用户名: 密码: 验证码:
器测时期以来长江河口泥沙冲淤及其入海通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口泥沙通量不仅是全球变化的研究内容,而且是与河口工程、环境等有密切联系的实际课题。本文以长江口为背景,以入海泥沙通量为目标,采用GIS技术与泥沙动力学、水文统计学相结合的方法对长江中下游水沙通量、长江口海图深度基准面、长江河口冲淤演变、长江口泥沙收支平衡、长江口泥沙通量及其相关问题进行了系统研究。
     长江水通量由中游向下游逐渐递增,大通站多年平均径流量为9.03×10~(11)m~3(1951-1999),比上游宜昌站增加近一倍。悬沙通量由中游向下游略有减少,大通站多年平均输沙量为4.36亿吨(1953-1999);与悬沙数量相比,长江干流推移质输沙量极少,且有从中游向下游沿程递减趋势。大通站来水年通量无明显增大或减小的趋势;悬沙通量则呈明显减少趋势,20世纪70年代以来尤甚。水量年内变化由降雨量在年内的分布决定,下游大通站径流一般集中在5-10月,占全年径流的71%。大通站洪季(5-10月)输沙量占全年总输沙量的85%,其洪季集中程度显然比水量更甚。
     用Matlab语言实现了对海图理论深度基准面的人机交互式计算,基于1977年实测潮位资料计算获得的调和常数,研究了长江口10个验潮站的深度基准面,探讨了不同深度基准面之间的换算关系,为冲淤量的精确计算打下了基础。
     在总结GIS和DEM的定义、特点、应用及发展趋势的基础上,提出应用GIS和DEM技术计算河槽冲淤量和进行河床演变分析的思路和方法,基于这一手段,首次将整个长江口和杭州湾作为研究对象,对其各组成区域在同一时间背景下的冲淤量进行了全面系统的分析,力求提供有关长江口及杭州湾百余年来平均冲淤状况全貌的认识。
     分别对南支、南北港、拦门沙、口外及杭州湾多个区域百余年来的泥沙冲淤量进行了计算,并对各区域在不同水文条件下表现出的演变特点进行了剖析和归纳。南支河槽暗沙众多,频繁移动,造成局部演变剧烈,但总的河槽容积变化不大,来沙基本属过境性质,南港和北港河槽容积的变化呈此消彼长之态势,与分汊口的河势演变有密切关系,但两汊总的河槽容积基本保持稳定,变幅较小。拦门沙地区呈累积性淤积趋势,平均每年约有6.8%的来沙在此落淤。口外水下三角洲及杭州湾是长江来沙的主要淤积地,过大通断面的泥沙约有70%左右进入此区域沉积。
     在冲淤量定量计算的基础上,首次构建了较精确的长江口泥沙收支平衡模式。长江来沙10%左右淤积在大通至徐六泾河道,6.5%左右淤积在北支,徐六
    
     华东师范大学2001届博土学位论文 内容提要 u
     径至口门的南支汉道略有冲刷,约 31%淤积在口门以外的水下三角洲,40%淤
     积在杭州湾及其近海,4%左右泥沙用来塑造陆地和岸线,其它的泥沙,主要沉
     ’”积在浙闽沿海近岸区域,极少量扩散至深海。通量与断面位置密切相关,考虑
     一 不同的时间尺度可分为年通量、月通量、日通量等。若以口门作为河流与海洋
     的作用界面,那么长江人海年均泥沙通量为3.70亿吨,同时还计算了长江口其
     他若干重要断面的泥沙年通量,其中大通断面为 4.sl亿吨,徐六注断面为屯刀6
     亿吨,长江口与杭州湾界面为2.30亿吨。
Estuarine sediment flux is not only one of contents of Global Change Research, but also is a practical problem nearly related to estuarine engineering and estuarine environment. Aiming at sediment flux into ocean and taking Changjiang Estuary as background, several key problems are systematically studied with combined methods of GIS technique, sediment transport dynamics and hydrologic statistics. Mainly the problems are water and sediment fluxes of mid- to lower Changjiang River, nautical chart Depth Datum Levels of Changjiang Estuary, evolution process of Changjiang Estuary, sediment budget of Changjiang Estuary, sediment fluxes of Changjiang estuary, and so on.
