用户名: 密码: 验证码:
渠道塑膜防渗理论与机械化铺膜的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析与试验验证相结合的方法,对输水渠道塑膜铺衬防渗的基本理论和在筑渠过程中实现机械化铺膜的关键技术进行了研究和探索。
    论文在系统综述国内外现有研究的基础上,分析了作为渠道防渗主体材料的塑料薄膜的力学特性。建立了塑料薄膜的胀破强度、顶穿强度、架空强度数学模型,分析了损伤对塑料薄膜强度的影响,给出了渠道出现长形裂缝和圆形孔洞条件下塑料薄膜强度的计算公式。对土保护层塑料薄膜防渗渠道的边坡稳定性进行了理论研究和探讨,建立了土保护层塑料薄膜防渗渠道在渠道水位突然下降和降雨条件下的边坡稳定的数学模型,分析了渠坡长度、渠坡角、土-膜摩擦角、保护层厚度以及土体内摩擦角对渠道边坡稳定的影响规律。建立了土保护层塑膜铺衬防渗渠道的多目标模糊优化数学模型,给出了多目标、多约束条件下土保护层塑膜铺衬防渗渠道的设计计算方法,并通过实例进行了验证,证明渠道的水力最佳断面并不是工程上的最佳实用断面。系统地建立了渠道机械化铺膜的设计理论,首次提出膜料滚主动同步放膜和毛刷随动仿形展膜技术;分析了放膜系统的动力学特性,并建立了膜料滚运动规律的数学模型;分析了放膜量波动产生的原因,设计了抗波动自适应放膜系统,对系统的抗波动能力进行了分析和量化,利用3ds Max5软件建立了梯形渠道塑膜铺衬机构与放膜量波动调节机构的实体模型,实现了工作过程计算机仿真分析。对塑料薄膜在渠床中的展开过程进行了分析,给出了梯形和U形渠道的“展膜锋线”的轨迹方程。研制了梯形、U形、台阶形渠道塑膜铺衬样机。运用均匀设计理论和UST软件对影响铺膜效果的主要因素进行了分析和试验,提出了渠道机械化铺膜效果的评价依据。试验证明铺膜机构性能满足设计要求。给出了梯形、U形和台阶形渠道的最佳铺膜参数组合,为实用机型和联合作业机组的开发提供了参考和依据。
China is a relative indigent country about the water resource and is also a bigagricultural country. The use amount of water on the agriculture occupies 73% ofwhole state using water amount each year, but the efficiency is lower. Using rate ofthe irrigation water is only 30%~40%( using rate in the developed countries are70~80%), thereinto, 50% of irrigation water is lost in the course of the transportationfrom water resource to field, that is173 billion m3 .
    At present, canal is a main transportation water mode in field irrigation in China,but more than 80% of the canals are not dealt with on the seepage-proofing, theamount of losing water reaches 70% in some poor soil canals. Therefore, it isnecessary and impendent to study the theory and search after methods for decreasingcanal seepage. In this paper, author mainly conducts the basic theory ofseepage-proofing with geomembrane and the key technology of machine pavinglining in canal. The study is of practical engineering significance to popularizingseepage-proofing saving water technology in a large area of China. The maincontents and conclusions of the paper are following:
    1. By theory analysis and experiment, the performance of plastic lining(geomembrane) which is taken as the principal part of canal seepage-proofing areresearched. Analyzes how damages affect the strength of plastic lining, testifies thatthe geommbrane breakage is asymptotic under the undamaged condition, and thebreakage is paroxysmal under the damage condition and its elongation rate is only
    about 1/10 of the undamaged geomembrane. Analyzes the stress-strain relation of thegeomembrane under the effect of water pressure, gives the mathematics models ofstress-strain relation of the geomembrane under the conditions of special boundaries(rectangle, rotundity, square). On theory analyzes and deduces the expansion strengthand piercing-strength of the geomembranes and establishes the mathematics modelof expansion strength, piercing-strength of the geomembranes. Analyzes the strengthof plastic lining above a cavity and deduces the strength calculation formulas in thecondition of the crack and hole.2. The theory researches and discusses are conducted on the slope stability ofgeomembrane-seepage-proofing canal on which protective layer is soil. Establishesthe mathematics model of the canal slope stability for two bad states (the water levelin canal is abruptly changed, as well as rainfall);analyzes the impact rule of thevarious desige parameters to the stability of canal slope, points out that the safetyfactor of canal slope FS rises with friction angle between canal and geomembraneδ ,inter friction angle of soilΦ and thickness of soil protective layer h rising;descendswith the increase of slope angle β , slope length L and HSR(PSR) rising , gives thebase for the design of the slope stability of geomembrane-seepage-proofing canalon which protective layer is soil.3. The fuzzy optimal mathematics model of multi-objectives is established bygoals of economical efficiency and transportation ability about seepage-proofingsoil protective canal with geomembrane.A design and calculation method for thecanal which takes geomembrane lining as seepage-proofing part and soil asprotective layer under the multi-objective, multi-constraint conditions put forward,and a calculating program is worked out. The fuzzy optimal results of the canaldesign parameters under the different submerging degree condition is presented,and taking HSR= 0.8 as example the affecting rules of design parameters canalslope angle β , width of canal bottom b , height of canal H, thickness of soil layer hto the whole goal level is analyzed. Prove that hydraulic optimal section of canaldoes not equal to engineering optimal section.
