用户名: 密码: 验证码:
啶虫脒在环境中水解与光解行为的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
啶虫脒属于一种新型的氯化烟碱类杀虫剂,被认为是替代有机磷农药的重要品种之一,在世界范围内已经得到了广泛的应用。但是,关于其在环境中的迁移、转化行为还没有得到系统的研究,因此,为了安全合理的使用该农药,就必须对其在环境中的迁移转化行为进行研究。本文系统地研究了啶虫脒的水解和光解行为,目的在于为全面评价其对环境的影响提供理论依据。
     本文首先研究了啶虫脒的水解行为。结果表明,啶虫脒的水解属于碱性水解,啶虫脒的水解符合准一级反应动力学方程。根据HPLC-MS结果推测,啶虫脒的水解产物分别为N-[(6-氯-3-吡啶)甲基-N-甲基乙酰胺和N-甲基(6-氯-3-吡啶)甲基胺。啶虫脒的水解速率随溶液pH值和温度的升高而加快。Cu~(2+)、Pb~(2+)和Fe(OH)_3对啶虫脒的水解具有明显的促进作用,腐殖酸对啶虫脒的水解具有抑制作用。Cu~(2+)和Pb~(2+)离子促进啶虫脒水解的机理是:(1)由于啶虫脒分子中的C=N基上的N原子具有一对孤对电子,能够和溶液中的Cu~(2+)和Pb~(2+)离子螯合形成螯合物,从而使得与之相连的C原子上的电子云密度降低,更有利于亲核试剂的进攻。(2) Cu~(2+)和Pb_2在水中形成金属羟基络合物,金属羟基化合物是一种活性更强的亲核试剂,更有利于啶虫脒的水解。Fe(OH)_3促进啶虫脒水解可能是因为:Fe(OH)_3分子中的Fe可以与啶虫脒的C=N基团上的N原子所拥有的一对孤对电子配合,使得C=N键上的C原子上的电子云密度降低,更容易受到的OH-进攻。另外,溶液中悬浮的Fe(OH)_3带正电荷,并且Fe(OH)_3本身对有机物具有一定的吸附能力,可以吸引大量带负电荷的OH-和啶虫脒,从而使得局部反应物浓度增加,加快啶虫脒水解反应的速率。腐殖酸对啶虫脒水解的抑制作用是因为腐殖酸中含有许多具有酸性的官能团,抑制了溶液中氢氧根离子的活性,使得溶液碱性减弱,从而抑制了啶虫脒的碱性水解。此外腐殖酸还可以吸附啶虫脒分子,从而降低了啶虫脒分子的活性,抑制了其水解反应。
     本文研究了啶虫脒的光解行为。啶虫脒在氙灯照射下光解较慢,而在汞灯照射下可以迅速的发生光解,且光解速率随着光照强度的增加而加快,原因在于啶虫脒几乎不吸收氙灯的辐射,而可以吸收中压和低压汞灯的辐射。啶虫脒的光解符合准一级反应动力学方程。啶虫脒的光解产物为N-氰基-N-甲基-N((3-氧代-2-氮杂双环[2,2,0]已-5-烯-6)甲基)乙脒。溶液的温度和pH值对啶虫脒的光解有一定的影响,啶虫脒的光解随着温度的升高而增加,其在酸性介质中的光解速率大于在碱性介质中的光解速率。溶液中溶解氧含量的增加可以加快啶虫脒的光解。溶液中的Fe~(3+)、硝酸根、腐殖酸以及表面活性剂可以抑制啶虫脒的光解,而H_2O_2和TiO_2可以促进啶虫脒的光解。Fe~(3+)、硝酸根和腐殖酸的抑制作用都是因为对光的竞争性吸收所引起的,而表面活性剂对啶虫脒光解的抑制作用可能是以下三种因素作用的结果:(1)对光的竞争性吸收;(2)表面活性剂形成的胶束对啶虫脒有一定的富集作用;(3)表面活性剂分子中的活性集团和啶虫脒分子结合从而改变其吸光特性。H_2O_2和TiO_2对啶虫脒光解的促进则是因为两者在光照下均可以产生活性很强的羟基自由基·OH,从而加速了啶虫脒的光解。啶虫脒在几种实验的有机溶剂和水溶液中的光解速率由快到慢依次为:丙酮、水、甲醇、乙腈和异丙醇。
Acetamiprid belongs to a new-style insecticide known as chloro-neontictinoids. It was regarded as an important substitute of organophosphorus pesticides, and has beed extensively used worldwide.To our knowledge, no reports have been found to investigate the environmental behavior of acetamiprid up to now.Thus,information of the transformation of acetamiprid in environment is indispensable for an ecotoxicological evaluation of it.The hydrolysis and photolysis of acetamiprid were investigated thoroughly in this dissertation.
