用户名: 密码: 验证码:
户用型上吸式生物质气化炉的结构设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆生物质资源特别是棉秆资源丰富,但至今还没有找到充分利用其潜能的合理有效方式,生物质气化是生物质能源化利用的主要方式,生物质气化的研究是一个复杂的系统工程,气化性能受诸多因素的影响,因此,设计生物质气化炉并对其进行深入的试验研究,为优化气化炉内部结构和气化工艺条件提供指导性建议,具有重要意义。
     本文以棉秆为研究对象,设计一套户用型生物质气化系统,在此基础上开展试验,通过112SERIES型元素分析仪测得切碎棉秆的元素成分,并分析其工业成分,利用物料颜色反推法布置气化炉测温点,通过风机调速控制气化剂流量,水蒸汽循环反应装置上的蒸汽阀门控制水蒸汽供给区域,从而研究气化剂流量、气化剂种类对气化反应温度及气化气品质的影响规律。
     本次气化研究中,主要研究结果为:
     1.设计一套户用型上吸式生物质气化系统,气化反应器内部设计有多道供风装置、水蒸汽循环反应装置等关键部件,并且设计了两级净化装置。通过试验及计算结果表明,本次研究设计的气化炉,一定程度上达到了生物质气化的基本性能及气化气的净化效果,并提高了气化炉的封火时间。
     2.对气化炉内反应温度、气化气品质和气化剂流量之间的关系进行了试验研究,试验结果表明:①使用空气作为气化剂时,空气流量对反应程度和各床层状态影响极为显著。干燥层温度受空气流量影响不明显,裂解层基本上保持平稳的变化,而氧化层和还原层受空气流量变化最为敏感,随着空气流量变大,两个反应层的温度波动加剧。②使用空气作为气化剂时,空气流量变化对气化气中CH4影响不显著,但对H2和CO的影响较明显,尤其对CO含量影响显著。气化剂流量太高或太低都会使CO含量降低,本文试验研究表明,当空气流量为0.55m3·min-1时,CO含量最高。而H2、CH4的变化趋势则与之相反。
     3.利用水蒸汽循环反应装置实现空气-水蒸汽气化,与空气气化进行了对比试验,对气化炉内反应区的温度变化情况进行了研究。试验结果表明:水蒸汽参与空气气化,氧化层温度会出现小幅度提高,还原层温度稍微降低,减缓了氧化层的增厚速度,将有利于减少气化气中的焦油含量。气化炉性能试验说明,使用水蒸汽循环装置,还可以提高气化气中可燃成分含量,改善气化气品质。
It is abundant in biomass resource, especially cotton-stalk in Xinjiang, China. However, no reasonable and effective ways to make the best of it’s potential so far. Biomass gasification is main mode of utilizing biomass energy, the study on biomass gasification is a complicated systems engineering, gasification performance was affected by many factors. So, to design biomass gasifiers and to do deeper experimental study on them has important meaning, it can provide guiding suggestions for optimizing interior structure of gasifier and techniques for gasification.
     Based on cotton-stalks, the author design a suit of domestic biomass gasification system, and do some experimental study on it. The main elements and industry components of cotton-stalk were analyzed by 112SERIES mode element analysis apparatus, points of measuring temperature were placed by the method of biomass color illation, air discharge were controlled by rotate speed of fan, the areas where steam supply were controlled by steam valve on steam supply unit, this paper discussed influence rules between air discharge, gasification agent species and reaction temperature, gas quality.
     The main results of this gasification study are as follows:
     1. A suit of domestic updraft biomass gasification system was designed, the gasifier includes several-path wind feed device and steam supply unit, two-step purifying device were installed on the system additionally. Tested and calculation results showed that the gasifier have better basal performance and purifying effect than others.
     2. This paper studies the relationship between reaction temperature, gas quality and air discharge for domestic updraft biomass gasifier. The results of the experiment indicate that,①The effects of air discharge on reaction degree and section state in the gasifier were not salient. Temperature of drying and pyrolysis section had inconspicuous change under different air discharge, combustion and reduction section were sensitive to air discharge contrarily, more air discharge, more temperature fluctuation.②The effects of air discharge on methane(CH4) content were not salient, but the effects of air discharge on hydrogen(H2) and carbon monoxide(CO), especially on carbon monoxide were salient. The carbon monoxide content of gas would reduce if air discharge was high or low extremely. Experimental study showed that the carbon monoxide content was highest as air discharge was 0.55m3·min-1, however, the reverse is change trend of hydrogen and carbon monoxide.