    4. Taking the arc base trapezoid canal which is of generality as an example,the section structure of concrete protective canal which is lined with geomembraneis analyzed and optimized;an optimal mathematics model is established, works outa counting program and with a example proves that the price of complexseepage-proofing structure in which concrete is combined with geomembrane isonly 81.2% of the price of single concrete seepage-proofing structure.5. Puts forward the design theory of mechanically paving lining incanal.Develops the kinematics and dynamics model of the geomembrane rollmoving. Analyze the difference between the ideal angle acceleration of thegeomembrane roll Lθ&& and the angle accelerationJθ&& under the action of practicalfriction force. On theory prove that the problem that geomembrane is drawed in theprocessing of paving can be solved and the quality may be ensured through thereasonable choose of drive ratio, therefore, give a reference for the design ofmachine to pave lining.6. At first, presents the technology that geomembrane roll paves the lining ininitiative and synchronism, ensures the geomembrane being in moderate relaxationstate. At first adopts the technology that the brush follows and contours and unfoldsthe geomembrane, the geomembrane is unfolded on the canal surface andupper-edge (trapezoid U shape and step shape). These technologies have gainednational utility model patent and have declared national invention patent.7. By 3ds Max5 software, the entity model of the machine to pave lining fortrapezia canal and the mechanism of minim adjusting discharging geomembraneamount are established.The computer emulation analysis in the processing ofpaving lining is realized. Analysis results indicate that the system to adjustdischarging geomembrane amount may not only solve the minim fluctuatingamount of 2% that the discharging geomembrane mechanism produces in work, butalso is of the ability to solve larger fluctuating amount.8. Unfolding process of the geomembrane in canal is analyzed and the trackequation of “front edge of genmembrane unfolding” is given. It is of directionsignificance for the design of the discharging-geomembrane system.
    9. Three kinds of model machines to pave lining in trapezoid, U shape andstep shape canals are developed. Through experiment, verifies the theorymechanically to pave plastic lining in canal. By means of uniform design theoryand software, the main factors to affect the effect of paving lining are analyzed andtested, and following rules are gained: the velocity of machine moving is the mainfactor to affect the effect to pave the lining for three kinds of canal shapes. Theeffect to pave lining gradually becomes bad with the increase of machine velocity.The geomembrane presents the trend to be tensioned when the machine velocityincreases, its causes are because the skid rate increases between the driving wheeland canal, as well as between discharging-rubber-roll and geomembrane roll. Fortrapezoid and U shape canal, the effect to pave lining is better when brushinclination respectively equal to 15°and 12°. if inclination is smaller it is difficultthat the air under the lining is eliminated so that it is possible to separate betweengeomembrane and canal bed, further more, the lining to be pave is not smoothenough, conversely, that inclination is larger will lengthen the longitudinal size ofmachine, which is unfavorable for the brush following and contouring. Theeffect to pave lining becomes better with the increase of geomembrane thickness,but it is not obvious. When height of brush (distance between brush stem and canalbed) is 3~4mm the effect to pave lining is best.10. Presents the evaluation standard and measure method about the effectmechanically to pave lining in canal. Measure the slippage coefficient ofgeomembrane roll and the tensile rate of geomembrane in the process of paving. Inthe range of test, the slippage coefficient the between discharging-geomembranerubber roll and geomembrane roll is about 1%-3%.11. In the process of paving lining for three kinds of canal shape, the testedtensile rate of geomembrane is 3~5/1000,which is much less than about 10% ofpaving geomembrane in field, indicate that the mechanism to pave geomembranehas less impact on the mechanics performance of geomembrane, prove that thetechnique to pave lining in initiative and synchronism fits to paving the lining in
    canal.