     The hydrolysis of acetamiprid was studied firstly in this dissertation.The results indicated that the hydrolysis of acetamiprid belongs to alkaline hydrolysis and the hydrolysis of acetamiprid fits the pseudo-first-order kinetics well.Two hydrolytic product, N-[(6-chloro-3-pyridyl)methyl]-N-methylacetamide and N-methyl(6-chloro -3-pyridyl) methylamine were identified by HPLC-MS. The hydrolytic rate of acetamiprid was increased with the increases of the values of pH and temperatures of the reaction medium.The presence of Cu~(2+)、Pb~(2+) and Fe(OH)_3 could promote the hydrolysis of acetamiprid and humic acid could inhibit the hydrolysis of acetamiprid.The mechanism of the promoting effect of Cu~(2+)and Pb~(2+) was suggested as followed:(1) Cu~(2+) and Pb~(2+) were coordinated with the atom of N of the group of C=N in the acetamiprid molecule and leads to withdrawing electron density away from the C and generating a more reactive electrophile, which made the bond of C-N more easily broken when attacked by OH-.(2) Cu~(2+)and Pb~(2+) could induce the deprotonation of coordinated water molecules, therby generating metal hydroxo species, which is more stronger than OH-.The promoting mechanism of Fe(OH)_3 was suggested as followed:(1) Fe(OH)_3 was coordinated with the atom of N of the group of C=N in the acetamiprid molecule,and leads to withdrawing electron density away from the C atom and generating a more easily broken when attacked by OH-.(2) Fe(OH)_3 takes positron and has strong absorption ability,which made it can absorb acetamiprid molecule and OH- to form a environment with high concentration of reactants around the Fe(OH)_3,more quick hydrolysis of acetamiprid.The mechanisms of inhibting effect of humic acid on acetamiprid hydrolysis were proposed as followed:(1)Humic acid owns some acidic groups which could lower the pH values of the reaction medium and then inhibit the alkaline catalyzed hydrolysis of acetamiprid;(2)Humic acid could absorb acetamiprid and decrease the activity of acetamiprid,which inhibit the hydrolysis of acetamiprid.
     The photolysis of acetamiprid was also studied in this dissertation. Acetamiprid kept stable when xenon lamp was served as light source,but degraded quickly when exposed to the irradiation of medium-pressure or low-pressure mercury lamp,and the rate constant increased significantly with the increase of light intensity,which was due to acetamiprid could’t absorb the irradiation of xenon lamp,but could absorb the irradiation of low-pressure and medium-pressure mercury lamp effectively.The photolysis of acetamiprid fits the pseudo-first-order kinetics well. N_2 -cyano-N1-methyl-N1((3-oxo-2-azabicyclo[2,2,0]hex-5-en-6)methyl)acetamidine was identified as photolytic product of acetamiprid by use of HPLC-MS.Effects of temperature and the values of pH were faint, the photolytic rate of acetamiprid increased slightly with the increases of temperature. Acetamiprid degraded rapidly in acidic medium. Dissolved oxygen could increase slightly the photolytic rate constant of acetamiprid. Fe~(3+), NO_3~-, humic acid and surfactant could inhibit the photolysis of acetamiprid. H2O_2 and TiO_2 could stimulate the photolysis of acetamiprid. The mechanisms of the inhibiting effect of Fe~(3+), NO_3~- and humic acid on photolysis of acetamiprid were all due to the competitive absorption of light between Fe~(3+), NO_3~- and humic acid with acetamiprid.The balance between the competitive absorption of light,the combination of the surfactant’s active groups with the acetamiprid molecule,and the relatively high concentration of acetamiprid in the hydrophobic environment formed by micelles of surfactant resulted in the inhibiting effect of surfactant on photolysis of acetamiprid. The OH·generated by the irradiation on H_2O_2 and TiO_2 could promote the photolysis of acetamiprid.The photolytic rate constant of acetamiprid followed the sequence: acetone>water>methanol> acetonitrile>isopropyl.
