建筑工业出版社,2000
    [44] 沈蒲生,梁兴文.混凝土结构设计.北京:高等教育出版社,2002.
    [45] 赵西安,徐培福.高层建筑结构的选型、构造及简化计算.北京:中国建筑工业出版社,1990
    [46] 马宏旺.基于概念设计竖向不规则结构的抗震分析.工程抗震,2000,32(3):29-32
    [47] 方鄂华.多层及高层建筑结构设计.北京:地震出版社,1992
    [48] GB 50011-2001,建筑抗震设计规范

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700