引文
[1] 中国水资源公报.中华人民共和国水利部.1999
    [2] 李英能. 节水农业新技术. 南昌:江西科学技术出版社. 1998.12
    [3] 李安国,建功等. 渠道防渗工程技术. 北京:中国农村水利水电出版社.1998.03
    [4] 薛亮. 中国农业节水理论与实践. 北京:中国农业出版社,2002.05
    [5] 陈志恺. 持续干旱和华北水危急.中国水利 2002.4 6-8
    [6] 李远华.节水灌溉理论与技术. 武汉:武汉水利电力大学出版社.1999.01
    [7] 建功. 试谈渠道防渗在解决我国水资源危机中的作用. 中国建筑防水.1998.5 7-9
    [8] 杨天. 节水灌溉技术手册(全四卷)第一卷. 北京:中国大地出版社.2002.05
    [9] 郭慧滨,李振海等. 渠道防渗工程(第七讲).节水灌溉.1999.6 26-29
    [10] 席跟战,李安国等. 我国渠道防渗工程技术的发展趋势. 西北水资源与水工程.Vol.8 No.4 1997 52-56
    [11] 李安国. 我国渠道防渗工程技术综述. 防渗技术,Vol.6 No.1 2000 1-4
    [12] 中国灌溉农业节水规划项目组. 中国灌溉灌溉农业节水规划.水利部.1996
    [13] 任之中,李学军. 我国大中型 U 型防渗渠道应用总结. 防渗技术.1996.2 37-40
    [14] Mcleod A.J, Earl G.C, Mcmahon, T.A, Moore, P.J. Measurement of irrigation channel seepage in Northern Victoria Author Affiliation. National Conference Publication -Institution of Engineers.Australia 2(B) 94/14 Nov 21-25
    [15] Krinner Wolfgang, Garcia Angel. Method for estimating efficiency in Spanish irrigation systems. Journal of Irrigation and Drainage Engineering Vol.120 No.5 Sept-Oct 1994 ASCE p 979-986 0733-9437
    [16] 张文渊,李晓琴.灌溉渠道防渗处理经济分析.节水灌溉.2001.1 25-26
    [17] 柯成樁,美国渠道的膜料防渗简介. 湖南水利. 1994.6 30-34
    [18] 秦为耀编.节水灌溉技术. 北京:中国水利水电出版社.2000.1
    [19] 唐兴信主编. 农业节水技术. 北京:水利水电出版社.1992.3
    [20] 夏兆君,孙延福,康百赢.边坡侵蚀的理论分析.东北农业大学学报.Vol.34 No.3 2003 293-298
    [21] 胡长明.考虑降雨入渗影响的非饱和土边坡突变失稳的研究.西安建筑科技大学硕士论文.20040401
    [22] 中华人民共和国行业标准. 灌溉工程技术规范(GBJ85-85、SL103-95)
    [23] 中华人民共和国水利部. 渠道防渗工程技术规范. SL18-91. 1991.12
    [24] 崔中兴,刘兰亭. 土工膜渗透特性测试试验研究. 西北水资源与水工程 Vol.5 No.4 1994 30-35
    [25] 方海焕.土工薄膜在土石坝防渗工程中的应用及其耐久性.防渗技术.1995.1 37-40
    [26] 赵佩钰,张晓宇.渠道防渗土工膜厚度的探讨.防渗技术.Vol.4 No.2 1998 19-24
    [27] 王振铎 土工合成材料在冻胀区渠道防渗中的应用研究.中国农村水利水电. 2006.3 86-91
    [28] R.Kerry Rowe,Henri P.Sangam. Durability of HDPE geomembranes. Geotextiles and geomembrane 20(2002) 77-95
    [29] 余玲,赵文昌. PVC 复合土工膜老化性能初探.水利水电技术.1996.11 59-61
    [30] 余红松,陈光存.复合土工膜的老化试验研究 科技论坛 2005.1 26-30.
