用户名: 密码: 验证码:
电动车用感应电机矢量控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车在节能和环保方面具有较大优势,已经成为近年来发展最快的一种新型汽车。电机及其电驱动系统作为电动汽车的重要组成部分,其工作性能好坏直接影响着整车的各项运行指标。感应电机具有结构坚固、体积小、免维护、价格便宜,能用于易燃易爆环境等优点,而且随着矢量控制性能的不断提高,感应电机已经成为电动汽车的主流驱动电机。电动车用感应电机矢量控制系统与一般的工业应用系统不同,运行效率最大化、调速范围宽、高可靠性和较好的参数鲁棒性是其控制重点和难点。本文围绕这些问题展开研究,取得了以下几方面的研究成果:
     针对感应电机最大效率控制时的损耗模型的建模问题,从分析定子铁损耗和转子铁损耗与转差率及同步角频率的关系入手,建立了同时考虑定转子漏感、定子铁损耗和转子铁损耗时的感应电机损耗模型。基于该模型,利用拉格朗日优化算法,给出了感应电机最大效率运行时励磁电流与当前负载和转速的定量关系式。并进一步获得了转子相对铁损耗与同步角频率的关系,从理论上说明了在低速区转子铁损耗对电机运行效率有着显著影响。实验结果表明所建损耗模型在全速范围内都有着较高的准确性。
     为了提高感应电机最大效率控制时对电机参数的鲁棒性、以及确保效率寻优的稳定性、快速性和准确性,设计了一种新的效率模糊控制器。根据所建立的电机损耗模型计算转子磁链搜索初值,通过设计合理的模糊控制规则实现搜索步长的自适应改变,进而通过不断调整转子磁链来搜索逆变器直流侧输入功率最小值,最终实现效率最大化。同时,采用前馈补偿方法,引入一阶微分环节解决了效率优化过程中的低频转矩脉动和转矩快速响应问题。实验结果验证了所设计的效率模糊控制器的有效性,对于提高电动汽车在一次充电后的续驰里程具有重要的实际意义。
     针对无速度传感器矢量控制技术在低速时转子磁链定向角和转子速度估计难度大、调速性能差,因此无法满足电动汽车对宽调速范围尤其是低速爬行要求的问题,首先通过将高频信号注入法和传统的改进电压模型结合设计了一种新的转子磁链定向角估计混合模型,解决了转子磁链定向角在全速范围内的准确估计问题。通过使高频信号幅度随速度升高而逐渐减小,可实现在高低速之间不同估计方法的平滑切换。进一步将该模型作为参考模型,将传统的电流模型作为可调模型构建模型参考自适应系统(model reference adaptive system, MRAS),解决了包括低速情况下的转子速度估计问题。为了提高速度估计的准确性,还提出了转子电阻在线识别方法,以实时更新可调模型中的转子电阻。实验结果表明,所提出的转子磁链定向角和转子速度估计方法在从低速到高速的全范围内都是有效的。
     针对感应电机最大效率控制时励磁互感会因磁路饱和程度不同而变化的问题,提出一种基于MRAS的励磁互感在线辨识新方法。该方法采用一种以各相定子电流和积分后的各相定子电压为变量的特殊形式函数,在两种不同的参考坐标系下,分别作为MRAS的参考模型和可调模型;进而通过求解由稳态电磁转矩方程、转子电压方程和转子磁链方程组成的方程组,实现对感应电机励磁互感的在线辨识。理论分析表明,所提出的辨识方法与转子磁链定向角、逆变器死区时间、以及定转子电阻等电机参数均无关,因此有着较强的鲁棒性和较高的辨识精度。实验结果验证了该辨识方法的有效性。
Owing to its advantage in energy savings and environmental protection, as a new genre of automobiles, the Electric Vehicle (EV) has been undergoing rapid development in recent years. As essential components of EV, the performance of the motor and its drive system directly affects the overall performance of the EV. The induction motor has the advantages of durability, reduced size, requiring less maintenance, low cost and its ability in working in explosive and flammable conditions. As the performance of vector control continually improves, the induction motor has become the main drive motor for the EV. Vector control system of induction motor for the EV is different from other industrial systems, in its emphasis and focus on efficiency maximization, wide speed variability, increased reliability and good parameter robustness. These problems are discussed herein and some results are achieved in this paper.