    The runoff of Changjiang River increases from middle reach to lower reach. The yearly averaged runoff is 9.03 xlO'V in Datong Station (1951-1999), which is
    about twice the amount in middle reach. Suspended sediment discharge decreases a little from middle reach to lower reach. The yearly averaged sediment discharge is 436 million tons in Datong (1953-1999). Comparing to suspended sediment, the amount of bedload is much small, which decreases form middle reach to lower reach. There aren't apparent trends of either decrease or increase for runoff flux hi Datong, but there is apparent decrease trend for sediment flux, especially since 1970s. Runoff changes monthly are closely related with the precipitation in the basin. Runoff in Datong Station mainly concentrates on the period from May to December and amounts to 71% of annual total runoff. The sediment discharge on flood seasons (from May to December) amounts to 85% in Datong Station.
    Calculations of theoretical depth datum (TDD) level are carried out with Matlab program language. The datum levels of 10 tidal stations in Changjiang Estuary are calculated with harmonic constants calculated with tidal level data in 1977 and the relationships among datum levels are discussed.
    Based on summarizing the definition, characters, application and development trend of GIS and DEM, the thought and method of calculating channel volumes and channel evolution analyses with GIS and DEM technique are brought forward. With
    
    
    
    this technique, silt-deposit amounts of several regions for over one hundred years are calculated, which separately are South Branch, South and North Channel, mouth bar area, offshore and Hangzhou Bay, etc. Moreover, the evolution regularities for different area under different hydrology conditions are discussed.
    There are so many frequently moving sandbars hi South Branch that local evolution often is very violent, but its total channel volume changes little. So the sediments from upper reach essentially pass through the region without detention.
    Channel volume of South Channel and North Channel usually change with reverse trends, which is closely related to the situation of bifurcation mouth. But the total volume of the two channels keeps equilibrium and changes little. Cumulative deposition trend is clearly showed in mouth bar area, and 6.8% of coming sediment is deposited here. Coming sediment mainly deposit in the submerged delta and Hangzhou Bay, and there is about 70% of sediment that go through Datong section into this region.
    Based on calculation of silt-deposit sediment, the mode of sediment budget of Changjiang Estuary is established for the first time. 10% of coming sediment is deposited in the channel from Datong to Xuliujing; 6.5% of it is deposited in North Branch; a little is eroded hi South Branch from Xuliujing to the mouth; 31% of it is deposited in the submerged delta; 40% of it is deposited hi Hangzhou Bay and its near sea; 4% of it is accreted to land; other sediment is mainly transported to the nearshore
    of Zhejiang and Fujian coast and thimbleful sediment is diffused into the blue water. Fluxes are nearly related with locations of sections. Sediment fluxes for some important sections hi Changjiang Estuary are calculated, thereinto that of Xuliujing is 406 million tons each year and that of the mouth is 370million tons each year.
引文
[1] 张永战、朱大奎.海岸带——全球变化研究的关键地区.海洋通报,Vol.16(3),1997,69-80
    [2] 李春初、雷亚平.全球变化与我国海岸研究问题.地球科学进展,Vol.14(2),1999,189-192
    [3] 沈焕庭,朱建荣.论我国海岸带陆海相互作用研究.海洋通报,Vol.18(6),1999,11-17.
    [4] 李凡.海岸带陆海相互作用(LOICZ)研究及我们的策略.地球科学进展,Vol.11(1),1996,19-23
    [5] 杨荫凯.地球系统科学现行研究的最佳切入点.地理科学进展,Vol.17(1),1998,73-79
    [6] Globe change report, No.25, Land-Ocean Interaction in the Coastal Zone (LOICZ) Science plan, Edited by P.M.Holligan and H. De Boois, 1993,1-50
    [7] Globe change report, No.33, Land-Ocean Interaction in the Coastal Zone (LOICZ) Implementation plan, Edited by J.C.Pernetta and J. D. Milliman, 1994,1-215
    [8] 中国海洋科学学科发展战略研究组.中国海洋科学学科发展战略研究报告.地球科学进展,Vol.10(2),1995,116-122
    [9] 胡敦欣.我国海洋通量研究.地球科学进展,Vol.11(2),1996,227-229.