引文
1 Pan-UK: 2003. Current Pesticide Spectrum. Global Use and Major Concerns. http: //www.pan-uk.org/ briefing/SIDA_Fil/Chap1.htm (January 18, 2003)
    2 D. Pimentel. Pest Management in Agriculture’, in D. Pimentel (ed.), Techniques for Reducing Pesticide Use: Environmental and Economic Benefits. Chichester, UK, John Wiley and Sons, 1997: 1~11
    3食品商务网,我国农药产量跃居世界第一,http://www.21food.cn/html/news/36/292788.htm,2008,04
    4藏开保,王晓光.农药的研究开发与发展趋势.湖南化工,2000,30(3):1~8
    5杨克武,莫汉宏,安凤春,等.有机化合物水解研究方法.环境化学,1994, 13(3): 206-209
    6 J. W. Hamaker. Decomposition: Quantitative Aspects. In: CAI Goring and J. W. Hamaker(Editors).Organic Chemicals in the Soil Environment. New York: Dekker, 1997: 253~340
    7 G. CAI,D. A. Laskowski, R. W. Meikle. Principles of Pesticide Degradation in Soil.In:Rhaque and V.F.Freed(Editors).Environmental Dynamics of Pesticide. New York:Plenum,1975.135~172
    8刘爱国,华日茂.安徽农业大学学报.农药降解的非线性动力学模型研究.2002,29(3):311~315
    9傅献彩,沈文霞,姚天祥.物理化学.北京:高等教育出版社,1990
    10戴树桂.环境化学.高等教育出版社, 2001: 170~171
    11 J. Chin. Developing Artificial Hydrolytic Metalloenzymes by a Unified Mechanistic Approach. Accounts of Chemical Research,1991,24: 145~152
    12 J. H. Suh. Model Studies of Metalloenzymes Involving Metal Ions as Lewis Acid Catalysts. Accounts of Chemical Research,1992,25: 273~279
    13 J. M. Smolen, A. T. Stone. Divalent Metal Ion-Catalyzed Hydrolysis of Phosphorothionate Ester Pesticides and Their Corresponding Oxonates. Environmental Science and Technology.1997, 31(6): 1664~1673
    14 J. A. Manzanilla-Cano , M. H. Barcelo-Quintal , R. B. Rendon-Osorio, et al. Effect of Fe (III) on Acid Degradation of Methylparathion. J. of Environmental Science and Health. Part B. Pesticides, Food Contaminants, and AgriculturalWasters .2007,42(5): 515~522
    15 M. Zeinali, A. Torrents. Mercury-Promoted Hydrolysis of Parathion-Methyl : Effect of Chloride and Hydrated Species. Environmental Science and Technology.1998,32(15):2338~2342
    16 C. H. Huang. Hydrolysis of Amide,Carbamate,Hydrazide,and Sulfonylurea Agrochemicals, Ph.D.thesis, Johns Hopkins University,Baltimore,MD,1997
    17 C. H. Huang, A. T. Stone. Transformation of the Plant Growth Regulator Daminozide(Alar) and Structurally Related Compounds with CuⅡIons: Oxidation Versus Hydrolysis. Environmental Science and Technology. 2003, 37: 1829~1837
    18 C. H. Huang, A. T. Stone. Synergistic Catalysis of Dimetilan Hydrolysis by Metal ions and Organic Ligands. Environmental Science and Technology. 2000, 34: 4117~4122
    19 D. J. Wang, J. Y. Shin, M.A. Cheney, et al. Manganese Dioxide as a Catalyst for Oxygen-Independent Atrazine Dealkylation. Environmental Science and Technology. 1999, 33(18):3160~3165
    20 S. S. Walse, K. D. Shimizu, J. L. Ferry. Surface-Catalyzed Transformations of Aqueous Endosulfan. Environmental Science and Technology. 2002, 36: 4846~4853
    21 A. Torrents, A. T. Stone. Hydrolysis of Phenyl Picolinate at the Mineral/Water Interface. Environmental Science and Technology.1991, 25: 143~149
    22 A. Torrents, A. T. Stone. Catalysis of Picolinate Ester Hydrolysis at the Oxide/Water Interface: Inhibition by Adsorbed Natural Organic Matter. Environmental Science and Technology. 1993, 27: 2381~2386
    23 A. Torrents, A. T. Stone. Catalysis of Picolinate Ester Pydrolysis at the Oxide/Water Interface: Inhibition by Coadsorbed Species. Environmental Science and Technology.1993, 27: 1060~1067