    [31] 郑泽民,建功. 土保护层膜料防渗渠道的调查与分析. 防渗技术,Vol.2 No.1,1996.3 30-35
    [32] 吴景社.世界灌溉的发展趋向.世界农业.1995.6 34-37
    [33] Swamee PK, Mishra GC, Chahar BR. Design of minimum water-loss canal sections Journal of Hydraulic Research 40 (2): 2002 215-220
    [34] 张科民. 自行式 U 形渠道衬砌机的研制与应用. 人民黄河.1996.11 21-24
    [35] 罗鸿,杨习发. 混凝土渠道衬砌机性能及应用. 灌溉排水.1997.2 16-18
    [36] 杨自东. 塑料薄膜防渗渠道设计与施工. 甘肃水利水电技术. Vol.36 No.4 2000 244-247
    [37] 王俊发,马旭.我国渠道防渗工程技术现状及塑膜铺衬机械化筑渠技术.吉林大学学报(工学版).Vol.34 No.2 2004 320-324
    [38] 何武权,刑义川.渠道防渗抗冻新材料与新技术.节水灌溉.2003.1 4-6
    [39] 陈殿魁.我国大型温室的发展概况.农业工程学报.Vol.16 No.6 2000 157-162
    [40] 季保仁,周福国. 渠道防渗技术新进展. 中国农村水利水电.2003.4 1-3
    [41] 罗意琼. 现代垃圾填埋场场底防渗衬垫的设计 佛山科学技术学院学报(自然科学版) 2003. 03 23-27
    [42] 黄院生. 刚柔性防渗技术在新安水库大坝除险加固中的应用 水利科技 2003. 02 32-34
    [43] 周敬超. HDPE 土工膜在城市生活垃圾卫生填埋场中的应用 水利水电 科技进展 2003. 03
    [44] 张耀钧. 城市生活垃圾卫生填埋场的 HDPE 土工膜防渗技术 中国建筑防水 2003. 03 17-21
    [45] 张鹏,王建华,陈锦剑. 垃圾填埋场边坡上土工膜的拉力与位移分析 岩土力学 2004.05 39-43
    [46] 田士豪,黄世柏. 渠道膜料防渗的推广应用 节水灌溉 2001. 03 14-17
    [47] 前沿科技 国内外聚乙烯土工膜在节水防渗工程中的应用 World Plastics Vol.23 No.6 2005 58-64
    [48] 顾淦臣 论圆明园荷花池用聚乙烯膜防渗的科学性 科学导报 Vol.23 No.6 2005 7-9
    [49] 王育人 中国土工合成材料的现状及发展 西部大开发塑料论坛论文集 2001.8
    [50] 秦立洁,催世芳. 聚乙烯土工膜耐候性能研究 中国塑料 Vol.19 No.1 2005.1 53-57
    [51] 黎军锋, 孙学智. 复合土工膜自然老化特性及抗拉强度变化规律研究 大坝观测与土工测试 2001.06
    [52] J.P.Giroud. Analysis of stress and elongations in geomembranes. Proceedings of the International Conference on Geomenbranes. Vol.2 Denver.CO. USA.1984.8
    [53] J.P.Giroud. Mathematical Model of Geomembrane Stress-strain Curves with a Yield Peak. Geotextiles and Geomembranes. Vol.13 No.1 1994 235-243
    [54] J.P.Giroud,Monroe, M.&Charron,R.M. Strain Measurement in Geomembrane tensile tests.Geotech.Test.J.ASTM. 17(1) 1994 376-382
    [55] J.P.Giroud, K.Badu-tweneboah and K.L.Soderman. Theoretical Analysis of Geomembranes Puncture. Geosynthetics International.Vol.2 No.6 1995 478-483
    [56] J.P.Giroud, R.C.Bachus and Robert M.Koerner. Influence of water flow on the stability of geosynthetic-soil layered systems on slopes. Geosynthetics International.Vol.2 No.6 1995 457-472
    [57] J.P.Giroud,N.D.Williams et.al.Stability of Geosynthetic-soil Layered Systems on Slopes. Geosynthetics International.Vol.2 No.6 1995 547-561
    [58] P.M.Goldsmith and R.I stessel. Multi-Axial testing of Geomembranes. Waste Management & Research (1996) 105-124
    [59] Masahiro Shinoda, Richard J. Bathurst. Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load. Geotextiles and Geomembranes 22 (2004) 205–222
    [60] Tushar K.Ghosh. Puncture resistance of pre-strained geotextile and its relation to uniaxial tensile strain at failure. Geotextile and Geomembranes. Vol.16 1998.6 293-302