     Loss model of induction motor under efficiency maximization control is studied. Through analyzing the relationship between the stator/rotor iron loss and slip/synchronization angle frequency, we build a loss model of the induction motor under efficiency maximization control that takes the stator leak inductance, the rotor leak inductance, the stator iron loss and the rotor iron loss into account. Based on the proposed loss model, relationship among the rotor flux, load and the rotor speed under efficiency maximization control is derived using the Lagrange theorem. This relationship henceforth leads to the relationship between the rotor relative iron loss and synchronization angle frequency. So it is shown theoretically that the effect of rotor iron loss on the efficiency of induction motor is distinct at low speed. The experimental results show that the proposed loss model is accurate over the full speed range.
     A new efficiency controller based on fuzzy logic is designed to improve the robustness of the parameters of the induction motor under efficiency maximization control, and the stability, rapidity and accuracy of the process of efficiency optimization. By assigning the searching initial value of the new efficiency controller, determined by the proposed loss model of the induction motor; and its searching step, adjusted automatically according to fuzzy rule, the DC input power of inverter is minimized by changing the rotor flux, so the efficiency maximization is achieved ultimately. The problems associated with low frequency pulsating torque and torque fast response are addressed by using a feedforward compensation algorithm and a first order differentiator. The experimental results show that the proposed efficiency fuzzy controller is effective and is meaningful to improving the EV running distance after a battery charge.
     The difficulty to estimate the rotor flux orientation angle and the rotor speed at low speed under speed sensorless vector control, and poor speed control, lead to failure to meet the demand for widely variable speed of EV, especially while running at low speed range. Firstly, a novel rotor flux orientation angle estimation hybrid model integrating high frequency signal injection method (HFSIM) and the modified voltage model (MVM) is designed, so it addresses the problem of the rotor flux orientation angle estimation over a full speed range. The high frequency signal amplitude decreases with an increase of speed, so the smooth transition between the different estimation methods from low to high speed range is realized. Furthermore, by proposing the hybrid model serving as the reference model, and a conventional current model serving as the adjustable model, a model reference adaptive system (MRAS) is established, which addresses the problem of the rotor speed estimation including low speed. The rotor resistance online identification scheme is proposed to update the rotor resistance contained in the adjustable model and to ensure the speed estimation accuracy. The experimental results show that the proposed rotor flux orientation angle and rotor speed estimation methods are effective from low to high speed range.
     The mutual inductance of induction motor is variable under efficiency maximization control, a new method for online identification of the mutual inductance based on MRAS is proposed. A special function, whose variables are the stator current and the stator voltage integral, serves as the reference model and adjustable model of MRAS separately in different reference frames. Also, the equation group, containing steady-state electric torque equation, rotor voltage equation and rotor flux equation, is established and solved to achieve the online identification of the inductance motor mutual inductance. It is shown in theory that the proposed identification method is independent of the rotor flux orientation angle, the dead time of the inverter, and the motor parameters, including the stator and rotor resistance. Good robustness and high precision are achieved. The experimental results show that the proposed identification method is effective.
引文
[1]电动车辆委员会.电动车发展综述[J].电气技术发展综述,1978,3:77-88.
    [2]贡俊,黄苏融.电动车电机驱动系统的现状和展望[C].中国电工技术学会第八届学术会议论文集,1978,3:77-88.
    [3]夏辑.关于新能源汽车研发综述及建议[J].安徽科技,2009,1:26-29.
    [4]姜妮.新能源汽车:驱动中国汽车产业振兴新势力[J].环境经济,2009,5:10-16.
    [5]陈清泉.发展锂电汽车是应对金融危机的战略选择[N].科学时报,2000,3,12.
    [6]曹秉刚,张传伟,白志峰,等.电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,38(1):1-5.