    [10] Ludwig W., and Probst J.L., River sediment discharge to the oceans: Present-day controls and global budgets. American Journal of Science, 1998,Vol.298:265-295
    [11] Walling D.E., Estimating the discharge of contaminants to coastal waters by rivers: some cautionary comments. Marine Pollution Bulletin, 1985,Vol. 16:488-492
    
    
    [12] Douglas I., Man, vegetation, and the sediment yield of rivers. Nature, Vol.215, 1967, 925-928.
    [13] Wilson L., Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal of Science, Vol.273, 1973, 335-349.
    [14] Jansen J.M.L., and R.B.Painter. Predicting sediment yield from climate and topography. Journal of Hydrology, Vol.21, 1974, 371-380.
    [15] Jansson M.B., A globe survey of sediment yield. Geografiska Annaler, Vol.70 (A), 1988, 81-98.
    [16] Alnert F., Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. American Journal of Science, Vol.268, 1970, 243-263.
    [17] Milliman J.D., and J.P.M.Syvitski. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, Vol. 100, 1992, 525-544.
    [18] Summerfield M.A., and N.J.Hulton. Natural control of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research, Vol.99, B7, 1994, 13871-13883.
    [19] Probst J.L., and P. Amiotte-Suchet. Fluvial suspended sediment transport and mechanical erosion in the Maghreb(North Africa). Hydrological Science Journal, Vol.37, 1992, 621-637.
    [20] Milliman J.D., and G.L.Meade. Worldwide delivery of river sediment to the oceans. Journal of Geology, Vol.91, 1983, 1-21.
    [21] Milliman J.D., C.Rutkowski, and M.Meybeck. River discharge to the sea. A global river index (GLORI). Texel, the Netherlands, LOICZ Core Project Office, 1995, 1-125.
    [22] Jay D.A., R.J.Uncle, J. Largier, W.R.Geyer, J.Vallino, and W.R. Boynton. A review of recent developments in estuarine scalar flux estimation. Estuaries, Vol.20(2), 1997, 262-280.
    [23] Shen Huanting, Zhang Cao, Xiao Chengyou et al., Change of the discharge and sediment flux to estuary in Changjiang River. P. 129-148, In: Health of the Yellow Sea, Hong G.H., J. Zhang and B.K. Park (Eds.), Seoul: the Earth Love Publication Association, 1998,129-148.
    [24] Bowden K.F., The mixing processes in tidal estuary. International Journal of Air and Water Pollution, Vol,7, 1963, 343-356.
    [25] Hansen D.V., Salt balance and circulation in partially mixed estuaries, P.45-51. In Estuaries, Publication No.83, American Association for the Advancement of Science, Washington, D.C., 1965.
    [26] Fishcher H.B., Mass transport mechanisms in partially mixed estuaries. Journal of Fluid Mechanics, Vol.53, 1972,672-687.
    [27] Dyer K.R., The salt balance in stratified estuaries. Estuarine and coastal Marine Science, Vol.2, 1974, 275-281
    [28] Dyer K.R., Fine sediment particle transport in estuaries. P.295-310, In: Physical Processes in Estuary, Dronkers J. and W. van. Leussen(Eds.), NewYork: Spring-Verlag, 1988.
    [29] Uncle R.J., R.C.A.Elliott, and S.A.Weston., Dispersion of salt and suspended sediment in a partly mixed estuary. Estuaries, Vol.8, 1985a, 256-269.
    [30] Uncle R.J. et al., Observed fluxes of water, salt and sediment in a partly mixed estuary. Estuarine, Coastal and Shelf Science, Vol.20,1985b, 147-167
    [31] Pino Q.M., G.M.E.Perillo, and P. Santamarina. Residual fluxes in a cross-section of the Vaidivia River estuary, Chile. Estuarine Coastal and Shelf Science, Vol.38, 1994, 491-505.