    [61] P.Villard, J.P.Gourc, N.Feki. Analysis of geosynthetic lining syetems(GLS) undergoing large deformation. Geotextile and geomembranes 17(1999) 17-32
    [62] Wesseloo J., Visser A.T., Rust E. A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes. Geotextiles and Geomembranes. Vol.22 No.4, 2004 273-295
    [63] Struve F., Koerner G.R. Behavior of HDPE geomembrane sheet and seams subjected to a 90° tensile test .Geotechnical Special Publication. n 130-142. Geo-Frontiers 2005. 2005 p 4345-4351
    [64] Scuero Alberto M., Vaschetti Gabriella L. Geomembrane systems: 45 Years history of the effective sealing of dams. International Journal on Hydropower and Dams. Vol.11 No.1 2004 75-79
    [65] 陶同康.复合土工膜及其防渗设计.岩土工程学报.Vol.15 No.2 1993 31-39
    [66] 束一鸣. 防渗土工膜工程特性的探讨.河海大学学报. Vol.21 No.4 1993 1-6
    [67] 束一鸣,叶乃虎.LDPE 土工膜液胀极限载荷的工程仿真实验.水利水电科技进展.Vol.23 No.5 2003 1-3
    [68] 顾淦臣.土工膜和复合土工膜的品种和特性.水利规划设计. 2000.3 26-30
    [69] 胡利文,陈嘉鸥.土工膜结构破损机理分析.岩土力学.Vol.23 No.6 2002 702-705
    [70] 王介民,孙新忠,朱文魁.弧形底梯形渠现浇混凝土防渗施工机械的研究.防渗技术.Vol.8 No.2 2002 20-22
    [71] 霍兵.21 世纪初期中国水利技术装备重点发展领域.河海水利.2004.1 55-57.
    [72] 霍兵.渠道机械化衬砌设备及应用前景.机械视窗.2004.1 31-32
    [73] 何武全. 我国渠道防渗工程技术的发展现状与研究方向. 防渗技术.Vol.8 No.1 2002 31-33
    [74] 艾树衡,陈清芬.混凝土及膜料复合渠道防渗技术的研究.防渗技术.Vol.2 No.3 1996 9-12
    [75] 马旭,马成林等.盐田防渗塑膜铺底专机的研究. 农业机械学报. Vol.28 No.2 1997 164-167
    [76] 刘清生,许绮川.窄幅铺膜机具的研究.仲恺农业技术学院学报.1995.8 39-43
    [77] R.Antoine, L.Courard. Perforation strength of geosynthetics and sphericity of coarse grains: a new approach. Geotextiles and geomembranes 14(1996) 585-600
    [78] Koerner R.M., Wilson-Fahmy R.F., Narejo, D. Puncture protection of geomembranes Part III: examples. Geosynthetics International. Vol.3 No.5 1996 655-670
    [79] Narejo D., Koerner, R.M., Wilson-Fahmy R.F. Puncture protection of geomembranes Part II: experimental. Geosynthetics International, Vol.3 No.5 1996 629-653
    [80] Wilson-Fahmy R.F., Narejo D., Koerner R.M. Puncture protection of geomembranes Part I: theory. Geosynthetics International. Vol.3 No.5 1996 605-628
    [81] Welker, Andrea L., Josten. Nicholas Interface friction of a geomembrane with a fiber reinforced soil. Geotechnical Special Publication, n 130-142, Geo-Frontiers 2005. p 2903-2910
    [82] 中华人民共和国行业标准.土工合成材料测试规程. SL/T235-1999
    [83] 钱家欢,殷宗泽. 土工原理与计算(第二版).北京:中国水利水电出版社. 1996
    [84] 陈玉田.偏微分方程数值解法. 河海大学出版社.1994
    [85] 鄢俊.土石坝土工薄膜防渗结构优化设计研究及应用[M]. 南京水利科学研究院 2000.8
    [86] M.C.Wang, Y.X.Feng, M, Jao. Stability of geosynthetic-reinforced soil above a cavity. Geotextiles and Geomembranes 14(1996) 95-105
    [87] Jaky J. The coefficient of earth pressure at rest. Journal for Society of Hungarian Architects and Engineers. Budapest, 1944,10 178-186
    [88] Handy R L.The arch in arching[J].Geotechnical Eng. Vol111 No.3 1985 243-254
