用户名: 密码: 验证码:
番茄砧木对南方根结线虫抗性鉴定及抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Lycopersicon esculentum Mill.)是我国设施栽培面积最大的蔬菜之一,因其复种指数高、连作重茬栽培较为普遍,致使番茄根结线虫病高发,生产实践中,采用抗性品种和利用抗性砧木嫁接栽培已成为防控根结线虫病的有效方法。因此,鉴定筛选高抗番茄根结线虫病的砧木品种,并确定其抗性机制具有重要的理论意义和应用价值。为此,本研究在鉴定评价番茄砧木对南方根结线虫抗性水平基础上,系统研究了不同抗性番茄砧木幼苗相关生理代谢及特异蛋白表达差异,以期揭示番茄砧木抗南方根结线虫的生理机制,为选育高抗根结线虫番茄砧木品种提供理论依据。主要研究结果如下:
     1.通过测定16个供试番茄砧木幼苗接种南方根结线虫50d时的相对生长量及相关病理指标,结果表明,南方根结线虫侵染对不同番茄砧木幼苗各器官相对生长量、相关病理指标及其变异系数的影响显著不同,其中生长量的变异系数以相对根鲜质量较大,为20.20%,相对茎粗较小,仅6.22%。不同番茄砧木幼苗的根结指数(GI)、卵粒指数(EI)、繁殖系数(RF)和病情指数(DI)也存在显著差异,且其变化也不一致,表明根据单一指标对幼苗抗病性进行分类的结果会存在一定差异。
     2.研究表明,采用多指标综合聚类分析较单一指标聚类分析更能准确划分番茄砧木抗南方根结线虫的类群,而根据综合指标进行隶属函数运算,则可确定供试番茄砧木对南方根结线虫抗性的顺序,由此建立了以系统聚类分析和隶属函数运算相结合的番茄砧木对南方根结线虫抗性综合鉴定评价方法。通过聚类分析和隶属函数相结合的方法,确定Baliya为免疫材料,BESUPA、坂砧2号、砧木606、砧木002、砧木001、TMS-150、Support、MIKADO、砧木401为抗病材料,Anka-T为耐病材料,坂砧1号、北京1号为感病材料,128、BF兴津101、Ls-89为高感材料。
     3.研究了高感品种Ls-89与高抗品种坂砧2号幼苗接种南方根结线虫前后活性氧代谢的差异。结果表明,未接种南方根结线虫的番茄砧木幼苗,其根系与叶片活性氧水平及SOD、POD、CAT等相关酶活性未因品种抗性不同而表现出显著差异。接种南方根结线虫后,两品种幼苗根系与叶片O2·-生成速率和H2O2含量均表现出周期性升高,且坂砧2号显著高于Ls-89,但MDA含量则以Ls-89显著高于坂砧2号,表明高抗品种番茄砧木幼苗膜脂抗氧化能力较强;两品种幼苗根系与叶片SOD活性均在侵染早期降低,且以坂砧2号降幅较大;但POD、CAT活性在侵染早期变化不大,至侵染中后期则显著升高,表明番茄砧木幼苗SOD活性对南方根结线虫侵染较为敏感。
     4.不同抗性番茄砧木幼苗苯丙烷类代谢活性显著不同,即使未接种南方根结线虫,高抗品种坂砧2号幼苗根系与叶片苯丙烷类代谢相关酶活性及酚类物质含量显著高于高感品种Ls-89;接种南方根结线虫后,两品种根系与叶片PAL、TAL、PPO等3种酶活性与总酚、类黄酮等物质含量变化规律基本一致,均呈周期性升高,但坂砧2号升幅显著高于Ls-89;而根系与叶片木质素含量逐渐升高,并且坂砧2号较Ls-89积累速率快且升幅大。
     5.南方根结线虫侵染显著影响高感砧木Ls-89根系活力及叶片色素含量,而对高抗砧木坂砧2号影响不大。未接种南方根结线虫的番茄砧木幼苗,其根系与叶片可溶性糖、可溶性蛋白、脯氨酸、细胞壁羟脯氨酸含量及几丁质酶与β-1,3-葡聚糖酶活性变化并未因品种抗性不同而有显著差异;接种南方根结线虫后,相关物质含量及酶活性变化规律基本一致,均呈现周期性升高,且坂砧2号升幅显著高于Ls-89。
     6.不同抗性番茄砧木幼苗根系分泌物对卵孵化的影响不同,同一品种不同时期的根系分泌物对卵孵化的影响也不同。未接种南方根结线虫的Ls-89根系分泌物刺激卵孵化,而坂砧2号与Baliya的根系分泌物则显著抑制卵孵化。接种南方根结线虫后,Ls-89幼苗根系分泌物刺激卵孵化的效果显著高于其未接种幼苗;而坂砧2号在接种南方根结线虫后7d、14d与35d的根系分泌物对卵孵化具有显著的抑制效果,而接种后第21d与28d抑制效果不显著,且与其未接种对照差异不显著;Baliya根系分泌物均显著抑制线虫卵的孵化,且与其未接种对照差异也不显著。
     7.通过对高感砧木Ls-89、高抗砧木坂砧2号及免疫砧木Baliya幼苗接种南方根结线虫21d前后根系分泌物的成分分析表明,不同抗性品种根系分泌物成分有所不同,同一品种接种南方根结线虫前后根系分泌物成分也有所不同。通过对比分析初步确定,不同抗性番茄砧木幼苗接种线虫21d根系分泌物中对根结线虫侵染可能起作用的物质为:邻苯二甲酸二异辛酯、2,2′-亚甲基双(4-甲基-6-叔丁基)苯酚、邻苯二甲酸二丁酯、L-抗坏血酸-2,6-二棕榈酸酯、2-苯并噻唑酮、环莠隆、邻苯二甲酸,6-乙基-3-辛基-2-乙基己酯、异硫氰酸环己酯、8-硬脂酸甲酯、顺-9-十八碳烯醛、顺-9,10-环氧硬脂酸、9,10-二羟基硬脂酸、3,7-二甲基-2,6-辛二烯醛、黄葵内酯、硬脂酸,2-(2-羟基乙氧基)乙酯、磷酸,三(2-乙基己基)酯。
     8.通过对不同抗性番茄砧木幼苗根内南方根结线虫发育进程及根际基质卵及二龄幼虫数量的研究发现,接种南方根结线虫导致Ls-89与坂砧2号幼苗根内线虫数量增加,但Ls-89根内线虫数量显著高于坂砧2号,而免疫砧木Baliya根内未发现二龄幼虫。二龄幼虫侵入坂砧2号根系的时间不仅迟于Ls-89,数量也显著低于Ls-89,且侵入根系的二龄幼虫发育为三龄及四龄幼虫数量也显著低于Ls-89。Ls-89与坂砧2号幼苗根际基质内二龄幼虫数量因二次侵染均增加,但以Ls-89显著高于坂砧2号,而Baliya根际二龄幼虫数量持续下降;根际卵数量变化较大,侵染后期Ls-89显著高于坂砧2号,而Baliya幼苗根际未发现线虫的卵。
     9.通过对接种南方根结线虫的高感砧木Ls-89、高抗砧木坂砧2号与免疫砧木Baliya幼苗叶片全蛋白鉴定分析,共检测到682个蛋白,其中32个蛋白点差异表达显著,经质谱分析和NCBI数据库搜索比对后,共鉴定了17个蛋白,分别是:peroxidase precursor(过氧化物酶前体),glutathione S1-transferase, class-phi(谷胱甘肽S1-转移酶),ATPsynthase CF1alpha subunit(叶绿体ATP合酶α亚基),vacuolar H+-ATPase A1subunitisoform(液泡H+-ATP酶A1亚基异构体),ATP synthase beta chain(ATP合酶β亚基),chlorophyll a/b binding protein(叶绿素a/b结合蛋白),photosystem I light-harvestingchlorophyll a/b-binding protein (光系统Ⅰ捕光叶绿素a/b结合蛋白),ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit(1,5-二磷酸核酮糖羧化酶/加氧酶大亚基),50S ribosomal protein L12, chloroplastic(叶绿体核糖体蛋白),heat shock70protein(热激蛋白),HSP68=68kda heat-stress DnaK homolog(热胁迫蛋白),Threoninedeaminas(e苏氨酸脱氨酶),leucine aminopeptidas(e亮氨酸氨基肽酶),hypothetical proteinSynRCC307-1195(假定蛋白)。
Tomato (Lycopersicon esculentum Mill.) is one of the vegetables cultivation area inChina, because of the higher multiple cropping index and the more common continuouscropping cultivation, resulting in the higher incidence of tomato root-knot nematode disease.In the production practice, it will become the most potential effective method for preventingand control the crop root-knot nematode disease by taking advantage of the resistant varietiesand grafting cultivation of the resistant rootstocks. So, identification and screening of the highresistance tomato rootstocks to Meoidogyne incognita, and determine its resistancemechanism had important theoretical significance and application value. Therefore, theresearch was on the base of screening and evaluation of tomato rootstocks to M. incognitaresistance level, systematically studied related physiological mechanism and specific proteinexpression differences on different resistant tomato rootstocks seedlings. In order to reveal thephysiological mechanisms to tomato rootstocks resistance to M. incognita, and it providedtheoretical basis for breeding highly resistant to M. incognita of tomato rootstocks. The mainresults were as bellow:
     1. The relative growth rate and relevant disease resistant index of16tomato rootstockseedlings inoculated with M. incognita were measured after50days. The results showed thatthe different relative growth rate of different organs, different disease resistant indexes of16tomato rootstock seedlings and their different coefficient variances resulted from the infectionof M. incognita were different, in which the coefficient variances of relative root fresh massof five relative growth rate was highest20.20%, but that of relative stem diameter was only6.22%. There were also significant differences about gall index (GI), egg granule index (EI),reprodutive frequency (RF) and disease index (DI) of different tomato rootstock seedlings,and the changes were also inconsistent, which indicated that the results about using of singleindicator to classfiy for seedling resistance would be some differences.