    [32] Piccolo M.C., and G.M.E. Perillo, Physical characteristics of the Bahia Blanca estuary (Argentina). Estuarine Coastal and Shelf Science, Vol.31, 1990,303-317
    [33] 时伟荣,李九发.长江河口南北槽输沙机制及浑浊带发育分析.海洋通报,Vol.12(4),1993,69-76.
    
    
    [34] 沈健,沈焕庭等.长江河口最大浑浊带水沙输运机制分析.地理学报,Vol.50(5),1995,411-420,
    [35] Kjerfve J,P.T. and J.A.Proehl. Velocity variability in a cross-section of a well-mixed estuary. Journal of Marine Research, Vol.37, 1979, 409-418.
    [36] Perillo G.M.E. and M.C.Piccolo. Importance of grid-cell area in the estimation of estuarine residual fluxes. Estuaries, Vol.21(1), 1998, 14-28.
    [37] Smith S.V., J.T. Hollibaugh, S.J.Dollar, and S.Vink. Tomales Bay metabolism:C-N-P stoichiometry and ecosystem hererotrophy at the land-sea interface. Estuarine, Coastal and Shelf Science, Vol.33, 1991, 223-257.
    [38] Jay D.A., and J.D.Smith. Circulation, density distribution and neap-spring transitions in the Columbia River Estuary. Progress in Oceanography, Vol.25, 1990, 81-112.
    [39] Baird D.P., E.D.Winter, and G.Wendt The flux of particulate material through a well mixed estuary. Continental Shelf Research, Vol. 7, 1987, 1399-1403.
    [40] Oey L.-Y., G.L. Mellor, and R.I.Hires. A three dimensional simulation of the Hudson-Raitan estuary, Part 1: salt flux analysis. Journal of Physical Oceanography, Vol. 15, 1985, 1711-1720.
    [41] 沈焕庭.国内外河口水文研究的动向.地理学报,Vol.43(3),1988,274-280
    [42] 沈焕庭.中国河口数学模拟研究的进展.海洋通报,Vol.16(2),1995,80-85.
    [43] Thomas,W.A. and Prasuhn, A.L., Mathematical modeling of scour and deposition, Journal of Hydraulic Engineering, ASCE, Vo1.103(8), 1977, 851-863.
    [44] Scarlators,P.D., on the numerical modeling of cohesive sediment transport. Journal of Hydraulic Research, Vol.9,No.1, 1981, 61-68.
    [45] Lin P., Huan J.,Li X., Unsteady transport of suspended load at small concentrations. Journal of Hydraulic Engineering, ASCE, Vol. 109(1), 1983, 86-98.
    [46] O'Connor B.A. and J. Nicholson. Mud transport modeling. P. 532-544, In: Physical Processes in Estuaries, Dronkers J. and W.V. Leussen(Eds.), Springer-Verlag, 1988.
    [47] Ariathurai R. and R.B.Krone. Finite element model for cohesive sediment transport. Journal of Hydraulic Engineering, ASCE, Vol. 102(3), 1976, 323-338.
    [48] Onishi Y., sediment-containment transport model. Journal of Hydraulic Engineering, ASCE, Vol.107(9), 1981, 1089-1107.
    [49] Cole P. and G.V. Miles, Two-dimensional model of mud transport. Journal of Hydraulic Engineering, ASCE, Vol.109(1), 1983, 1-12.
    [50] Van Rijn, Field verification of 2D and 3D suspended sediment model. Joumal of Hydraulic Engineering, ASCE, Vol. 116(10), 1990, 1270-1288.
    [51] Xu Zhigang, A transport approach to the convolution method for numerical modeling of linearized 3D circulation in shallow sea, International Journal for Numerical Method in Fluid, Vol.20(5), 1995, 363-392
    [52] Lin Bingliang, Roger A Falconer. Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research, Vol.34(4), 1996,435-456.