    [89] JamesA. The anatony of soil arching[J].Geotextiles and Geomembranes.1994 13(5)
    [90] A.N.Dancygier and D.Z.Yankelevsky. A Soft layer to control soil arching above a buried structure. Engineering and Structures.Vol.18 No.5 1996 378-386
    [91] Terzaghi K. Theoretical soil mechanics.John Wilry and Sons.Inc. New York.1943
    [92] Bishop A W.The Use of the Slip Circle in the the the Stability Analysis of Slopes.Geotechnique.Vol.5 No.1 1955 457-468
    [93] Janbu N.Slope Stability Computations.Embankment-Dam Engineering. 1973.6 564-572
    [94] Spencer E. A method of Analysis of the Stability of Embankments Assuming Parallel Later-Slice Forces.Geotechnique.Vol.17 1967 1521-1534
    [95] McCartney, John S., Zornberg,Jorge G., Swan, Robert H. Effect of geomembrane texturing on GCL -Geomembrane interface shear strength Geotechnical Special Publication. n 130-142. Geo-Frontiers 2005. 2005p 3285-3295
    [96] Te-Yang Soong and Robert M.Koerner, Seepage Induced Slope Instability.Geotextile and Geomembrane. Vol.14 No.7/8 1996 421-445
    [97] Daniel,David E, Koerner, Robert M. Slope stability geosynthetic clay liner test plots. Journal of geotechnical and geoenvironmental engineering.Vol.124 No.7 1998 628-637
    [98] Morgeostern N R and Price V.E. The Analysis of the Stability of General Slip Geotechnique.Vol.15 No.1.1965:93-102
    [99] P. Lemonnier, A.H. Soubra, R. Kastner. Variational displacement method for geosynthetically reinforced slope stability analysis: I. Local stability. Geotextiles and Geomembranes 16 (1998) 1–25
    [100] P. Lemonnier, A.H. Soubra, R. Kastner. Variational displacement method for geosynthetically reinforced slope stability analysis II. Global stability. Geotextiles and Geomembranes 16 (1998) 27–44
    [101] 时为民,郑颖人,唐伯明. 滑坡稳定性评价方法的探讨 岩土力学 Vol.24 No.4 2003 545-552
    [102] 时卫民,叶晓明,郑颖人.阶梯形边坡的稳定性分析. 岩石力学与工程力学. Vol.21 No.5 2002 698-701
    [103] 郑颖人,赵尚毅等.边坡稳定分析的一些进展.地下空间. Vol.21 No.4 2001 262-238
    [104] 蒋斌松,吕爱钟等.纯粘土边坡稳定性的解析计算.工程力学 Vol.20 No.5 .2003 204-208
    [105] 蒋斌松,蔡美峰等.平面滑动边坡稳定性的解析计算.岩石力学与工程力学. Vol.23 No.1 .2004 91-94
    [106] 时为民,郑颖人,唐伯明.滑坡稳定性评价方法的探讨.岩土力学.Vol.24 No.4 2003 545-552
    [107] 吕擎峰.土坡稳定分析方法研究.河海大学博士论文.20050101
    [108] 白世伟.最小势能原理在边坡稳定性分析中的应用研究.中国科学院武汉岩土力学研究所博士论文.20040101
    [109] Whitman R V and Bailey W.A. Use of Computers for Slope Stability of General slip Surface.Geotechnique.Vol.15No.1,1965:1102~1113
    [110] Sarma S K.Stability Analysis of Embankments and Slopes. Geotechnique.Vol.23No.3 1973
    [111] 高玉芳,张展羽. 塑料防渗渠道土保护层边坡稳定的计算方法 水利科技与经济 Vol.10 No.3 2004.6 147-149
    [112] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社.1980
    [113] 包成纲.非饱和土的性状及膨胀土边坡稳定问题.岩土工程学报.Vol.26 No.1 2004 1-15
    [114] 乔建平. 滑坡体结构与坡形.岩土力学与工程学报.Vol.22 No.5 2002 1355-1358