    [7]姜妮.汽车产业调整和振兴规划_三大绿色看点[J].环境经济,2009,5:19-24.
    [8]Xue X D, Cheng K W E, Cheung N C. Selection of Electric Motor Drives for Electric Vehicles [C].Australasian Universities Power Engineering Conference,2008:1-6.
    [9]杨竞衡.电动汽车的电气传动系统[J].电气传动,1999,4:3-10.
    [10]陈伯时.高动态性能交流调速系统的发展与演变_按转子磁链定向的矢量控制系统[J].电力电子,2004,2(1):33-36.
    [11]李夙.直接转矩控制技术[M].北京:机械工业出版社,1994.
    [12]巫庆辉,邵诚,徐占国.直接转矩控制技术的研究现状与发展趋势[J].信息与控制,2005,34(4):444-450.
    [13]夏超英.直接转矩控制系统的稳定性问题和鲁棒控制器设计[J].控制理论与应用,2004,21(1):54-58.
    [14]冯垛生.无传感器矢量控制原理与实践[M].北京:机械工业出版社,1994.
    [15]徐占国.三相异步电动机无速度传感器矢量控制系统的研究[D].西安:西安工程大学电信学院,1999.
    [16]李崇坚.交流电机变频调速控制系统的探讨[J].电力电子,2004,2(1):20-23.
    [17]陈伯时,杨耕.无速度传感器高性能交流调速控制的三条思路及其发展建议[J].电气传动,2006,36(1):3-8.
    [18]Rui Zhou, Jih-sheng Lai. Low-Speed Performance Comparison of Induction Motor Sensorless Control Methods [J]. The 7th Workshop on Computers in Power Electronics,2000:247-252.
    [19]Viorel I A, Hedesiu H. On the Induction Motors Speed Estimators Robustness Against their Parameters [C]. IEEE International Electric Machines and Drives Conference,2001: 931-934.
    [20]Tamai S, Sugimoto H, Yano M. Speed-sensorless vector control of induction motor with model reference adaptive system [C]. IEEE Industry Applications Society Annual Meeting, Toronto, Canada:IEEE,1985:613-620.
    [21]Shauder C. Adaptive speed identification for vector control of induction motor without rotational transducers [J]. IEEE Transactions on Industrial Applications,1992,28(5): 1054-1061.
    [22]Haron A R, Idris N R N. Simulation of MRAS-based Speed Sensorless Estimation of Induction Motor Drives using MATLAB/SIMULINK [C]. First International Power and Energy Conference, Putrajaya, Malaysia,2006:411-415.
    [23]Marwali M N, Keyhani A. A Comparative Study of Rotor Flux Based MRAS and Back EMF Based MRAS Speed Estimators for Speed Sensorless Vector Control of Induction Machines [C].IEEE Industry Applications Society Annual Meeting, New Orleans, Louisiana, 1997:160-166.
    [24]Vasic V, Vukosavic S N, Levi E. A Stator Resistance Estimation Scheme for Speed Sensorless Rotor Flux Oriented Induction Motor Drives [J]. IEEE Transactions on Energy Conversion, 2003,18 (4):476-483.
    [25]Soltani J, Hajian M, Abdolmaleki Y. Robust Speed Sensorless Control of Universal Field Oriented Induction Motor Drive With On-Line Stator Resistance Tuning [C].The Fifth International Conference on Power Electronics and Drive Systems,2003,1:193-198.
    [26]Hu Jun, Duggal B R, Vilathgamuwa M. A MRAS-based Speed Sensorless Field Oriented Control of Induction Motor with On-line Stator Resistance Tuning [C]. International Conference on Power Electronic Drives and Energy Systems for Industrial Growth,1998,1:38-43.
    [27]Vasic V, Vukosavic S. Robust MRAS-Based Algorithm for Stator Resistance and Rotor speed Identification [J].IEEE Power Engineering Review,2001,21(11):38-41.