    [53] O'Connor B.A., and J.Nicholson. Tidal sediment transport. P. 367-379, In: Computer Modeling of seas and Coastal Regions, Acinas J.R., and C.A.Brebbia(Eds.), Southampton Boston: Computational Mechanics Publications, 1997.
    [54] Martin F.L., R.Medina, E.M.Gonzalez, An integrated computer assisted beach design system (CABD), in Computer Modeling of seas and Coastal Regions, Acinas J.R., and C.A.Brebbia(Ed.), Southampton Boston: Computational Mechanics Publications.
    
    
    [55] Huang Wenrui, Spalding M.3D model of estuarine circulation and water quality induced by surface discharge, Journal of Hydraulic Engineering, ASCE, Vol. 121(4), 1995, 300-311
    [56] Davies A.M., Formulation of a linear 3D hydrodynamic sea model using a Galerkin Eigenfunction method, International Journal for Numerical Method in Fluid, Vol.8(3):110-126
    [57] Teisson C., Cohesive suspended sediment transport: feasibility and limitation of numerical modeling. Journal of Hydraulic Research, Vol.29(6), 1991, 755-769.
    [58] Jago C.F. and Y. Mahamod, A total load algorithm for sand transport by fast steady current. Estuarine Coastal and Shelf Science, Vol.48, 1999, 93-99
    [59] 程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算.地理学报,Vol.39(4),1984,418-427.
    [60] 程天文,赵楚年.我国河流入海径流量、输沙量及其对沿岸的影响.海洋学报,Vol.7(4),1985,460-471
    [61] 沈焕庭,李九发,朱慧芳等.长江河口悬沙输移特性.泥沙研究,No.1,1986,1-13.
    [62] 陈西庆,陈吉余.南水北调对长江口粗颗粒悬沙来量的影响.水科学进展,Vol.8(3),1997,259-263.
    [63] Chen X. and Y. Zhong, Coastal erosion along the Changjiang deltaic shoreline, China: History and prospective, Estuarine, Coastal and Shelf Science, Vol.46, 1998, 733-742
    [64] 王康善,苏纪兰.长江口南港环流及悬沙物质输移的计算分析.海洋学报,Vol.9(5),1987,627-637.
    [65] 陈子燊.伶仃河口湾铜鼓水域水沙净输运分析.海洋工程,Vol.17(1),1999,79-85.
    [66] J.D. Milliman, Shen Huanting et al., Transport and deposition of river sediment in the Changjiang estuary and adjacent shelf, Continental Shelf Research, No.4, 1985, 37-45
    [67] 林承坤.长江口泥沙的数量和输移.中国科学(A辑),第1期,1988,104-112.
    [68] 林承坤.长江口及其邻近海域粘性泥沙的数量和输移.地理学报,Vol.47(2),1992,108-117.
    [69] 孙效功,杨作升,陈彰榕.现行黄河口海域泥沙冲淤的定量计算及其规律探讨.海洋学报,Vol.15,1993,129-136.
    [70] 沈焕庭,郭成涛,朱慧芳等.长江口最大浑浊带的变化规律及成因探讨,见:海岸河口区动力、地貌、沉积过程论文集,北京:科学出版社,1984,76-89.
    [71] 沈焕庭等.长江河口最大浑浊带研究.地理学报,Vol.47(5),1992,472-479.
    [72] 李九发,时伟荣,沈焕庭.长江河口最大浑浊带的泥沙特性和输移规律.地理研究,Vol.13(1),1994,51-59.
    [73] 孙志林.中国强混合河口最大浑浊区成因研究.海洋学报,Vol.15(3),1993,63-72
    [74] 时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究,No.1,2000,28-39.
    [75] 张志忠.长江口细泥沙絮凝若干特性探讨,见:第二届河流泥沙国际学术讨论会论文集,北京:水电出版社,1983,274-285.
    [76] 严镜海.潮汐水流中细颗粒泥沙絮凝沉降的初步研究.泥沙研究,第4期,1988,10-22.