    [115] 张伯平,陈有富,懂玉文. 黄土地基冬季施工冻结效应[J].岩土工程学报. Vol.22 No.5 2002 625-628
    [116] 李宁,徐学祖.冻土力学的研究进展与思考.力学进展.Vol.31 No.1 2001 95-102
    [117] 张力霆. 渠道边坡粘性土渗透系数的变化规律.灌溉排水学报.Vol.22 No.5 2003 64-67
    [118] 李兆平,张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究.土木工程学报.Vol.34 No.5 2001 57-61
    [119] 顾慰慈. 渗流计算原理及应用[M].北京:中国建设工业出版社.2000.6
    [120] 陶太江,廖济川.膨胀土地区开挖渠道滑坡的规律与特征. 安徽建筑工业学院学报(自然版) Vol.4 No.3 1996 35-40
    [121] 时为民,郑颖人.滑移面为直线假设下的斜坡稳定分析.公路交通技 术.2001.3 28-32
    [122] Carter, Ian C., Claydon, Jim R., Hill, Mattew J. Geomembrane liner replaces ageing asphaltic lining at Winscar dam. International Journal on Hydropower and Dams.V0l.11 No.1 2004 80-83
    [123] DeJong, J.T., Westgate, Z.J. Role of overconsolidation on sand-geomembrane interface response and material damage evolution. Geotextiles and Geomembranes. Vol.23, No.6, 2005 486-512
    [124] Hoe I Ling & Dov Leshchinsky. Seismic stability of landfill cover system. 3th international syaposium. Vol.1 1996 569-578
    [125] 周传元.复合土工膜防渗体稳定安全系数的现场测定.防渗技术.Vol.5 No.4 1999 32-38
    [126] 姜丙阳.含土工膜夹层土坡地震稳定性研究.硕士学位论文[M].大连理工大学.2002.3
    [127] 张 鹏,王建华,陈锦剑.垃圾填埋场边坡上土工膜的拉力与位移分析.岩 土 力 学 Vol.25 No.5 2004 789-792
    [128] 徐光明,章为民,张金凯.土工膜防渗层稳定性的离心模型试验研究和极限分析.水利水运科学研究.Vol.32 No.1 1999 32-40
    [129] Hoe I Ling & Dov Leshchinsky. Seismic stability and permanent Displacement of landfill cover system [J].Joural of geotechnical and geoenvironmental engineering Vol.123 No.2 1997 113-122
    [130] Stefan Seeger, Werner Muller. Requirement and Testing of Protective Layer System for Geomembranes. Geotextiles and Geomembranes 14(1996)365-376
    [131] Girard, H., Fisher, S., Alonso, E. Problems of friction posed by the use of geomembranes on dam slopes—Examples and measurements. Geotexiles and GeomembranesVol.9 No.2 1990 467-473
    [132] 武丽.降雨入渗对边坡渗流特性及稳定的影响研究.河海大学硕士论 文.20050501
    [133] 彭万巍,蒋允静,张建明.薄膜防渗渠道的冻融稳定性.西北农业大学学报 Vol.24 No.4 1996 90-93
    [134] 肖正华,韩波,马希龄.水位下降对均质土坝边坡稳定性的影响.新疆大学学报.Vol.21 No.2 2004 218-221
    [135] Ling H.I. Pamuk A.Dechasakulsom. Interactions between PVC geomembranes and compacted clays. Journal of geotechnical and geoenvironmental engineering. Vol.127 No.11 2001 950-954
    [136] 余书超,宋玲,欧阳辉等.渠道刚性衬砌层(板)冻胀受力试验与防冻胀破坏研究.冰川冻土.Vol.24 No.5 2002 639-6413
    [137] 王正中.梯形渠道砼衬砌冻胀破坏的力学模型研究.农业工程学报.Vol.20 No.3 2004 24-29
    [138] 胡永桢.渠床基土冻胀与衬砌结构变形及破坏规律的研究.防渗技术.Vol.5 No.2 1999 41-44
    [139] 王家澄. 单向冻结时土颗粒位移的热筛效应及对流迁移[R].冻土工程国家重点实验室年报. 1994.6 37-40
    [140] 徐学祖,吴紫汪. 冻土缘的基本特征及特征参数确定方法[R]. 冻土工程国家重点实验室年报第 4 卷. 28-35
    [141] Miller R.D. Lens initiation in secondary frost heaving[R].Int. symp. on frost action in soils. Sweden 1977
    [142] Takeda K,Okamura A. Maicrostructure of freezing front in freezing soils[A].Ground Freezing 97[C]. Netherlands: Lulea University of Technology. 1997.