     2. The result of cluster analysis with multiple indexes total indexes was more accuratethan other single index for the resistant class of tomato rootstocks to M. incognita. According to multiple indexes to operate by membership function, we can sure the order of the testedtomato rootstocks resistance to M. incognita. Thereby we established the identification andevaluation method to tomato rootstocks resistant to M. incognita of the combinationsystematic cluster analysis and membership function operation. By the method of clusteringanalysis and subordinate function, we sure Baliya was immune material; BESUPA, BanzhenNo.2, Rootstock606, Rootstock002, Rootstock001, TMS-150, SUPPORT, MIKADO,Rootstock401were resistant materials; ATM052was disease tolerant material; BanzhenNo.1, Beijing No.1were sensitive materials;128, BF xingjin101, Ls-89were highly sensitivematerials.
     3. Differences in reactive oxygen metabolism before and after inoculating with M.incognita of highly susceptible species Ls-89and highly resistant species Banzhen No.2werestudied. The results showed that, reactive oxygen species generation rate and related enzymeactivities in the roots and leaves of tomato rootstock seedlings, not inoculated with M.incognita, did not show significant differences because of different resistant varieties. Afterinoculating, O2·-generation rate and H2O2content in roots and leaves of two rootstokseedlings had showed a cyclical rise, and Banzhen No.2was significantly higher than Ls-89,however, MDA content in Ls-89was significantly higher than Banzhen No.2. It was showedthat lipid antioxidant ability of resistant rootstok seedlings was stronger. SOD activities werelower in roots and leaves of two varieties seedlings in the early stage of infection, and a largerdecline in Banzhen No.2. But POD and CAT activities changed little in the early stage, to themiddle and late stage significantly increased, which indicated that SOD activities of tomatorootstock seedlings were more sensitive to the infection by M. incognita.
     4. Phenylpropanes metabolism activities of different resistant tomato rootstock seedlingswere significantly different. The related enzyme activities and phenolics contents ofphenylpropanes metabolism in the roots and leaves of highly resistant species Banzhen No.2seedlings, not inoculated with M. incognita, showed significantly higher than highlysusceptible species Ls-89. After inoculating, the variation of PAL, TAL, PPO activities andtotal phenolis contents, flavonoid in roots and leaves of two rootstok seedlings werebasically the same, and showed a cyclical rise, and Banzhen No.2was significantly higherthan Ls-89, but, the lignin content in roots and leaves increased gradually, and Banzhen No.2 was significantly higher than Ls-89on accumulation and increasing.
     5. M. incognita infection was significantly influence on root activity and leaf pigmentcontents to Ls-89, but little effect on Banzhen No.2. The soluble sugar, soluble protein,proline, cell wall hydroxyproline contents and chitinase, β-1,3-glucanase activities in the rootsand leaves of tomato rootstock seedlings, not inoculated with M. incognita, did not showsignificant differences because of different resistant varieties. After inoculating, the variationof the related substances contents and enzyme activities were basically the same, showed acyclical rise, and Banzhen No.2was significantly higher than Ls-89.
     6. The effect of the root exudates of different resistant tomato rootstock seedlings on egghatch was different, and the effect of the root exudates of different periods of the same specieson egg hatch was different, too. Not inoculated with M. incognita, the root exudates of Ls-89stimulated the egg hatch, but Banzhen No.2and Baliya significantly inhibited egg hatch. Afterinoculating, the root exudates of Ls-89were significantly stimulating the eggs hatch, andwere significantly higher than the control of non-inoculated. After inoculating7days,14daysand35days, the root exudates of Banzhen No.2were signifcantly inhibiting the egg hatch,but the21days and28days inhibitory effects were not significant, which were not significantdifferences to the non-inoculated control. The root exudates of Baliya were significantlyinhibiting the egg hatch, were not significant to the non-inoculated control, too.
     7. Before and after inoculating with M. incognita21days, through analysis the rootexudates compositon of highly susceptible rootstock Ls-89, highly resistant rootstockBanzhen No.2and immune rootstock Baliya seedlings, they were showed that root exudatescompositon of different resistant varieties were different, the same species root exudatescompositon before and after inoculating with M. incognita were different, too. Afterinoculating with M. incognita21days, the substances may play a role for M. incognitainfection in different resistant tomato rootstock seedlings root exudates which were initiallyidentified by comparing analysis. They were1,2-benzenedicarboxylic acid, diisooctyl ester,2,2′-methylenebis[6-(1,1-dimethylethyl)-4-methylphenol,1,2-benzenedicarboxylic acid,dibutyl ester, L-(+)-ascorbic acid2,6-dihexadecanoate,2-benzothiazolinone, N′-cyclooctyl-N,N-dimethyl-urea, Phthalic acid,6-ethyloct-3-yl2-ethylhexyl ester, Cyclohexyl isothiocya-nate,8-octadecenoic acid, methyl ester,(Z)-9-octadecenal,3,7-dimethyl-2,6-octadienal, cis- 9,10-epoxyoctadecanoic acid,9,10-dihydroxyoctadecanoic acid, Ambrettolid, Octadecanoicacid,2-(2-hydroxyethoxy)ethyl ester, Phosphoric acid, tris(2-ethylhexyl) ester.
     8. M. incognita development process in different resistant tomato rootstock seedlingroots and the number of eggs and juveniles within rhizosphere matrix were found that showedthe number of juveniles in roots of Ls-89and Banzhen No.2had increased, and Ls-89weresignificantly higher than Banzhen No.2, though, juveniles were not exist in Baliya. Thejuveniles penetrated into Banzhen No.2roots not only later than Ls-89, but also the numbersignificantly lower; and only a few developed into the third instar larvae and fourth instarlarvae, the number were significantly lower than Ls-89. Because of second infection, thenumber of juveniles in Ls-89and Banzhen No.2within rhizosphere matrix increased, andthey were significantly higher in Ls-89than in Banzhen No.2, but continued to decline inBaliya. The number of eggs within rhizosphere matrix changed acutely, late in infection, theywere significantly higher in Ls-89than in Banzhen No.2, but they were non eggs in Baliya.
     9. Total proteins were identification and analysis from leaves in the highly susceptiblerootstock Ls-89, the highly resistant rootstock Banzhen No.2and the immune rootstockBaliya after inoculating with M. incognita.682protein spots were detected, of which32protein spots were differentially expressed significantly, through mass spectrometry andNCBI database search, only17protein spots were obtained. They were peroxidase precursor,glutathione S1-transferase, class-phi, ATP synthase CF1alpha subunit, vacuolar H+-ATPase A1subunit isoform, ATP synthase beta chain, chlorophyll a/b binding protein, photosystem Ilight-harvesting chlorophyll a/b-binding protein, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit,50S ribosomal protein L12, chloroplastic, heat shock70protein,HSP68=68kda heat-stress DnaK homolog, Threonine deaminase, leucine aminopeptidase,hypothetical protein SynRCC307-1195.