    24 J. Wei, G. Furrer, S. Kaufman, et al. Influence of Clay Minerals on the Hydrolysis of Carbamate Pesticides. Environmental Science and Technology. 2001, 35: 2226~2232
    25 S. U. Khan. Kinetics of Hydrolysis of Atrazine in Aqueous Fulvic Acid Solution. Pesticide Science. 1978, 9: 39~43
    26 G. C. Choundry. In Humic Substance. NY: Gordon and Breach, New York 1984, 7: 143~146
    27 E. M. Perdue, N. L. Wolfe. Modification of Pollutant Hydrolysis Kinetics in the Presence of Humic Substances. Environmental Science and Technology.1982, 16: 847~852
    28戴树桂,承雪琨,刘广良,等. SDBS及腐殖酸对涕灭威及其氧化物水解的影响.中国环境科学. 2002, 22(3): 193~197
    29 M. Schnitzer, S. U. Khan. Humic Substances in the Environment. Marcel Dekker Inc New York, 1972, 4
    30 J. H. Fendler, E. J. Fendler. Catalysis in Micellar and Macromolecular Systems. New York NY: Academic Press,1975
    31 B. Ranby, J. F. Rabek. Photodegradation, Photo-Oxidation and Photostabilization of Polymers:principles and Applications. London: John Wiley and Sons,1975
    32王连生.有机污染化学.北京科学出版社, 1990: 246
    33司友斌,岳永德.土壤表面农药光化降解研究进展.农村生态环境. 2002, 18(4): 56~59
    34 S. Torrisi, S. Sortino. New Insights into the Photoreactivity of the Organophosphorus Pesticide Fenthion: A Aryl Cation as a Key Intermediate in the Photodecomposition. J. of Agricultural and Food Chemistry. 2004, 52: 5943~5949
    35 S. Canonica, J. Hoigné. Enhanced Oxidation of Methoxyphenols at Concentration Photosensitized by DNOM. Chemosphere. 1995, 30: 2365~2374
    36 S. Canonica, U. Jans, K. Stemmler. Transformation Kinetics of Phenols in Water: Photosensitization by DNOM and Aromatic Ketones. Environmental Science and Technology.1995, 29: 1822~1831
    37 S. Canonica, M. Freiburghaus. Electron-Rich Phenols for Probing the Photochemical Reactivity of Freshwaters. Environmental Science and Technology. 2001, 35: 690~695
    38 P. P. Vaughan, N. V. Blough. Photochemical Formation of Hydroxyl Radical by Constituents of Natural Waters. Environmental Science and Technology. 1998, 32: 2947~2953
    39 N. V. Blough, R. G. Zepp. Reactive Oxygen Species in Natural Waters. In Active Oxygen: Reactive Oxygen Species in Chemistry. C. S. Foote, J. S. Valentine, A. Greenberg, J. F. Liebman, Eds. Chapman and Hill: New York, 1995, 280~332
    40 M. L. Penney, Y. P. Chin. Photoinduced Degradation of Carbaryl in a Wetland Surface Water. J. of Agricultural and Food Chemistry. 2002, 50: 6758~6765
    41 V. Delphine, J. F. Pilichowsk. Phototransformation of Propiconazole in Aqueous Media. J.of Agricultural and Food Chemistry.2001. 49: 5377~5382
    42 W. J. Cooper, R. G. Zika, R. G. Petasne, et al.. Sunlight-Induced Photochemistry of Humic Substances in Natural Water: Major Reactive Species. ACS Symposium Series. 1989, 219: 333~361
    43 J. Hoigné, B. C. Faust, W. R. Haag, et al. Aquatic Humic Substances as Sources and Sinks of Photochemically Produced Transcient Reactants. ACS Symposium Series. 1989, 219: 363~381
    44 J. P. Aguer, C. Richard, F. Andreux. Comparison of the Photoinductive Properties of Commercial, Synthetic and Soil-Extracted Humic Substances. J. of Photochemistry and Photobiology A: Chemistry.1997, 103: 163~168
    45 T. E. Thomas-Smith, N. V. Blough. Photochemical Formation of Hydroxyl Radical by Constituents of Natural Naters. Environmental Science and Technology.2001, 35: 2721~2726