    [143] 刘鸿绪,朱卫中等. 再论冻胀量与冻胀力之关系.冰川冻土.Vol.23 No.1 2001 63-66
    [144] 彭万巍,蒋允静,张建明.薄膜防渗渠道的冻融稳定性.西北农业大学学报.Vol.24 No.4 1996 90-93
    [145] 李金玉,曹建国,徐文雨.混凝土冻融破坏机理的研究.水利学报.1999 41-49
    [146] 张勇,霍宏伟.混凝土衬砌渠道产生冻害破坏的原因.东北水利水电.Vol.21 No.2 2003 8-9
    [147] 薛洁. 渠道防渗现浇混凝土渠道防冻胀衬砌厚度计算.河北水利科技.2001.4 38-45
    [148] 李国安,陈瑞杰,杜应吉等.渠道冻胀模拟试验及衬砌结构受力分析.防渗技术.Vol.6 No.1 2000 5-16
    [149] 张伯平,牟过斌,闫宁霞.渠道衬砌体冻胀破坏机理与防治对策.水利与建筑工程学报.Vol. 1 No.1 2003 10-12
    [150] 渠系工程抗冻胀设计规范.编号:SL23-91.中华人民共和国水利部 1991.2
    [151] DL/T5082-1998 水工建筑物抗冻设计规范[S]. 中华人民共和建筑行业标准.北京:中国建筑工业出版社.1998
    [152] P.K.斯瓦米.最佳的灌溉渠道断面. 西北水资源与水工程.1996.4 90-93
    [153] P.K.斯瓦默等.衬砌渠道最经济断面的设计.水利水电快报.Vol.24 No.16. 2000 4-7
    [154] Parviz Monadjemi. General Formulation of best hydraulic Channel section ASCE. I R.Vol.120 No.1 1994 543-551
    [155] 刘汉宇. 渠道断面一些设计参数的选择方法.水利水电技术.1994.12 56-61
    [156] 张文倬. 渠道梯形断面计算简化. 四川水利. 2003.3 32-35
    [157] 程吉林,陈平等.提水灌区输水明渠纵横断面优化设计.灌溉排水学报.Vol22 No.1 2003 31-34
    [158] 王开民. 梯形渠道水力最佳断面边坡系数推求.陝西水力发电.Vol.16 No.2 2000 32-36
    [159] Lawrence E., Flynn, Migual A.Marion.Canal design: Optical cross section.ASCE.IR. No.113 1987.8
    [160] 余长洪,周明耀.灌区节水改造中防渗渠道断面的优化设计.农业工程学报.Vol.20 No.1 2004 91-94
    [161] 王萍.明渠断面设计的无因次形状参数法.水利学报.1996.12 76-83
    [162] Yesiller, Nazli, Cekic, Arif Determination of surface and thickness characteristics of textured geomembranes using image analysis. Geotechnical Testing Journal. Vol.28 No. 3 2005 275-287
    [163] 潘起来.渠道经济断面的优化设计.青岛大学学报.Vol.22 No.1 2004 31-33
    [164] 王俊发,马旭.塑膜防渗梯形衬砌渠道最佳经济断面的优化设计方法,佳木斯大学学报(工学版). Vol.23.No.2 2005 56-61
    [165] 李国安,建功,曲强.渠道防渗工程技术.北京:中国水利水电出版社.1998.3
    [166] 束一鸣.土工膜施工工艺及其经验教训 水利水电技术 2002. 04
    [167] 王力威,王云山. 聚乙烯(PE)复合土工膜的施工方法. 水利天地. 2002.03
    [168] 战若才,安瑞强,郑秀君. 复合土工膜防渗渠道及其施工要点. 现代化农业. 2002.09
    [169] 王俊发,马旭. 渠道塑膜铺衬机的研究. 农业机械学报. Vol.36 No.4 2005 150-152
    [170] 马旭,王俊发,梁留锁等. 渠道防渗塑膜铺衬机.发明专利.申请号:200410010629.0
    [171] 马旭,王俊发,梁留锁等. 渠道防渗塑膜铺衬机.实用新型专利.专利号:200420011443.2
    [172] wang Junfa, Maxu. The Study of the Machine to Pave Plastic Lining for Canal. 2004 CIGR International Conference, Vol.2 V-45
    [173] 成大先主编.机械设计手册.第四卷.北京:化学工业出版社.2002.1
    [174] 任露泉. 试验优化设计与分析.长春:吉林科学技术出版社. 2001.3
    [175] 方开泰. 均匀设计与均匀设计表.北京:科技出版社.1994
    [176] 方开泰,马长兴著. 正交与均匀试验设计.北京:科学技术出版社.2001
    [177] 孙裕晶. 虚拟样机技术及其在精密排种部件设计中的应用[M].长春:吉林大学博士生论文.2005.6
    [178] 贺媛媛,刘莉,俞仁顺. 均匀设计法在导弹散布分析中的应用[J].战术导弹技术.2002.6 1-6
    [179] 冯云生,国振双,佟白. 均匀设计在高纯大豆磷脂提取中的应用[J].中国油脂 Vol.28. 2003.8 73-74
    [180] 张向东,辛爽,周梅. 均匀设计在排矸高强混凝土配比中的应用[J].应用基础与工程科学学报.Vol.34. 2003.4 314-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700