引文
白汝瑾.盐胁迫下不同敏感型番茄蛋白质组分析.上海:上海交通大学,2007
    宾淑英,姚圣梅,林进添,冯志新.花生根结线虫对花生植株主要生理指标的影响.华中农业大学学报,1999,18(2):121-124
    蔡福民,张原.番茄根结线虫病抗性鉴定及抗丰品种筛选.长江蔬菜,2000,2:48-51
    曹福祥,王猛,滕涛,王卫文,龙绛雪.松材线虫对湿地松叶片质膜和可溶性糖的影响.中南林学学院学报,2006,26(6):169-171
    柴强,冯福学.玉米根系分泌物的分离鉴定及典型分泌物的化感效应.甘肃农业大学学报,2007,42(5):43-48
    陈建明,俞晓平,程家安,吕仲贤,徐红星.不同水稻品种收褐飞虱危害后体内生理生指标的变化.植物保护学报,2003,30(3):225-231
    陈洁敏,韩效国.胞囊线虫对大豆生理生化特性的影响.莱阳农学院学报,1996,3(2):84-87
    陈锦才,谢圣华,肖彤斌,肖敏,吴凤芝.海南岛冬季蔬菜根结线虫病的发生及其防治研究.沈阳农业大学学报,2001,23(3):186-188
    陈玉惠,叶建仁,魏初奖,潘宏阳.松材线虫侵染对马尾松、黑松水分及其相关代谢的影响.植物病理学报,2005,35(3):201-207
    陈玉惠,叶建仁,魏初奖,杨小明.松材线虫对黑松、湿地松幼苗活性氧代谢的影响.南京林业大学学报(自然科学版),2002,26(4):19-22
    陈玉惠,叶建仁,魏初奖.松材线虫侵染对马尾松苯丙烷类代谢的影响.林业科学,2006,42(2):73-77
    陈忠,苏维埃,汤章城.植物热激蛋白.植物生理学通讯,2000,36(4):289-296
    邓莲,刘丽英,任华中.不同番茄砧木抗根结线虫苗期生长特性及抗性比较.长江蔬菜,2006(11):39-40
    邓莲,赵灵芝,刘丽英,任华中.抗南方根结线虫不同番茄砧木田间综合评价.中国蔬菜,2007(6):13-16
    董道峰,曹志平,胡菊.番茄抗性砧木对土壤根结线虫二龄幼虫和自由生活线虫的影响.中国生态农业学报,2008,16(2):436-440
    董炜博,石延茂,迟玉成,宋文武,宋协松,禹山林.花生对根结线虫病的抗性鉴定.云南农业大学学报,1999,14:47-52
    杜良成,王均.稻瘟菌诱导的水稻几丁酶、β-1,3-葡聚糖酶活性及分布.植物生理学报,1992,18(1):29-36
    杜秀敏,殷文璇,赵彦修,张慧.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125
    范海延,陈捷,吕春茂,张春宇,孙权.黄瓜杂交二代抗黄瓜白粉病的蛋白质组学初步分析.园艺学报,2007,34(2):349-354
    冯洁,陈其煐,石磊岩.枯萎菌诱导棉花细胞壁羟脯氨酸糖蛋白积累与枯萎病抗性间的关系.植物病理学报,1995,25(2):133-138
    冯玉龙,姜淑梅.番茄对高根温引起的叶片水分胁迫的适应.生态学报,2001,21(5):747-751
    高青海,徐坤,高辉远,吴燕.不同茄子砧木幼苗抗冷性的筛选.中国农业科学,2005,38(5):1005-1010
    葛体达,唐东梅,芦波,夏含嫣,宋世威,黄丹枫.番茄根系分泌物、木质部和韧皮部汁液组分对矿质氮和有机氮营养的响应.园艺学报,2008,35(1):39-46
    耿广东,张素勤,程智慧.辣椒根系分泌物的化感作用及其化感物质分析.园艺学报,2009,36(6):873-878
    宫静静,贾克功,朱立新,叶航,杜涓.桃树砧木品种筑波4号筑波5号对爪哇根结线虫的抗性.中国农业大学学报,2009,14(5):72-75
    龚得明,陈如凯,林彦铨.甘蔗受黑穗病菌侵染后苯丙烷类代谢变化与其抗性的关系.福建农业大学学报,1995,24(4):394-398
    桂连友,孟国玲,龚信文,熊三浩.茄子品种(系)对侧多食跗线螨抗性聚类分析.中国农业科学,2001,34(5):465-468
    郭红莲,陈捷,高增贵,崔澍,孙艳秋.玉米灰斑病抗性机制中活性氧代谢的作用.植物保护学报,2003,30(2):133-137
    郭修武,李坤,孙英妮,张立恒,胡禧熙,谢洪刚.葡萄根系分泌物的化感效应及化感物质的分离鉴定.园艺学报,2010,37(6):861-868
    郭衍银,王秀峰,徐坤,张广民.生姜对南方根结线虫侵染的生理生化反应.植物病理学报,2005,35(1):49-54
    郭衍银,王秀峰,徐坤,朱艳红,郑永强.南方根结线虫对生姜生长及内源激素的影响.植物病理学报,2004,34(1):49-54
    郭衍银,徐坤,王秀峰.南方根结线虫对生姜生长发育的影响.西北农业学报,2005,14(5):155-158
    郭洋,麻密,彭生斌,林忠平,崔澂.植物细胞壁伸展蛋白积累与大豆抗灰斑病关系的研究.植物病理学报,1991,21(3):217-222
    郭玉莲.鸡粪防治温室蔬菜根结线虫病研究.中国农学通报,2004,20(20):201-202
    韩丽梅,王树起,鞠会艳,阎飞,李国权,刘金萍,阎吉昌.大豆根系分泌物的鉴定及其化感作用的初步研究.大豆科学,2000,19(2):119-125
    韩利芳,曹志平,董道峰,王秀徽.番茄砧木及品种对南方根结线虫的抗性鉴定.园艺学报,2006,33(5):1099-1102
    郝玉金,翟衡,王寿华,潘增光.抗南京毛刺线虫苹果砧木的筛选.园艺学报,1998,25(1):1-5
    郝玉金,翟衡,王寿华.山定子感染南京毛刺线虫后集中生理生化物质的变化.植物病理学报,1999,29(1):82-85
    何龙喜,吴小芹,俞禄珍,吉静,叶建仁.不同抗性松树与松材线虫互作中H2O2及其氧化酶活性的差异.南京林业大学学报(自然科学版),2010,34(6):13-17
    侯永侠,周宝利,吴晓玲,付亚文.辣椒根系分泌物化感作用的研究.沈阳农业大学学报,2007-08,38(4):504-507
    胡元森,李翠香,杜国营,刘亚峰,贾新成.黄瓜根分泌物中化感物质的鉴定及其化感效应.生态环境,2007,16(3):954-957
    皇甫海燕,官春云.甘蓝型油菜抗菌核病近等基因系和感病亲本蛋白差异的初步研究.中国农业科学,2010,43(10):2000-2007
    黄明,彭世清.植物多酚氧化酶研究进展.广西师范大学学报,1998,16(2):65-70
    贾黎明,冯菊芬,文学军,孙炎.循环水根系分泌物收集技术的研究及应用.北京林业大学学报,2003,25(6):6-10
    贾双双,高荣广,徐坤.番茄砧木对南方根结线虫抗性鉴定.中国农业科学,2009,42(12):4301-4307
    江昌俊,余有本.苯丙氨酸解氨酶的研究进展.安徽农业大学学报,2001,28(4):425-430
    姜飞,刘业霞,刘伟,郑楠,王洪涛,艾喜珍.嫁接辣椒根腐病抗性及其与苯丙烷类物质代谢的关系.中国蔬菜,2010,(8):46-52
    解文科,王小青,李斌,林锦波,郭丽丽,孔斌.植物根系分泌物研究综述.山东林业科技,2005,5:63-67
    金国良,王富,纪文磊,霍雨猛,何启伟.南方根结线虫侵染对黒籽南瓜生物学性状及根系酶活性的影响.中国果菜,2009,12(9):14-16
    景岚,王丽芳,康俊,韩青梅,康振生.向日葵与锈病互作过程中活性氧的积累.植物保护学报,2009,36(3):246-250
    阚光锋.烟草品种对野火病的抗性鉴定与生化抗病机制研究.泰安:山东农业大学,2002
    孔凡玉,王静.烟草根结线虫病研究进展.沈阳农业大学学报,2001,23(3):232-235
    旷远文,温达志,钟传文,周国逸.根系分泌物及其在植物修复中的作用.植物生态学报,2003,27(05):709-717
    乐寅婷,李梅,陈倩,魏伟.油菜叶片蛋白质组对机械损伤应答的初步分析.植物生态学报,2008,32(1):220-225
    李海燕.丛枝菌根(AM)真菌诱导植物抗/耐线虫病害机制的研究.泰安:山东农业大学,2002
    李兰真,赵会杰,杨会武,刘华山,王德勤.小麦锈病与活性代谢的关系.植物生理学报,1999,35(2):115-117
    李文超,董会,王秀峰.根结线虫对日光温室黄瓜生长、果实品质及产量的影响.山东农业大学学报(自然科学版),2006,37(1):35-38
    李勇,倪福太,贺福初.英特网上生物信息资源的利用.生物化学与生物物理进展,1999,41(4):295-296
    梁喜龙,郑殿峰,左豫虎.病害逆境下寄主植物生理生化指标的研究现状与展望.安徽农业科学,2006,34(15):3576-3578
    廖健森.环境荷尔蒙-邻苯二甲酸二丁酯对小白菜与青江菜之影响.台北:台湾大学农业化学研究所,2006
    廖金铃,蒋寒,孙龙华,胡先奇,张志荣,王新荣.中国南方地区作物根结线虫种和小种的鉴定.华中农业大学学报,2003,22(6):544-548
    林秀琴,袁坤,王真辉,邓军,杨礼富.植物响应逆境胁迫的比较蛋白质组学研究进展.热带农业科学,2009,29(2):52-57
    林植芳,李双顺,林桂珠,郭俊彦.衰老叶片和叶绿体中H2O2的累积与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    林植芳,李双顺,张东林,林桂珠,李月标,刘淑娴,陈绵达.采后荔枝果皮色素、总酚及有关酶活性的变化.植物学报,1988,30(1):40-45
    刘大伟,段玉玺,陈立杰,罗璇,刘丹丹.灰皮支黑豆抗大豆胞囊线虫3号生理小种的生理机制.大豆科学,2010,29(3):471-473
    刘大伟,段玉玺,陈立杰,王媛媛,马雪瑞.灰皮支黑豆抗大豆胞囊线虫3号生理小种的生化机制研究.华北农学报,2009,24(1):165-168
    刘菲,刘辉,梁元存,刘爱新,魏芳芳,林琎.核黄素诱导烟草悬浮细胞酚类物质和木质素的积累.中国农业科学,2009,42(9):3230-3235
    刘纪霜,刘志明,黄金玲,陆秀红,潘萍红.植物抗根结线虫机制研究进展.植物保护,2007,33(1):21-23
    刘纪霜.罗汉果抗南方根结线虫的品种筛选及抗病机制初探.南宁:广西大学,2007
    刘丽杰,于景华,唐中华,王丽娟,祖元刚.非模式植物蛋白质组学研究进展.广西植物,2007,27(2):217-223
    刘淑霞,徐梅,李海燕,杜春玉.几丁质酶活性与大豆对胞囊线虫抗性的关系.黑龙江八一农垦大学学报,2009,21(3):31-34
    刘维信,曲士松,王秀峰,孟凡成.番茄根结线虫抗源材料的筛选.山东农业科学,2000(1):39-40
    刘维志,刘晔,段玉玺.抗病品种对大豆胞囊线虫的选择作用.植物保护学报,1993,20(2):135-137
    刘维志.植物病原线虫学.北京:中国农业出版社,2000
    刘业霞,姜飞,张宁,王洪涛,艾喜珍.嫁接辣椒对青枯病的抗性及其与渗透调节物质的关系.园艺学报,2011,38(5):903-910
    刘晔,刘维志.大豆胞囊线虫在不同大豆品种根内的发育.辽宁农业科学,1988,4:16-18
    刘易,蒋桂英,简健平,关建伟.加工番茄根系分泌物自毒效应的研究.西北农业学报,2009,18(4):106-112
    刘志明,陆光艺,黄金玲,陆秀红,秦碧霞,刘纪霜,潘萍红,李国栋,乔丽娅,黄秉智.不同香蕉品种根渗出物对南方根结线虫卵孵化的影响.华中农业大学学报,2010,29(5):564-566
    刘重斌,李志盛,龙建华.莲潜根线虫的入侵、根内发育和移行观察.江西植保,2003,26(1):6-7
    柳李旺.番茄茄子及其近缘野生种抗性与品质的初步评价.南京农专学报,2001,17(2):6-11