    46 O. C. Zafiriou, M. B. True. Nitrate Photolysis in Seawater by Sunlight. Marine Chemistry. 1979, 8: 33~42
    47 S. S. Walse, S. L. Morgan, K. Li, et al.. Role of Dissolved Organic Matter, Nitrate, and Bicarbonate in the Photolysis of Aqueous Fipronil. Environmental Science and Technology.2004, 38: 3908~3915
    48毕刚,田世忠.拟除虫菊酯在不同猝灭体系中的光化学降解.环境化学. 1995, 14: 425~430
    49 R. R. Hautala. Surfactant Effects on Pesticide Photochemistry in Water and Soil. Environmental Protection Agency, Washington DC, 1978, 600/3-78-060
    50 G. W. Ivie, J. E. Casida. Sensitized Photodecomposition and Photosensitizer Activity of Pesticide Chemicals Exposed to Sunlight on Silica Gel Chromatoplates. J. of Agricultural and Food Chemistry. 1971, 19: 405~409
    51花日茂,汤锋.五种农药对三唑酮光解的影响.环境化学.1995,14(1):21~24
    52花日茂,程燕,葛世彬,等. 3种农药对异菌脲的光解影响及相互作用研究.安徽农业大学学报. 2003, 3(4):353~357
    53花日茂,岳永德.甲基对硫磷对三种拟除虫菊酯杀虫剂的光敏降解研究.环境化学. 1995, 14 (6): 508~512
    54毕刚,田世忠,有机磷农药光敏作用的初步研究.环境化学. 1996, 15(5): 433~440
    55毕刚,田世忠.拟除虫菊酯与有机磷农药混合溶液的光敏降解.环境科学学报. 1996, 16 (3): 317~324
    56曹瑾.光化学概论.北京高等教育出版社, 1985: 68
    57郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解.环境化学. 2002, 2l(2): 117~122
    58岳永德,汤锋.混合农药及表面活性剂对毒死蜱光解影响的研究.安徽农业大学学报. 2000, 27(1): 1~4
    59岳永德,陶庆会.表面活性剂对甲基对硫磷光解的影响.安徽农业大学学报. 2000, 27(2): 106~107
    60 B. Y. Oh, B. M. Lee. Study on Degradation of Butachlor and in Different Soil Condition. Han’guk Nonghwa Hakhoe Chi. 1981, 24: 112~119
    61 W. R. Haag, J. Hoigné. Photo-Sensitized Oxidation in Natural Water Via HO? Radicals. Chemospere. 1985, 14: 1659~1671
    62 S. A. Mabury, D. G. Crosby. The Relationship of Hydroxyl Reactivity to Pesticide Persistence in Aquatic and Surface Photochemistry. R. Helz, R. G. Zepp, D. G. Crosby, Eds. Lewis Publishers: Boca Raton, FL, 1994: 149~161
    63 A. Torrents, B. G. Anderson, S. Bilboulian, et al. Atrazine Photolysis: Mechnistic Investigations of Direct and Nitrate-Mediated Hydroxy Radical Processes and the Influence of Dissolved Organic Carbon from the Chesapeake Bay. Environmental Science and Technology. 1997, 31, 1476~1482
    64 R. G. Zepp, J. Hoigné, H. Bader, Nitrate-Induced Photooxidation of Trace Organic Chemicals in Water. Environmental Science and Technology. 1987, 21: 443~450
    65 G. Phillip, F. Michael, J. S. Chib. Effect of Fertilizer and Soil Componments on Pesticide Photolysis. J. of Agricultural and Food Chemistry. 2002, 50: 7332~7339
    66邓南圣,吴峰.环境光化学.化学工业出版社. 2003: 85,101
    67岳永德,王如意,汤锋,等.毒死蜱在土壤中的光催化降解.安徽农业大学学报. 2002, 29 (1): 1~3
    68 M. A. Schlautman, J. J. Morgan. Effects of Aqueous Chemistry on the Binding of Polycyclic Aromatic Hydrocarbons by Dissolved Humic Materials.Environmental Science and Technology.1993, 27: 961~969
    69 E. Pelizzetti, V. Carlin,V. Maurino, et al.. Degradation of Atrazine in Soil Through Induced Photocatalytic Processes. Soil Science. 1990, 150(2): 523~526
    70 T. Katagi. Photoinduced Oxidation of the Organophosphorus Fungicide Tolclofosmethyl on Clay Minerals. J.of Agricultural and Food Chemistry. 1990, 38: 1595~1600
    71 A. Fujishima, K. Hondo. E1ectrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238(5358):37~38
    72樊美公.光化学基本原理与光子学材料科学.北京科学出版社. 2001: 406~410
    73 G. Kaichouh, N. Oturan, M. A. Oturan, et al. Mineralization of Herbicide Imazapyr and Imazaquin in Aqueous Medium by, Fenton, Photo-fenton and Electro-fenton Processes. Environmental Technology.2008,29(5):489~496