     3. This paper studies the reaction temperature on domestic updraft biomass gasifier with and without steam supply unit separately. The results of the experiment indicate that, gasification with steam can hoist combustion section temperature ratherish, and also make reduction section temperature reduce, it will be of great benefit to reduction tar content in biomass gas. The test of gasifier performance experiment indicate that it can increase combustible component and improve gas quality when gasifier runs with steam supply unit.
引文
[1] 周中仁,吴文良.生物质能研究现状及展望.农业工程学报,2005,21(12):12-15
    [2] 蔡宪杰,张百良.生物质气化供气技术的发展与分析.河南农业大学学报,2000,34(1):70-73
    [3] 顾念祖,嵇文娟.秸秆气化炉的研究与探讨.工业锅炉,2004,85(3):21-23
    [4] 马静.生物质在下行流化床中快速热解实验研究[硕士学位论文].南京:南京理工大学,2005
    [5] K.R. Cummer, R.C. Brown, Ancillary equipment for biomass gasification, Biomass and Bioenergy 23 (2002) 113–128
    [6] S. Cordiner et al., Analysis of a SOFC energy generation system fuelled with biomass reformate, Applied Thermal Engineering 27 (2007) 738–747
    [7] Y. Matsumura, T. Minowa, Fundamental design of a continuous biomass gasification process using a supercritical water fluidized bed, International Journal of Hydrogen Energy 29 (2004) 701–707
    [8] P.D’Jesǘs et al., Gasification of corn and clover grass in supercritical water, Fuel 85 (2006) 1032–1038
    [9] Dennis Y.C. Leung et al., A review on the development and commercialization of biomass gasification technologies in China, Renewable and Sustainable Energy Reviews 8 (2004) 565–580
    [10] Chaurasia AS, Kulkarni BD, Most sensitive parameters in pyrolysis of shrinking biomass particle, Energ Conv Manage (2006), doi:10.1016/j.enconman.2006.08.018
    [11] 汤爱君.中热值、低焦油生物质气化技术研究[硕士学位论文].济南:山东大学,2002
    [12] 吴创之.生物质气化发电技术讲座(2)生物质气化工艺的设计与选用.可再生能源,2003,108(2):51-52
    [13] Saravanakumar A et al., Experimental investigation and modelling study of long stick wood gasification in a top lit updraft fixed bed gasifier, Fuel (2007), doi:10.1016/j.fuel.2007.03.028
    [14] 赖艳华.生物质热解过程的传热传质及低焦油气化技术研究[博士学位论文].南京:东南大学,2002
    [15] 唐春福,王莹,任永志等.各种生物质气化集中供气系统的技术特点.可再生能源,2003,111(5):24-27
    [16] T. Murakami et al., Some process fundamentals of biomass gasification in dual fluidized bed, Fuel 86 (2007) 244–255, doi:10.1016/j.fuel.2006.05.025
    [17] X.T. Li et al., Biomass gasification in a circulating fluidized bed, Biomass and Bioenergy 26 (2004) 171–193, doi:10.1016/S0961-9534(03)00084-9
    [18] 刘国喜,庄新姝等.生物质气化技术讲座(二)生物质气化炉.农村能源,1999,88(6):17-19
    [19] S.C.Bhattacharya, M.Augustus Leon. Prospects for biomass gasifiers for cooking applications in asia. Thailand,Asian Institute of Technology 2005:3-8
    [20] 陈百明,陈安宁,张正峰等.秸秆气化商业化发展的驱动与制约因素分析.自然资源学报,2007,22(1):62-69
    [21] 李鹏,王维新,吴杰等.生物质气化及气化炉的研究进展.新疆农机化,2007,123(3):46-48
    [22] 胡伟,贾军,李纪周.农作物秸秆气化工程中的若干问题——天津农村秸秆气化的调研与思考.当代农机,2007,(9):16-17
    [23] Reed. T.B., and Larson, Ronal, 1996. A Wood-Gas Stove for Developing Countries. The Biomass Energy Foundation, Golden, CO., USA. Conference on “Developments in Thermochemical Biomass Conversion”, Banff, Canada, 20-24 May 1996.