    骆建新,郑崛村,马用信,张思仲.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23(11):87-94
    马德华,庞金安.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报,1998,25(4):350-355
    毛爱军,柴敏,于拴仓,姜立纲,沈国印.番茄抗根结线虫接种鉴定技术及其应用.西北农业学报,2005,14(4):140-144
    孟慧,段翠芳,曾日中.植物蛋白质组学研究概况.热带农业科学,2006,26(2):60-64
    倪张林,魏家绵. ATP合酶的结构与催化机理.植物生理与分子生物学学报,2003,29(5):367-374.
    欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,1988(3):9-16
    彭德良.蔬菜线虫病害的发生和防治.中国蔬菜,1998,(4):57-58
    邱永祥,柯玉琴,代红军,潘廷国.甘薯抗蔓割病的酚类物质代谢的研究.中国生态农业学报,2007,15(5):167-170
    萨塞(美).植物寄生线虫—农业的隐蔽敌害.科学普及出版社,1992
    史娟,冯美,邱艳,王红玲,张永丽,满丽梅.葡萄感染霜霉病叶片中一些酶活性变化.宁夏农学院学报,2002,23(1):17-19
    宋凤鸣,郑重,葛起新.富含羟脯氨酸糖蛋白在植物—病原物相互作用中的积累、调控.植物生理学通讯,1992,28(2):141-145
    宋洪元,雷建军,李成琼.植物热胁迫反应及抗热性鉴定与评价.中国蔬菜,1998,(1):48-50
    宋瑞芳,丁永乐,宫长荣,徐光辉,韩晓哲.烟草抗病性与防御酶活性间的关系研究进展.中国农学通报,2007,23(5):309-314
    苏华,徐坤,刘伟,徐立功.不同大葱品种耐寒性鉴定与越冬栽培效果.应用生态学报,2006,17(10):1889-1893
    孙运达,王献杰.蔬菜地根结线虫病的发生特点及综防技术.中国蔬菜,1996,(6):36-37
    泰勒AL,萨塞J N著.杨宝君译.植物根结线虫(生物学、分类鉴定和防治).北京科学出版社,1983:5-43
    谈家金,叶建仁,郝德君,吴小芹,陈凤毛.松材线虫对黑松一些生理生化指标的影响.植物病理学报,2011,41(1):44-48
    谈家金,叶建仁.松材线虫病致病机理的研究进展.华中农业大学学报,2003,22(6):613-617
    滕涛,曹福祥,王猛.松材线虫对马尾松不同地里种源酚类物质的影响.江西农业学报,2009,21(11):64-65
    滕涛,曹福祥,王猛,龙绛雪.松材线虫侵染对松树苯丙氨酸解氨酶及酚类物质的影响.中南林业科技大学学报,2007,27(3):124-127
    汪家政,范明.蛋白质技术手册.北京:科学出版社,2000,42-47
    汪来发,杨宝君,李传道.华东地区根结线虫的调查.林业科学研究,2001,14(5):484-489
    王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57
    王芳.茄子连作障碍机理研究.北京:中国农业大学,2003
    王灵燕,朱立新,贾克功.几种李属植物对花生根结线虫的抗性.中国农业大学学报,2008,13(5):24-28
    王明祖.湖北省蔬菜根结线虫病发生特点.植物保护,1998,24(5):12-14
    王绍辉,孔云,杨瑞,程继鸿,司力姗,赵金芳.嫁接番茄抗根结线虫砧木筛选及抗性研究.中国蔬菜,2008,(12):24-27
    王珽璞,马静静,赵菲佚. β-1,3-葡聚糖酶和几丁质酶在农作物病虫害防治中的研究进展.安徽农业科学,2010,38(6):14417-14419
    王伟,阮妙鸿,邱永祥,王伟英,柯玉琴,潘廷国.甘薯抗薯瘟病的苯丙烷类代谢研究.中国生态农业学报,2009,17(5):944-948
    王雯君.几种桃树砧木对北方根结线虫的抗性研究.北京:中国农业大学,2007
    王雪.大豆抗胞囊线虫机制及与抗性相关的差异蛋白质组学研究.沈阳:沈阳农业大学,2009
    王志,曹如槐,田齐建,穆志新,南城虎.大豆新种质对大豆孢囊线虫4号生理小种的抗性鉴定.华北农学报,2000,15(4):99-102
    魏哲.水稻对褐飞虱取食应答的蛋白质组学研究.武汉:武汉大学,2010
    吴海燕,段玉玺.几丁质酶与大豆胞囊线虫关系初步研究.植物病理学报,2004,34(6):555-557
    吴海燕,远方,陈立杰,段玉玺.大豆胞囊线虫病与大豆抗胞囊线虫机制的研究.大豆科学,2001,20(4):285-289
    吴家琴,陈绵才,张怀芳.红麻生长期病虫害防治研究.中国麻作,1995,17(2):25-28
    夏其昌,曾嵘.蛋白质化学与蛋白质组学.北京:科学出版社,2004
    肖炎农,王明祖,付艳平,曾凡涛.蔬菜根结线虫病情分级方法比较.华中农业大学学报,2000,19(4):336-338
    谢成建.棉花在黄萎病菌侵染早期的蛋白质组及表达谱分析.重庆:西南大学,2011
    徐建华,魏大为,詹裕定,程瑚瑞.江苏省大棚蔬菜寄生线虫的种类和发生.南京农业大学学报,1994,17(1):47-51
    徐小明,徐坤,于芹,张晓艳.茄子砧木对南方根结线虫抗性的鉴定与评价.园艺学报,2008,35(10):1761-1765
    徐小明,徐坤,于芹,张晓艳.茄子砧木根系苯丙烷类代谢与抗南方根结线虫水平的关系.植物保护学报,2008,32(1):43-46
    徐小明,于芹,徐坤,董灿兴,王玉光.南方根结线虫侵染对茄子砧木幼苗根系活性氧代谢及相关酶活性的影响.园艺学报,2008,35(12):1767-1772
    徐小明.茄子砧木对南方根结线虫抗性鉴定及抗性机制研究.泰安:山东农业大学,2008
    许华,阮维斌,肖建莉,魏宇昆,高玉葆.接种根结线虫对盆栽黄瓜植株若干生理特性的影响.植物生理学通讯,2007,43(3):543-544
    许艳丽,陈伊里,司兆胜,李兆林,李春杰,文广月.不同茬口条件下的作物根渗出物对大豆胞囊线虫(Heterodera glycines)卵孵化影响.植物病理学报,2004,31(6):481-486
    颜清上,陈品三,王连铮.大豆根渗出物对大豆孢囊线虫4号生理小种卵孵化的影响.植物病理学报,1997,27(3):269-274
    颜清上,陈品三,王连铮.中国小黑豆抗源对大豆孢囊线虫4号生理小种抗性机制的研究.植物病理学报,1996,26(4):317-323
    叶德友,钱春桃,贾媛媛,张燕霞,陈劲枫.黄瓜及其近缘种对南方根结线虫的抗性及酶响应变化的研究.园艺学报,2009,36(12):1755-1760
    于力,朱为民,薛林宝,阎君.番茄根结线虫病的研究进展.中国蔬菜,2006,(11):35-38
    于秋菊,李景富,许向阳,王富,王傲雪.黑龙江省番茄根结线虫病原鉴定及抗病种质资源筛选.中国蔬菜,1999,3:7-10
    余叔之.植物生理与分子生物学.北京:科学出版社,1992:417-423
    喻景权,松井佳久.豌豆根系分泌物自毒作用的研.园艺学报,1999,26(3):175-179
    喻盛甫,白万明,胡先奇,王扬.烟草品种对常见根结线虫抗性鉴定的研究.中国农业科学,1999,32(5):55-61
    袁云云,咸洪泉,洪永聪,辛伟,崔德杰.花生根系分泌物的鉴定及其化感效应分析.花生学报,2011,40(3):24-29
    翟衡,管雪强,赵春芝,杜方岭.中国葡萄抗南方根结线虫野生资源的筛选.园艺学报,2000,27(1):27-31
    翟衡,郝玉金,王寿华.苹果砧木对南京毛刺线虫的抗性机制初探.植物保护学报,1999,26(3):208-212
    张东升.抗性大豆品种对大豆胞囊线虫侵入和发育的影响.植物病理学报,1995,25(3):278
    张凤丽,周宝利,王茹华,何雨.嫁接茄子根系分泌物的化感效应.应用生态学报,2005,16(4):750-753
    张军,杨庆凯.大豆接种SCN3后根部酚类化合物含量动态分析.中国油料作物学报,2001,23(4):44-47
    张少英,王俊斌,王海凤,邵金旺,李国龙,李晓东.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系.植物生理与分子生物学学报,2005,31(3):281-286
    张文娥,王飞,潘学军.应用隶属函数法综合评价葡萄种间抗寒性.果树学报,2007,24(6):849-853
    张养军,蔡耘,王京兰,李晓海,钱小红.蛋白质组学研究中的色谱分离技术.色谱,2003,21(1):20-26
    张云美.蔬菜根结线虫病及其防治.山东农业科学,1987,3:15-17
    张自坤,刘世琦,张强,王忠全,孟凡鲁,于晓丽.根结线虫对不同砧木黄瓜嫁接苗生理生化指标的影响.山东农业科学,2009,7:82-86
    赵洪海,武侠,迟晓红.不同番茄品种对根结线虫的感染性测定简报.莱阳农学院学报,2004,21(2):180-181
    赵洪海,袁辉,武侠,刘维志.山东省根结线虫的种类与分布.莱阳农学院学报,2003,20(4):243-247
    赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社,1998
    赵世杰,史国安,董新纯.植物生理学实验指导.北京:中国农业科学技术出版社,2000
    赵天宏,金东艳,王岩,曹莹.臭氧胁迫对大豆酚类化合物含量和抗氧化能力的影响.中国农业科学,2011,44(4):708-715
    赵小钒,弭忠祥.细胞壁羟脯氨酸的含量与大豆灰斑病抗性关系的研究.大豆科学,2000,19(2):146-149
    中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.上海:上海科学技术出版社,1999,302-322
    周宝利,林桂荣,高艳新,付亚文.嫁接茄抗黄萎病特性与苯丙烷代谢的关系.沈阳农业大学学报,2000,31(1):57-60
    周艳丽.大蒜(Allium sativum L.)根系分泌物的化感作用研究及化感物质鉴定.杨凌:西北农林科技大学,2007
    朱杰.生物信息学的研究现状及其发展问题的探讨.生物信息学,2005,3(4):185-188
    左豫虎,康振生,杨传平,芮海英,娄树宝,刘惕若. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系.植物病理学报,2009,39(6):600-607
    Acedo J A, Dropkin V H, Luedders V D. Nematode population attrition and histopathology ofHeterodera glycines soybean association. Jouranl of Nematology,1984,16:48-57
    Ae N, Arihara J, Okada K, Yoshihara T, Johansen C. Phosphorus uptake by pigeonpea and itsrole in cropping systems of Indian subcontinent. Science,1990,248:477-480
    Ahned A. Factors influencing larval hatching in the root-knot nematode. Indian Phytopathol,1964,17:102-109