    [77] 阮文杰.细颗粒泥沙动水絮凝机理分析.海洋科学,No.5,1991,46-49
    [78] 林以安等.长江口生源元素的生物地球化学特征与絮凝沉降的关系.海洋学报,Vol.17(5),1995,65-72.
    [79] 时钟,朱文蔚,周洪强.长江口北槽口外细颗粒悬沙沉降速度.上海交通大学学报,Vol.34(1),2000,18-23.
    
    
    [80] 贺松林,茅志昌.长江河口最大浑浊带含沙量垂线分布状态的分析.海洋湖沼通报,No.3,1993,21-27.
    [81] Shi Z., Ren L.F. and Lin H.L., Vertical suspension profile in the Changjiang estuary. Marine Geology, Vol. 130(1/2), 1996,29-37.
    [82] Shi Z., Ren L.F. and Hamilton L.J., Acoustic profiling of fine suspension concentration in the Changjiang Estuary. Estuaries, Vol.22(3A),1999,648-656.
    [83] 时钟,凌鸿烈.长江口细颗粒悬沙浓度垂向分布.泥沙研究,No.2,1999,59-63.
    [84] 时钟,周洪强.长江口北槽口外悬沙浓度垂向分布的数学模拟.海洋工程,Vol.18(3),2000,7-12.
    [85] 毕敖洪,孙志林.椒江河口过程初步研究.泥沙研究,No.3,1984,12-26.
    [86] Shen Huanting, Li Jiufa, Zhu Huifang, et al., Transport of suspended sediment in the Changjiang estuary, International Journal of Sediment Research, Vol.7, No.3, 1992, 45-63.
    [87] Li Jiufa, Shi Weirong, Shen Huanting et al., The bedload movement in the Changjiang Estuary. China Ocean Engineering, Vol.7(4), 1993, 441-450.
    [88] 曹祖德,王桂芳.波浪掀沙、潮流输沙的数学模拟.海洋学报,vol.15(1),1993,107-118.
    [89] Shi Z., Ren L.F. Zhang S.Y. and Chen J.Y., Acoustic imaging of cohesive sediment reentrainment and resuspension in the Changjiang Estuary, East China Sea. Geo-Marine Letters, Vol. 17(2), 1997,162-168.
    [90] 程和琴,宋波等.长江口粗粉沙和极细沙输移特性研究,泥沙研究,No.1,2000,20-27.
    [91] 窦国仁,董风舞,Dou Xibing,潮流和波浪的挟沙能力.科学通报,Vol.40(5),1995,443-446.
    [92] 朱玉荣.不同泥沙输运公式在以潮流为主的浅海、陆架环境中的适用性探讨.海洋科学,No.2,1999,32-35
    [93] 林秉南,韩曾萃等.潮汐水流泥沙输移与河床变形的二维数学模型.泥沙研究,No.2,1988,1-8.
    [94] 舒良华,姜太良,方正.悬移质潮扩散的数值模拟.海洋学报,Vol.15(5),1993,69-78.
    [95] 窦国仁等.河口海岸泥沙数学模型研究.中国科学(A辑),Vol.25(9),1995,995-1001.
    [96] 曾庆存,郭冬建,李荣风.泥沙冲积和三角洲发育的数值模拟.自然科学进展——国家重点实验室通讯,Vol.5(3),1995,309-314.
    [97] 曾庆华等.黄河口演变规律及整治.郑州:黄河水利出版社,1997.
    [98] 刘卓,郭冬建,朱江,曾庆存.长江口水流和泥沙冲淤的数值模拟的初步研究Ⅰ.自然科学进展,Vol.9(1),1999,64-70.
    [99] 周济福等.径流与潮流对长江口泥沙输运的影响.水动力学研究与进展(Ser.A),Vol.14(1),1999,90-100.
    [100] 王兆印,宋振琪.欧美泥沙运动研究述评.见:第二届全国泥沙基本理论研究学术讨论会论文集,北京:中国建材出版社,1995,1-10
    [101] 王光谦,中国泥沙研究述评.水科学进展,Vol.10(3),1999,337-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700