    74 C. M. Sharpless, K.G. Linden, Experimental and Model Comparisons of Low- and Medium-Pressure Hg Lamps for the Direct and H2O2 Assisted UV Photodegradation of N-nitrosodimethylamine in Simulated Drinking Water. Environmental Science and Technology. 2003,37: 1933~1940
    75 H. Shemer , K. G. Linden. Degradation and By-Product Formation of Diazinon in Water during UV and UV/ H2O2 Treatment. J. of Hazardous Materials, 2006,136:553~559
    76 W. Chu, Modeling the Quantum Yields of Herbicide 2, 4-D Decay in UV/ H2O2 Process.Chemosphere,2001, 44(5) :935~941
    77 C. M. Sharpless, A. P. Margaret, K.G. Linden. Impact of Hydrogen Peroxide on Nitrite Formation during UV Disinfection. Water Research, 2003,37(19): 4730~4736
    78 C. L. Wu, H. Shemer, K.G. Linden. Photodegradation of Metolachlor Applying UV and UV/ H2O2. J. of Agricultural and Food Chemistry.2007, 55 (10): 4059~4065
    79 K. G. Linden, E. J. Rosenfeldt, S. W. Kullman. UV/ H2O2 Degradation of Endocrine-Disrupting Chemicals in Water Evaluated via Toxicity Assays. Water Science and Technology.2007,55(12):313~319
    80 H.Shemer, Y. K. Kunukcu, K.G. Linden. Degradation of the Pharmaceutical Metronidazole via UV, Fenton and Photo-Fenton Processes. Chemosphere,2006, 63(2):269~276
    81 Y. J. An, E. R. Carraway. PAH Degradation by UV/H2O2 in Perfluorinated Surfactant Solutions. Water Research. 2002,36(1):309~314
    82 C. C. Wong, W. Chu. The Direct Photolysis and Photocatalytic Degradation of Alachlor at Different TiO2 and UV Sources. Chemosphere.2003,50(8):981~987
    83 M. Bertelli, E. Selli. Reaction Paths and Efficiency of Photocatalysis on TiO2 and of H2O2 Photolysis in the Degradation of 2-Chlorophenol. J. of Hazardous Materials.2006,138(1):46~52
    84 Y. S. Cao, J. X. Chen, L. Huang, et al. Photocatalytic Degradation of Chlorfenapyr in Aqueous Suspension of TiO2. J. of Molecular Catalysis A: Chemical.2005,233(1-2): 61~66
    85 Y. S. Cao, L. Yi, L. Huang, et al. Mechanism and Pathways of Chlorfenapyr Photocatalytic Degradation in Aqueous Suspension of TiO2. Environmental Science and Technology.2006,40(10): 3373~3377
    86 D. R. Stapleton, D. Mantzavinos, M. Papadaki. Photolytic (UVC) and Photocatalyic (UVC/TiO2) Decomposition of Pyridines. J.of Hazardous Materials. 2007,146(3):640~645
    87 H. J. Benkelberg, U. Deister, P. Warneck.·OH Quantum Yields for the Photodecomposition of Fe(III) Hydroxo Complexes in Aqueous Solution and the Reaction with Hydroxymethanesulfonate. In Physico-Chemical Behavior of Atmospheric Pollutants. G. Restellia, G. Angeletti Eds. Kluwer: Dordrecht, The Netherlands, 1990: 263~268
    88 C. H. Langford, J. H. Carey. The Charge-Transfer Photochemistry of the Hexaaquoiron(III) Ion, the Chloropentaaquoiron(III) Ion, and the -Dihydroxo Dimer Explored with Tert-Butyl Alcohol Scavenging. Canadian J. of Chemistry. 1975, 53: 2430~2436
    89 A. Alif, P. Boule. Photochemistry and Environment. Part XIV. Phototransformation of Nitrophenols Induced by Excitation of Nitrite and Nitrate ions. J. of Photochemistry and Photobiology A: Chemistry.1991, 59: 357~363
    90 D. Kotzias, K. Huster, A. Wieser. Formation of Oxygen Species and Their Reactions with Organic Chemicals in Aqueous Solution. Chemosphere. 1987, 16: 505~511