    Ahuja S, Ahuja S P. Effects of root-knot nematode Meloidogyne incognita infection on theperoxidase and polyphenoloxidase activities in the roots of selected vegetable crops.Nematologia Mediterranea,1980,8:207-210
    Andrade A E, Silva L P, Pereira J L, Noronha E E, Reis F B Jr, Bloch C Jr, Santos M F,Domont G B, Franco O L, Metha A. In vivo proteome analysis of Xanthomonas campestris pv.camp estris in the interaction with the host plant Brassica oleracea. FemsMicrobiology Letters,2008,281:167-174
    Aris P, Andreas W, Richard A S, Becker J O. Identification of root-knot nematode suppressivesoils. Applied Soil Ecology,2002,19:51-56
    Atwood J A3rd, Weatherly D B, Minning T A, Bundy B, Cavola C, Opperdoes F R, OrlandoR, Tarleton R L. The trypanosoma cruzi proteome. Science,2005,309:473-476
    Bailey D M. The seeding test method for root knot nematode resistance. Proceedings of theAmerican Society Horticultural Science,1940,38:573-575
    Balasubramanian A, Rangaswami G. Studies on the influence of foliar nutrieut sprays on theroot exudation pattern in four crop plants plant soil. Plant and Soil,1969,30:210-220
    Barker K R. Nematode extraction and bioassays. In: Barker, Carter, Sassereds. An advancedtreatise on eloidogyne Vol II. Methodology,1985:189-190
    Beaudoin-Eagan L D, Thorpe T A. Tyrosine and phenylalanine ammonia lyase activitiesduring shoot initiation in tobacco callus cultures. Plant Physiology,1985,78:438-441
    Bendezu I F, Starr J L. Mechanism of resistance to Meloidogyne arenaria in the peanutcultivar coan. Journal of Nematology,2003,35:115-118
    Boiteux L S, Charchar J M. Genetic resistance to root-knot nematode (Meloidogyne javanica)in eggplant (Solanum melongena). Plant Breeding,1996,3:198-200
    Boller T, Gehre A, Manch F, Vogrli U. Chitinase in bean leaves: induction by ethylene,purification, properties, and possible function. Planta,1983,157:22-31
    Bonetta L. Protein purification: proteomics at Harvard. Nature,2006,439:1017
    Borden S, Higgins V J. Hydrogen peroxide plays a critical role in the defence response oftomato to Cladosporium fulvum. Physiological and Molecular Plant Pathology,2002,61:227-236
    Bradford M M. A rapid and sensitive method for quantitation of microgram quantities ofprotein utilizing the principles of protein dye binding. Analytical Biochemistry,1976,24:248-254
    Brown R S, Lennon J J. Mass resolution improvement by incorporation of pulsed ionextraction in a matrix-assisted laser desorption/ionization linear time-of-flight massspectrometer. Analytical Chemistry,1995,67:1998-2003
    Cao Z P, Yu Y L, Chen G K, Dawson R. Impact of soil fumigation practices on soil nematodesand microbial biomass. Pedosphere,2004,14:387-393
    Cary L, Frank J. Tomato grafting for disease resistance and increased productiviry.Sustainable Agriculyure Research&Education,2011,12:1-8
    Casado-Vela J, Selles S, Bru Martinez R. Proteomic approach to blossom-end rot in tomatofruits (Lycopersicon esculentum M.): antioxidant enzymes and the pentose phosphatepathway. Proteomics,2005,5:2488-2496
    Chen R Z, Weng Q M, Huang Z, Zhu L L, He G C. Analysis of resistance-related proteins inrice against brown planthopper by two-dimensional electrophoresis. Acta BotanicaSinica,2002,44:427-432
    Chen S X, Harmon A C. Advances in plant proteomics. Proteomics,2006,6:5504-5516
    Clemens S, Palmgren M G, Kramer U. A long way ahead: understanding and engineeringplant metal accumulation. Trend Plant Science,2002,7:309-315
    Coleman J O D, Kalff B, Davies T. Detoxificationof xenobiotics by plants: chemicalmodification andvacuolar compartmentation. Trends in Plant Science,1997,2:144-151
    Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth L, Salmond G.Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovorasubsp. atroseptica secreted via the type II targeting pathway. Molecular Plant-MicrobeInteractions,2005,18:334-342
    Cote C, Solioz M, Schatz G. Biogenesis of the cytochrome bc1complex of yeast mitochondria.A precursor form of the cytoplasmically made subuni V. Journal of Biological Chemistry,1979,254:1437-1439
    Damerval C, Vienne D D, Zivy M, Thiellement H. Technical improvements intwo-dimensional electrophoresis increase the level of genetic variation detected inwheat-seedling proteins. Electro phoresis,1986,7:52-54
    Davis R F, Timper P. Resistance to Meloidogyne incognita and M. arenaria in corn hybrids.Journal of Nematology,1999,31:529-530
    Debbie J R, Cherney J A P J. Fibre and soluble phenolic monomer composition ofmorphological components of sorghum stover. Journal of the Science of Food andAgriculture,1991,54:645-649
    Dixon D P, McEwen A G, Lapthorn A J, Edwards R. Forced evolution of a herbicidedetoxifying glutathione trasnsferase. Biological Chemistry,2003,278:23930-23935
    Dixon D, Lapthom A, Edwards R. Plant glutathione transferases. Genome Biology,2002,3:3001-3010
    Douglas C J. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees.Trends in plant science,1996,1:171-178
    Drazkiewicz M, Polit E S, Krupa Z. Response of the ascorbate–glutathione cycle to excesscopper in Arabidopsis thaliana (L.). Plant Science,2003,164:195-202