    [24] Reed T. Ba., and Walt Rb., 1998. The “Turbo” Wood-Gas Stove. aThe Biomass Energy Foundation, 1810 Smith Rd., Golden, CO 80401; bCommunity Power Corporation, Aurora, CO. http://www.ikweb.com/enuff/public_html/Turbo/Turbo.htm.
    [25] Reed. T.B., Anselmo. E., and Kircher. K., 2000. Testing and Modelling the Wood-Gas Turbo Stove. Presented at the Progress in Thermochemical Biomass Conversion Conference, Sept. 17-22, 2000, Tyrol, Austria.
    [26] IPOBIS., 2004. Portable Wood/Biomass Stoves. Combustion, Gasification and Propulsion Laboratory, Indian Institute of Science, Bangalore. http://cgpl.iisc.ernet.in/stv_final.pdf
    [27] A. Saravanakumar et al., Experimental investigations of long stick wood gasification in a bottom lit updraft fixed bed gasifier, Fuel Processing Technology 88 (2007) 617–622, doi:10.1016/j.fuproc.2007.02.003
    [28] Saravanakumar A et al., Experimental investigation and modelling study of long stick wood gasification in a top lit updraft fixed bed gasifier, Fuel (2007), doi:10.1016/j.fuel.2007.03.028
    [29] Beenackers AACM, Maniatis K. In: Chartier P, Beenackers AACM, Grassi G, editors. Ninth European bioenergy conference. Oxford: PergamonPress;1996.p.228–59.
    [30] Maniatis K. In: Bridgwater AV, editor. Progress in thermochemical biomass conversion. Oxford: Blackwell; 2001.p.1–31
    [31] 孙健.以木薯茎秆为原料的生物质气化系统实验研究[硕士学位论文].广州:华南理工大学,2004
    [32] SSIC, 2005. SAN SAN INDUSTRIAL Cooperative., Ltd., Myanmar. Accessed 20 Feb 2005. http://www.benergyssic.com/sansanrice.htm
    [33] 王华军,李淑兰,何晓峰等.家用生物质气化机关键设计技术研究与分析.河南科学,2001,19(4):398-401
    [34] 崔永章,孙玉泉,陈维冬.家用秸秆气化炉的研制.可再生能源,2002,102(6):18-20
    [35] 胡万里,李长友.小型民用秸秆气化炉的改进设计.节能,2005,277(8):37-38
    [36] 李发权.固定床秸秆气化系统的设计与性能试验研究[硕士学位论文].石河子:石河子大学,2006
    [37] 钟浩,谢建,杨宗涛等.生物质热解气化技术研究现状及其发展.云南师范大学学报,2001,21(1):41-45
    [38] 田成民.我国生物质气化技术研究概况.化工时刊,2004,18(12):19-21
    [39] 洛阳机械设计所研制出适合农家使用的秸杆气化炉,http://www.chinaluju.com/news_show.asp?id=985
    [40] 浙江大学.户用高效生物质气化炉.中国,发明专利,200610052450,2007,1
    [41] 张忠.多功能生物质气化炉.中国,实用新型专利,99231849,2000,6
    [42] 中国农业年鉴2005卷.http://www.agri.gov.cn/sjzl/
    [43] 戚亮,申群凤,员小兰等.试析棉秆资源综合利用利用前景.石河子科技,2004,(6):10-11
    [44] 新疆维吾尔自治区科学技术协会编.新疆能源发展战略研究报告[内部资料].1996
    [45] 马隆龙,吴创之,孙立.生物质气化技术及其应用.北京:化学工业出版社,2003,6
    [46] P. De Filippis et al., Gasification process of Cuban bagasse in a two-stage reactor, biomass and bioenergy 27 (2004) 247-252. doi:10.1016/j.biombioe.2003.11.009
    [47] 赵勇,任永志,崔亨哲等.影响下吸式气化炉产气质量的原因及对策.可再生能源,2003,110(4):31-34