    91 M. P. Frank, P. Graebing, J. S. Chib. Effect of Soil Moisture and SampleDepth on Pesticide Photolysis. J. of Agricultural and Food Chemistry.2002, 50: 2607~2614
    92 P. Graebing, M. P. Frank, J. S. Chib. Soil Photolysis of Herbicides in a Moisture- and Temperature-Controlled Environment. J. of Agricultural and Food Chemistry. 2003, 51: 4331~4337
    93 U.S. Environmental Protection Agency, 2003. Federal Register. http://www.epa.gov/EPA-PEST/2003/September/Day-03/p22313.htm
    94 M. Mateu-Sanchez, M. Moreno, F. J.Arrebola, et al. Analysis of Acetamiprid in Vegetables Using Gas Chromatography-Tandem Mass Spectrometry. Analytical Sciences. 2003,19 :701~704
    95 U.S. Environmental Protection Agency.Pesticides Fact Sheet: Acetamiprid, http://www.epa.gov/opprd001 /factsheets/acetamiprid.pdf. , 2002
    96张海滨,杜辉.浅议杀虫剂啶虫脒在我国的发展.浙江化工, 2004, 35(7): 30~31
    97 K. Schoz. Photolysis of Imidacloprid (NTN33893) on the Leaf Surface of Tomato Plants . Pesticide Science. 1999,55: 633~675
    98单正军,朱忠林,蔡道基.吡虫啉的环境行为研究(一):吸附性、移动性、挥发性及土壤降解、水解、光降解.农药科学与管理, 1998,19(4) :11~15
    99单正军,朱忠林,蔡道基.吡虫啉的环境行为研究(二):吸附性、移动性、挥发性及土壤降解、水解、光降解.农药科学与管理, 1999,20(1):17~19
    100 W. Zheng, W. P. Liu. Kinetics and Mechanism of the Hydrolysis of Imidacloprid. Pesticide Science. 1999,55: 482~485
    101 J. Rouchand, F. Gustin, A. Wanters. Soil Biodegradation and Leaf Transfer of Insecticide Imidacloprid Applied in Seed Dressing in Sugar Beet Crops . Bulletin of Environmental Contamination and Toxicology. 1994 53: 334~350
    102 J. Rouchand, F. Gustin, A. Wanters. Imidacloprid Insecticide Soil Metabolism in Sugar Beet Field Crops. Bulletin of Environmental Contamination and Toxicology.1994, 56: 29~36
    103 S. Campbell, L.L. Chen, J. Yu, et al. Adsorption and Analysis of the Insecticides Thiamethoxam and Indoxacarb in Hawaiian Soils . J.of Agricultural and Food Chemistry. 2005,53: 5373~5376
    104刘惠君,郑巍,刘维屏.新农药吡虫啉及其代谢产物对土壤呼吸的影响.环境科学.2001, 22(4):73~76
    105 L. Q. Zheng, G. G. Liu, D. ZH. Sun. Hydrolysis of Thiamethoxam. Bulletin of Environmental Contamination and Toxicology.2006,76(6): 942~949
    106郑立庆,刘国光,孙德智.Cu2+对新农药噻虫嗪水解的影响.农业环境科学学报.2006,25(4) : 1001~1005
    107郑立庆,刘国光,孙德智.新型农药噻虫嗪的水解与光解研究.哈尔滨工业大学学报.2006,38(6): 1005~1008
    108 P. Fidente, S. Seccia, F.Vanni, et al. Analysis of Nicotinoid Insecticides Residues in Honey by Solid Matrix Partition Clean-Up and Liquid Chromatography–Electrospray Mass Spectrometry. J. of Chromatography A. 2005,1094:175~178
    109 A. Di. Muccio,P. Fidente, D.A. Barbini , et al.. Application of Solid-Phase Extraction and Liquid Chromatography–Mass Spectrometry to the Determination of Neonicotinoid Pesticide Residues in Fruit and Vegetables. J. of Chromatography A.2006. 1108:1~6
    110 S. Seccia, P. Fidente, D. A. Barbini, et al. Multiresidue Determination of Nicotinoid Insecticide Residues in Drinking Water by Liquid Chromatography with Electrospray Ionization Mass Spectrometry. Analytica Chimica Acta. 2005, 553:21~26
    111许鹏军,张红艳,陶晡,等.高效液相色谱法测定黄瓜和油菜中的啶虫脒残留量.分析实验室.2008,27(10):80~83
    112 X. H. Yao, H. Min, ZH. H. Lü, et al.. Influence of Acetamiprid on Soil Enzymatic Activities and Respiration. European J. of Soil Biology. 2006, 42: 120~126
    113 T. Iwasa, N. Motoyama, J. T. Ambrose, et al. Mechanism for the Differential Toxicity of Neonicotinoid Insecticides in the Honey Bee, Apis Mellifera. Crop Protection, 2004, 23:371~378