    Dropkin V H. Resistance of tomato to M. acrita and to M. hapha as determined by a newtechnique. Proceedings of the American Society Horticultural Science,1967,90:316-323
    Endo B Y. Histological Responses of Resistant and Susceptible Soybean Varieties andBackcross Progeny to Entry and Development of Heterodera glycines. Phytopathology,1965,55:375-381
    Esquerre-Tugage M T, Lafitte C, Mazau D, Toppan A, Touze A. Cell srufaces in palntmicroorganism interactions. Plant Physiol,1979,64:320-326
    Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse. Electrospray ionization for massspectrometry of large biomolecules. Science,1989,246:64-71
    Ganguly A K, Dasgupta D R. Superoxide dismutase (E.C.1.15.1.1.) activity in resistantandsusceptibleVigna unguiculatacultivars inoculated with root knot nematode, Meloidogyneincognita. Indian Journal of Nematology,1988,18:322-325
    Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, BastuckS, Dumpelfeld B, Edelman A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudark M,Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A,Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell RB, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery.Nature,2006,440:631-636
    Giannakou I O, Anastasiadis I. Evaluation of chemical strategies as alternatives to methylbromide for the control of root-knot nematodes in greenhouse cultivated crops. CropProtection,2005,24:499-506
    Godfrey N. Lignin variability in plant cell walls: Contribution of new models. Plant Science,2011,181:379-386
    Gonzales V, Eliana C, Hui H. The role of threonine deaminase in resistance of tomato toarthropod herbivores. Proceedings of the National Academy of Sciences,1991,88:2678-2682
    G rg A, Obermaier C, Boguth G, Csordas A, Diaz J J, Madjar J J. Very alkaline immobilizedpH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins.Electrophoresis,1997,18:328-337
    Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology forproteomics. Proteomics,2004,4:3665-3685
    Gornall A G, Bardawill C S, David M M. Determination of serum protein by means of biuretreaction. Journal of Biological Chemistry,1949,177:751-766
    Granier F. Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis,1988,9:712-718
    Gu Y Q, Holzer F M, Walling L L. Over expression, purification and biochemicalcharacterization of the wound-induced leucine aminopeptidase of tomato. EuropeanJournal of Biochemistry, l999,263:726-735
    Guenzi W D, Mccalla T M. Phenolic acids in oats, wheat, sorghum and corn residues and theirphytotoxicity. Agronomy Journal,1966,58:303-304
    Guy C L, Li Q B. The organization and evolution of the spinach stress70molecularchaperone gene family. Plan t Cell,1998,10:539-556
    Hamdi Al B, Inderjit, Olofsdotter M, Streibig J C. Laboratory bioassay for phytotoxicity: Anexample from wheat straw. Agronomy Journal,2001,93:43-48
    Hamlen R A, Bloom J R, Lukezic F L. Hatching of meloidogyne incogntia eggs in the neutralcarbohydrate fraction of root exudates of gnotobiotically grown alfalfa. Journal ofNematology,1973,5:142-146
    Hao Z P, Wang Q, Christie P, Li X L. Allelopathic potential of watermelon tissues and rootexudates. Scientia Horticulturae,2007,112:315-320
    Hasan N, Saxena S K, Mahadevan A. Effect of inoculating tomato with root-knotnematode,Meloidogyne incognita on the phenolic content and polyphenol oxidaseactivity. Physiology-of-host-pathogen-interaction. Current trends in life sciences,1979,6:199-203
    Henzel W J, Billeci T M, Stults J T, Wong S C, Grimley C, Watanabe C. Identigying proteinsfrom two-dimensional gels by molecular mass searching of peptide fragments in proteinsequence database. Prooc Natl Acad Sci USA,1993,90:5011-5015
    Higgins C M, Manners J M, Scott K J. Decrease in three messenger RNA species coding forchloroplast proteins in leaves of barley infected with Erysiphe graminis f.sp.hordei. PlantPhysiology,1985,78:145-151
    Houterman P M, speijer D, Dekker H L, Dekoster C G, Cornelissen B J C, Rep M. The mixedxylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular PlantPathology,2007,8:215-221
    Hunger S, Digaspero G, Mohring S. Isolation and linkage analysis of expressed diseaseresistance gene analogues of sugar bee t(Beta vulgaris L.). Genome,2003,46:70-82
    Hurkman W J, Tanaka C K. Solubilization of plant membrane proteins for analysis bytwo-dimensional gel electrophoresis. PlantPhysiol,1986,81:802-806
    Isaacson T, Damasceno C M B, Saravanan R S, He Y H, Catalá C, Saladié M, Rose J K C.Sample extraction techniques for enhanced proteomic analysis of plant tissues. Natrueprotocol,2006,1:769-774
    Jacquet M, Bongiovanni M, Martinez M, Verschave P, Wajnberg E, Castagnone-Sereno P.Variation in resistance to the root-knot nematode Meloidigyne incognita in tomatogenotypes bearing the Mi gene. Plant Pathology,2005,54:93-99
    Jean E S, LaunaneK, Celine D, Alexandra L, Christophe J, Veronique H, Agnes J, Olivier B,Julie B F, Dominique V, Badia A, Christophe M, Eric E, Jerome G, Jacques B.The earlyresponses of Arabidopsis thaliana cells to cadmium exposure explored by protein andmetabolite profiling analyses. Proteomics,2006,6:2180-2198.