    [48] C. Lucas et al., High-temperature air and steam gasification of densified biofuels, biomass and bioenergy 27 (2004) 563-575. doi:10.1016/j.biombioe.2003.08.015
    [49] 任永志,董立明.下吸式生物质气化炉的设计.农村能源,2000,92(4):16-18
    [50] 宋秋,任永志,孙波.生物质气化炉设计要点[J].可再生能源,2002(2):20-22
    [51] 日本能源学会.生物质和生物能源手册(史仲平,华兆哲 译).北京:化学工业出版社,2007,97-111
    [52] 田中幸介: 第10回日本ェネルギ一学会大会講演要旨集,pp.333-336(2001)
    [53] 邱钟明,陈砺.生物质气化技术研究现状及发展前景.可再生能源,2002,104(4):16-19
    [54] 徐庆贤,谢建,张无敌等.云南省生物质气化技术研究现状.能源与环境,2004,(4):66-68
    [55] E.A. Sondreal et al. Review of advances in combustion technology and biomass cofiring,Fuel Processing Technology 71(2001)7–38. PII:S0378-3820(01).00134-5
    [56] 森下孝志:第10回日本ェネルギ一学会大会講演要旨集,pp.337-340(2001)
    [57] 钟浩.以蒸汽为气化剂的生物质热解和完全气化技术研究[硕士学位论文].昆明:云南师范大学,2000
    [58] A. Demirbas, Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples, Fuel 80 (13) (2001) 1885–1891
    [59] S. Li et al.,Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas,Fuel Processing Technology 85 (2004) 1201–1211
    [60] Paulo R. Wandera,b, Carlos R. Altafinib, Ronaldo M. Barret.Assessment of a small sawdust gasification unit. Biomass and Bioenergy,27 (2004) 467–476
    [61] 程冠华.固定床移动层下吸式生物质气化炉的研究.能源工程,1997(2)30-32
    [62] 张全国,孔书轩,刘圣勇等.生物质燃气净化技术及其装置研究.中国沼气,2000,18 (1):41-45
    [63] 张文华,田沈,李军等.降解生物质气化洗焦废水微生物的选择.太阳能学报,2002,23(4):459-461
    [64] 吴创之.生物质焦油裂解技术.可再生能源,2003,109(3):54-57
    [65] L.P.L.M. Rabou,Biomass tar recycling and destruction in a CFB gasifier,Fuel 84 (2005) 577–581
    [66] C. Pfeifer, H. Hofbauer, Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier, Powder Technol. (2007), doi:10.1016/j.powtec.2007.03.008
    [67] Md. Azhar Uddin et al.,Catalytic decomposition of biomass tars with iron oxide catalysts,Fuel 87 (2008) 451–459
    [68] Abu El-Rub Z et al., Experimental comparison of biomass chars with other catalysts for tar reduction, Fuel (2008), doi:10.1016/j.fuel.2008.01.004
    [69] Li, C., Suzuki, K., Tar property, analysis, reforming mechanism and model for biomass gasification—An overview, Renew Sustain Energy Rev (2008), doi:10.1016/j.rser.2008.01.009
    [70] 刘圣勇,张百良,张全国等.玉米秸秆成型燃料锅炉的设计与试验.热科学与技术,2003,2(2):173-177
    [71] 朱孔颖,许德浦.小型秸秆气化炉的改造与应用.污染防治技术,2004,17(2):16-17
    [72] 姚向君,田宜水编著.生物质能资源清洁转化利用技术.北京:化学工业出版社,2005
    [73] 李连民.秸秆固定床气化技术的试验研究[硕士学位论文].上海:同济大学,1999
    [74] 魏敦崧,李芳芹,李连民.生物质固定床气化试验研究.同济大学学报(自然科学版),2006,34(2):254-259
    [75] 吴杰,王维新,李发权.户用型上吸式棉秆气化炉气化性能的试验研究.农机化研究,2007,146(6):139-140
    [76] 李鹏,王维新,吴杰等.气化剂流量对棉秆气化性能的影响.石河子大学学报(自然科学版),2007,25(4):512-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700