    114 J. E. Yager, C. D. Yue. Evaluation of Xenon Arc Lamp as a Light Source for Aquatic Photodegradation Studies: Comparison with Natural Sunlight. Environmental Toxicology and Chemistry. 1988, 7: 1003~1011
    115康君行.有机磷农药敌敌畏和甲基对硫磷水解速度的测定.环境科学.1984,5(6):24~28
    116陶澍,陈静生,邓宝山,等.中国东部主要河流河水腐殖酸的起源、含量及地域分异规律.环境科学学报. 1988, 8(3): 286~294
    117 P. J. Squillace, J. C. Scott, M. J. Moran, et al. VOCs, Pesticides, Nitrate, and Their Mixtures in Groundwater Used for Drinking Water in the United States. Environmental Science and Technology.2002,36(9):1923~1930
    118 P. L. Brezonik, J. F. Brekken. Nitrate Induced Photolysis in Natural Waters: Controls on Concentrations of Hydroxyl Radical Photo Intermediates by Natural Scavenging Agents. Environmental Science and Technology.1998,32(19): 3004~3010
    119展漫军,杨曦,鲜啟鸣,等.双酚A在硝酸根溶液中的光解研究.中国环境科学.2005,25(4): 487~490
    120 W. Peter, W. Christa. Product Quantum Yields for the 305nm Photodecomposition of nitrate in Aqueous Solution. J. of Physical Chemistry A. 1988, 92(22): 6278~6283
    121 M. Gertraud, K. Hans-Gert, V. S. Clrmens et al.. The Photochemistry of Aqueous Nitrate ion Revisited. J. of Photochemistry and Photobiology A: Chemistry. 1996, 101: 89~103
    122 A. Pusino, L. Braschi, S. Petretto, et al. Photodegradation of Herbicide Triasulfuron. Pesticide Science. 1999, 55 :479~481
    123 R. G. Zepp, P. F. Schlotzhauer, R. M. Sink. Photosensitized Transformations Involving Electronic Energy Transfer in Natural Waters: Role of Humic Substances. Environmental Science and Technology.1985, 19: 74~81
    124姚宇澄.表面活性剂在农药制剂中的应用.日用化学工业. 1997, (2):21.
    125 R. A. Larson, C.T. Jafvert, F. Boscá, et al. Effects of Surfactants on Reduction and Photolysis (>290 nm) of Nitroaromatic Compounds. Environmental Science and Technology. 2000, 34 (3): 505~508
    126 SH. Zhou, M.E. Sigman, M. M. Ghosh, et al. Photolysis of 2-Chlorophenol Dissolved in Surfactant Solutions. Environmental Science and Technology. 1997, 31 (12):3581~3587
    127施文健,彭孟成,闻海峰.用碱性艳蓝BO分光光度法测定水中十二烷基苯磺酸钠和十二烷基硫酸钠.分析化学.2002, 30(11): 1408
    128黄传敬.阳离子表面活性剂与溴酚红的显色反应及其分析应用.光谱学与光谱分析, 2000, 20(2):252~255
    129 Z. Q. Ou, A.Yedlier, Y. W. He, et al. Effects of Linear Alkylbenzene Sulfonate (LAS) on the Adsorption Behaviour of Phenanthrene on Soils. Chemosphere.1995,30:313~325
    130王禹,李发生,谷庆宝,等.十二烷基苯磺酸钠对异丙草胺光解体系的影响.环境科学研究.2004,17(4):37~39
    131施周,余键,袁玉梅.表面活性剂溶液中四氯联苯光降解机理研究.环境科学学报, 2000,20(增刊) ,110~114
    132褚明杰,岳永德,花日茂,等.几种物质对苯噻草胺在水中光降解的影响.应用生态学报,2006, 17(1):155~158
    133 X. Yang, X. S. Wang, L. R. Kong. Photolysis of Chlorsulfuron and Metsulfuron-Methyl in Methanol. Pestic. Sci. 1999, 55: 751~754
    134杨曦,孟庆昱,孔令仁,等.甲黄隆在有机溶剂中的光解.环境科学. 1999, 20(5): 66~68
    135蒲宇,杨曦,丁立,等.哒螨酮在甲醇中的光解.南京大学学报(自然科学版). 2002, 38 (2): 211~215
    136 S. K. Nag, P. Dureja. Photodegradation of Azole Fungicide Triadimeton. J. of Agricultural and Food Chemistry.1997, 45: 294~298
    137 M. Mushtaq, A. C. Chukwudebe, C.Wrzesinski, et al. Photodgradtion of Emamectin Benzoate in Aqueous Solutions. J. of Agricultural and Food Chemistry.1998, 46: 1181~1191
    138 W. Schwack, W. Andlauer, W. Armbruster. Photochemistry of Parathion in the Plant Cuticle Environment: Model Reactions in the 122 Hydroxylstearate. Pesticide Science. 1994, 40: 279~284
    139欧晓明,任竞,雷满香,等.新农药硫肟醚在有机溶剂中的光解.环境科学学报. 2005, 25(10): 1378~1384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700