    Jenkins W R, Malek B R. Influence of nematodes on absorption and accumulation of nutrientsin vetch. Soil Science,1966,101:46-49
    Jung W J, Jin Y L, Kim Y C, Park R D. Inoculation of Paenibacillus illinoisensis alleviatesroot mortality, actvates of lignification-related enzymes, and induction of the isozymes inpepper plants infected by Phytophthora capsici. Biological Control,2004,30:645-652
    Kamo M, Kawakami T, Miyatake N, Tsugita P A. Separation and characterization ofArabidopsis thaliana proteins by twodimensional gel electrophoresis. Electrophoresis,1995,16:423-430
    Kaput J, Goltz S, Blobel G. Nucleotide sequence of the yeast nuclear gene for cytochrome cperoxidase precursor. Functional inplications of the pre sequence foe protein transportinto mitochondria. The Journal of Biological Chemistry,1982,257:15054-15058
    Karas M, Hillenkamp F. Laser desorption ionzation of proteins with molecular massesexceeding10000daltons. Analytical Chemistry,1988,60:2299-2301
    Karssen G. The Plant-parasitic nematode genus meloidogyne gold1982(Tylenchida) inEuiope Drukkerij Modern: Bennekom,1999
    Kathiresan T, Mehta UK. Effect of Pratylenchus zeae infention on the expression of isozymeactivities in resistant and susceptible sugarcane clones. Nematology,2005,7:677-688
    Kivirikko K I. Hydroxyproline-containing fractions in normal and cortisone-treated chickembryos. Acta Physiol Scandinav,1963,60:1-92
    Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: An updated protocol andimplications for a functional analysis of the genome. Electrophoresis,1995,16:1034-1059
    Kombrink E, Hahlbrock K. Rapid, systemic repression of the synthesis of ribulose1,5-bisphosphate carboxylase small subunit mRNA in fungus-infected or elicitor-treatedpotato leaves. Planta,1990,181:216-219
    Kouassi A B, Kerlan M C, Sobczak M, Dantec J P, Rouaux C, Ellissèche D. Resistance to theroot-knot nematode Meloidogyne fallaxin Solanum sparsipilum: analysis of themechanisms. Nematology,2004,6:389-400
    Kravchenko L V, Azarova T S, Leonova-Erko E I, Shaposhnikov A I, Makarova N M,Tikhonovich I A. Root exudates of tomato plants and their effect on the growth andantifungal activity of pseudomonas strain. Microbiology,2003,72:37-41
    Kristensen DB, Imamura K, Miyamoto Y, Yoshizato K. Mass spectrometric approaches forthe characterization of proteins on a hybrid quadrupole time-of-flight (Q-TOF) massspectrometer. Electrophoresis,2000,21:430-439
    Lamport D T A, Miller D H. Hydroxyproline arabinosides in the plant kingdom. Plant Physiol,1971,48:454-456
    Li J, Wang C, Kelly J F, Harrison D J, Thibault P. Rapid and sensitive separation of trace levelprotein digests using microfabricated devices coupled to a quadrupole-time-of-flightmass spectrometer. Electrophoresis,2000,21:198-210
    Li Q B, Haskell D W, Guy C L. Coordinate and non-coordinate expression of the stress70family and other molecular chape rones at high and low temperature in spinach andtomato. Plant Molecular Boilogy,1999,39:21-34
    Lippert D, Chowrira S, Ralph S G, Zhang J, Aeschliman D, Ritland C, Ritland K, Bohlmann J.Conifer defense against insects:Proteome analysis of Sitka spruce (Picea sitchensis) barkinduced by mechanical wounding or feeding by white pine weevils (Pissodes strobi).Proteomics,2007,248-270
    Lopez-Perez J A, Strange M L, Kaloshian I, Ploeg A T. Differential response of Migene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). CropProtection,2006,25:382-388
    Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurementwith the folinphenol reagent. Journal of Biological Chemistry,1951,193:265-275
    Lyford W H, Wilson B F. Controlled growth of forest tree roots: technique and application.Harvard Forest Paper,1966,16:12
    Ma J F, Zheng F J, Matsumoto H. Specific secretion of citric acid induced by Al stress inCassia tora L.. Plant Cell Physiol,1997,38:1019-1025
    Maccecchini M L, Rudin Y, Schatz G. Transport of proteins across the mitochondrial outermembrane. A precursor form of the cytoplasmically made intermembrane enzymecytochrome peroxidase. The Journal of Biological Chemistry,1979,254:7468-7471
    Mana J M, Isidoro L, Angeles D. Rootenzyme activities associatedwith resistance toHeterodera avenae conferred by gene Cre7in a wheat/Aegilops triuncialis introgressionline. Journal of Plant Physiology,2004,161:493-495
    Mench M, Morel J L, Guckert A, Guillet B. Metal binding with root exudates of lowmolecular weight. European Journal of Soil Science,1988,39:521-527
    Menone M L, Pflugmacher S. Effects of3-chlorobiphenylon photosynthetic oxygenproduction, glutathione contentand detoxication enzymes in the aquatic macrophyteCeratophyllmdemersum. Chemosphere,2005,60:79-84
    Mercer C F, Greenwood D R, Grant J L. Effect of plant and microbial chitinases on the eggsand juveniles of Meloidogyne haply Chitwood (Nematode: Tylenchida). Nematologica,1992,38:227-236
    Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugars.Analytical Chemistry,1959,31:426-428
    Mitrovic S M, Pflugmacher S, James K J, Furey A. Anatoxinaelicitsan increase in peroxidaseand glutathione S-transferase activity in aquatic plants. Aquatic Toxicology,2004,68:185-192
    Montes M J, Lopez-Brana I, Delibes A. Root enzyme activities associated with resistance toHeterodera avenae conferred by gene Cre7in a wheat/Aegilops triuncialis introgressionline. Journal of Plant Physiology,2004,161:493-495
    Mote U N, Dasgupta D R, Ganguly A K. Sequential development of deaminases in resistantand susceptible tomato varieties infested with root-knot nematode, Meloidogyneincognita. Indian Journal of Nematology,1990,20:127-137
    Mote U N, Dasgupta D R. Significance of phenylalanine ammonia-lyase on resistanceresponse in tomato to the root-knot nematode, Meloidogyne incognita. Indian journal ofnematology,1979,9:66-68
    Mpamhanga C P, Chen B, Mclay I. Knowledge-based interaction fingerprint scoring: a simplemethod for improving the effectiveness of fast scoring functions. Journal of ChemicalInformation and Modeling,2006,46:686-689
    Nguyen T T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C W. Saturationmapping of QTL regions and identification of putative candidate genes for droughttolerance in rice. Mol. Genet. Genomics,2004,272:35-46
    Nyczepir A P, Beckman T G, Reighard G L. Reproduction and development of Meloidogyneincognita and M. javanicaon Guardian peach rootstock. Journal of Nematology,1999,31:334-340
    O’Farrell P H. High resolution two-dimensional gel electroresis of proteins. Journal ofBiological Chemistry,1975,250:4007-4021
    Otulak K, Garbaczewska G. Localisation of hydrogen peroxide accumulation during Solanumtuberosum cv. Rywal hypersensitive response to Potato virus Y. Micron,2010,41:327-335
    Ovreenj C, Threlfall D R. Biochemical aspect of plant parasite relationships. NewYork:Acadmic Press,1976:134
    Parry M A J, Andralojc P J, Mitchell R A C, Madgwick P J, Keys A J. Manipulation ofRubisco: the amount, activity, function and regulation. Journal of Experimental Botany,2003,54:1321-1333
    Podtelejnikov A, Mann M. Delayed extraction improves specificity in database searches bymatrix-assisted laser desorption/ionization peptide maps. Rapid Commun MassSpectrom,1996,10:1371-1378
    Qiu J, Hallmann J, Kokalis-Burelle N. Activity and differential induction of chitinaseisozymes in soybean cultivars resistantor susceptible to root-knot nematodes. Journal ofNematology,1997,29:523-530
    Ranty B, Roby D, Cavalié G, Esquerré-Tugayé M T. Ribulose1,5-bisphosphatecarboxylase/oxygenase expression in melon plantes infected with Colletotrichumlagenarium. Planta,1987,170:386-391
    Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A. Challenges in massspectrometry based proteomics. Proteomics,2004,4:3686-3703
    Rep M, Dekker H L, Vossen J H, Boer A D, Houterman P M, Speijer D, Back J W, Koster C G,Cornelissen B J C. Mass spectro-metric identification of isoforms of PR proteins inxylem sapof fungus-infected tomato. Plant Physiol,2002,130:904-917
    Roberts A M, Walters D R. Photosynthesis in discrete regions of leek infected with the rust,Pucciniaallii Rud. New Phytologist,1988,110:371-376
    Roby D, Marco Y, Esquerr-Tugaye M T. Ribulose1,5-bisphosphate carboxylase/oxygenaseexpression in melon plantes infected with Colletotrichum lagenarium. Activity level andrate of synthesis of mRNAs coding for the large and small subunits. Physiological andMolecular Plant Pathology,1988,32:411-424
    Rodger S, Bengough A G, Griffiths B S, Stubbs V, Young I M. Does the presence of detachedroot border cells of Zea mays alter the activity of the pathogenic nematode M. incognita.Phytopathology,2003,93:1111-1114
    Rodrigues A C F, Abrantes I M, Melillo M T, Bleve-Zacheo T. Ultrastructural response ofcoffee roots to rootknot nematodes Meloidogyne exigua and M. megadora. Nematropica,2000,30:201-210
    Ross J P. Host-Parasite Relationship of the Soybean Cyst Nematode in Resistant SoybeanRoots. Phytopathology,1958,48:578-579
    Rovira A D. Plant root excretions in relation to the rhizosphere effect. Plant Soil,1956,7:178-194
    Rovira A D. Root exertions in relation to the rhizoophere effect. Plant Soil,1959,11:53-64
    Samach A, Hareven D, Gutfinger T, Ken-Dror S, Lifschitz E. Biosynthetic threoninedeaminase gene of tomato:Isolation, structure, and upregulation in floral organs.Proceedings of the National Academy of Sciences of the United States of America,1991,88:2678-2682
    Sancho M A, Forchetti S M, Pliego F, Valpuesta V, Quesada M A. Peroxidase activity andisoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell,Tissue Organ Culture,1996,44:161-167
    Sappl P G, Carroll A J, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh K B.TheArabidopsis glutathione transferase gene family displays complex stress regulation andco-silencing multiple genes results in altered metabolic sensitivity to oxidative stress.The Plant Journal,2009,58:53-68
    Sasser J N, Eisenback J D, Carter C C. The international meloidogyne project its goals andaccomplishments. Annual Review Phytopathology,1983,21:271-288
    Sasser J N, Freekman D W. A world perspective on nematology. In Veech J A, Dickson D W,eds Vistas in nematology. Hayetsville Society of Nematologists,1987,7-14
    Schmitt D P, Riggs R D. Influence of selected plant species on hatching of eggs anddevelopment of juveniles of Heterodera glycines. Journal of Nematology,1991,23:1-6
    Seal A N, Pratley J E, Haig T, An M. Identification and quantitation of compounds in a seriesof allelopathic and non-allelopathic rice root exudates. Journal of Chemical Ecology,2004,30:1647-1662
    Shailasree S, Ramachandra K, Deepak S, Kumudini B S, Shetty H S. Accumaulation ofhydroxyproline-rich glycoproteins in pearl millet seedlings in response to Sclerosporagraminicola infection. Plant Science,2004,167:1227-1234
    Sharma N, Hotte N, Rahman M H, Mohammadi M, Deyholos M K, Kav N N V. Towardsidentifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans:A proteomics-based approach. Proteomics,2008,8:3516-3535
    Shen H, Wang X C, Shi W M. Isolation and identification of specific root exudates in elephantgrass (Pennis lium L.) in response to aluminum and ironbound phosphates. Journal ofPlant Nutrition,2001,24:1131-1144
    Shen S H, Jing Y X, Kuang T Y. Proteomics approach to identify wound-response relatedproteins from rice leaf sheath. Proteomics,2003,3:527-535
    Shi Y L, Zhang Y H, Shih D S. Cloning and expression analysis of two β-1,3-glucanasegenes from Strawberry. Journal of Plant Physiology,2006,163:956-957
    Shoalter A M. Accumulation of hydroxyproline-rich glycoprotein mRNA in response tofungal elicitor and infection. Proc. Natl. Acad. USA.,1985,82:6551-6557
    Sikora E J, Noel G R. Hatch and emergence of Heterodera glycines in root leachate fromresistant and susceptible soybean cultivars. Journal of Nematology,1996,28:501-509
    Song J, Braun G, Bevis E, Doncaster K. A simple protocol for protein extraction ofrecalcitrant fruit tissues suitable for2-DE and MS analysis. Electrophoresis,2006,27:3144-3151
    Stephen J Fey, Peter Mose Larsen. Current Opinion in Chemical Biology.2D or not2D,2001,5:26-33
    Stevens G A, J R, Tang C S. Inhibition of seedling growth of crop species by recirculatingroot exudates. Journal of Chemical Ecology,1985,11:1411-1425
    Sujeeth N, Deepak S, Shailasree S, Kini R K, Shetty S H, Hille J. Hydroxyproline-richglycoproteins accumulate in pearl millet after seed treatment with elicitors of defenseresponses against Sclerospora graminicola. Physiological and Molecular Plant Pathology,2010,74:230-237
    Sung D, Vierling E, Guy C. Comprehensive expression profile analysis of the Arabidopsishsp70gene family. Plant Physiol,2001,126:789-800
    Tang C, Young C. Collection and identification of allelopathic compounds from theundisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiology,1982,69:155-160
    Tayor A L. Introduction to research on plant nematology an FAO guide to the study andcontrol of plant-parasitic nematodes. Food and Agriculture Organization of the UniteNation; Revised edition,1971
    Tefft P M, Bone L W. Plant-induced hatching of eggs of soybean cyst nematode Heteroderaglycines. Journal of Nematology,1985,17:275-279
    Tomankova K, Luhova L, Petrivalsky M, Pec P, Lebeda A. Biochemical aspects of reactiveoxygen species formation in the interaction between Lycopersicon spp. and Oidiumneolycopersici. Physiological and Molecular Plant Pathology,2006,68:22-32
    Trumpower B L, Edwards C A. Identification of oxidation factor as a reconstitutively activeform of the iron-sulfur protein of the cytochrome b-c1segment of the respiratory chain.Febs Letters,1979,100:13-16
    Tsugita A, Kamo M.2-D electrophoresis of plant proteins. Methods in Molecular Biology,1999,112:95-97
    U N C. Types, amounts, and possible functions of compounds released into the rhizosphere bysoil-grown plants.∥R Pinton Z V, Nannipieri P. The rhizosphere: biochemistry andorganic substances atthe soil-plant interface, second edition. New York: Marcel Dekker,Inc,2000:19-40
    Verentchikov AN, Ens W, Standing K G. Reflecting time-of-flight mass pectrometer with anelectrospray ion source and orthogonal extraction. Analytical Chemistry,1994,66:126-133
    Verica J A, Maximova S N, Strem M D, Carlson S J, Bailey B A, Guiltinan M J. Isolation ofESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defenseresponse. Plant Cell Report,2004,23:404-413
    Walters D R, Ayres P G. Ribulose bisphosphate carboxylase protein and enzymes of CO2assimilation in barley infected by powdery mildew (Erysiphe graminis hordei). Journalof Phytopathology,1984,109:208-218
    Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M. Protein extractionfor two-dimensional electrophoresis from olive leaf, a plant tissue containing high levelsof interfering compounds. Electrophoresis,2003,24:2369-2375
    Wang W, Tai F, Chen S. Optimizing protein extraction from plant tissues for enhancedproteomics analysis. Journal of Separation Science,2008,31:2032-2039
    Wang W, Vignani R, Scali M, Cresti M. A universal and rapid protocol for protein extractionfrom recalcitrant plant tissues for proteomic analysis. Electrophoresis,2006,27:2782-2786
    Wilkes J G, Zarrin F, Lay J O, Vestal M L. Particle size distribution is not the major factorexplaining variable analyze transmission efficiency in liquid chromato graphy/particlebeam/mass spectrometry. Rapid Commun Mass Spectrom,1995,9:133-137
    Williamson V M, Hussey R S. Nematode pathogenesis and resistance in plants. The Plant Cell,1996,8:1735-1745
    Wright D P, Baldwin B C, Shephard M C, Scholes J D. Source-sink relationships in wheatleaves infected with powdery mildew.Ⅱ. Changes in the regulation of the Calvin cycle.Physiological and Molecular Plant Pathology,1995,47:255-267
    Xuan T D, Chung I M, Khanh T D, Tawata S. Identification of phytotoxic substances fromearly growth of barnyard grass (Echinochloa crusgalli) root exudates. Journal ofChemical Ecology,2006,32:895-906
    Yan J X, Devenish A T, Wait R, Stone T, Lewis S, Fowler S. Fluorescence two-dimensionaldifference gel electrophoresis and mass spectrometry based proteomic analysis ofEscherichia coli. Proteomics,2002,2:1682
    Yang E J, Oh Y A, Lee E S, Park A R, Cho S K, Yoo Y J, Park O K. Oxygen-evolvingenhancer protein2is phosphorylated by glycine-rich3/wall-associated kinase1inArabidopsis. Biochemical and Biophysical Research Communication,2003,305:862-868
    Yang F, Xiao X W, Zhang S, Korpelainen H, Li C Y. Salt stress responses in Populuscathayana Rehder. Plant Science,2009,176:669-677
    Yu J Q, Ye S F, Zhang M F, Hu W H. Effects of root exudates and aqueous root extracts ofcucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidantenzymes in cucumber. Biochemical Systematics and Ecology,2003,31:129-139
    Zacheo G, Bleve-Zacheo T, Lamberti F. Role of peroxidase and superoxidase dismutaseactivity in resistantand susceptible tomato cultivars infested by Meloidogyne incognita.Nematology Mediterr,1982,10:75-80
    Zacheo G, Bleve-Zacheo T. Involvement of superoxide dismutases and superoxide radicals inthe susceptibility and resistance of tomato plants to Meloidogyne incognita attack.Physiological and Molecular Plant Pathology,1988,32:313-322
    Zang X, Komatsu S. A proteomics approach for identifying osmotie-stress-related proteins inrice. Phytochem,2007,68:426-37
    Zhang L Y, Zheng X H, Tang H L, Zhu J W, Yang J M. Incerase of β-1,3-glacanase andchitinase activities in cotton callus cells treated by salicylic acid and toxin of Verticilliumdahliae, China. Acta Botanica Sinica,2003,45:802-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700