    [28]Yang G, Chin T H. Adaptive-Speed Identification Scheme for a Vector-Controlled Speed Sensorless Inverter-Induction Motor Drive [J].IEEE Transactions on Industry Applications,1993,29(4):820-825.
    [29]Maiti S, Chakraboty C, Hori Y,et al. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power [J]. IEEE Transactions on Industrial Electronics,2008,55(2): 594-601.
    [30]Marcetic D P, Vukosavic S N. Speed-Sensorless AC Drives With the Rotor Time Constant Parameter Update [J].IEEE Transactions on Industrial Electronics,2007,54(5): 2618-2625.
    [31]Beguenane R, El Hachemi Benbouzid M, Tadjine M, et al. Speed and Rotor Time Constant Estimation via MRAS Strategy for Induction Motor Drives [C].IEEE International Electric Machines and Drives Conference,1997:TB3/5.1-TB3/5.3.
    [32]Soltani J, Mizaeian B. Simultaneous speed and rotor time constant identification of an induction motor drive based on the model reference adaptive system combined with a fuzzy resistance estimator [C]. International Conference on Power Electronic Drives and Energy Systems for Industrial Growth,1998,2:739-744.
    [33]Levi E, Wang M. A Speed Estimator for High Performance Sensorless Control of Induction Motors in the Field Weakening Region [J]. IEEE Transactions on Power Electronics,2002, 17(3):365-378.
    [34]Choy I,Kwon S H, Lim J, et al. Robust speed estimation for tacholess induction motor drives [J].Electronics Letters,1996,32(19):1836-1838.
    [35]Furtunato A F A, Salazar A O, Dantas de Araujo A. A robust control for induction motor using a variable structure model reference adaptive control (VS-MRAC) [C]. IEEE International Power Electronics Congress,1998:61-69.
    [36]Josenalde B. de Oliveira, Aldayr D. de Araujo. An Indirect Variable Structure Model Reference Adaptive Control Applied to the Speed Control of a Three-phase Induction Motor [C]. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, 2004:1946-1951.
    [37]Won-Sang Kim, Kyo-Beum Lee,Sunghoi Huh, et al. Robust Sensorless Control for Induction Motor Drives Fed by a Matrix Converter with Variable Structure Model Reference Adaptive [C].IEEE Power Electronics Specialists Conference,2007:2423-2427.
    [38]Cirrincione M, Pucci M, Cirrincione G, et al. A new TLS-Based MRAS speed estimation with adaptive integration for high-performance induction machine drives[J]. IEEE Transactions on Industrial Applications,2004,40(4):1116-1137.
    [39]Cirrincione M, Pucci M. An MRAS-Based Sensorless High-Performance Induction Motor Drive With a Predictive Adaptive Model [J].IEEE Transactions on Industrial Electronics, 2005,52(2):532-551.
    [40]Han W Y, Kim S M, Kim S J, et al. Sensorless Vector Control of Induction Motor using Improved Self-Tuning Fuzzy PID Controller [J].SICE Annual Conference in Fukui, Fukui University, Japan,2003:3112-3117.
    [41]Jiang Xianglong, Zhao Jin, Luo Hui, et al. Neural Network Speed Controller of Induction Motor Drive Based on Direct MRAC Method [C].The 29th Annual Conference of the IEEE Industrial Electronics Society,2003,3:2531-2536.
    [42]Shyu K K, Shieh H J, Fu S S. Model reference adaptive speed control for induction motor drive using neural networks [J]. IEEE Transactions on Industrial Applications,1998, 45(1):180-182.
    [43]Xianmin Ma, Zhi Na. Neural Network Speed Identification Scheme For Speed Sensor-less DTC Induction Motor Drive System [C].The Third International Power Electronics and Motion Control Conference,2000,3:1242-1245.
    [44]Cirrincione M, Pucci M. An MRAS based speed estimation method with a linear neuron for high performance induction motor drives and its experimentation [C].IEEE International Electric Machines and Drives Conference,2003,1:617-623.
    [45]Cerruto E,Consoli A, Raciti A, et al. Fuzzy adaptive vector control of induction motor drives [J]. IEEE Transactions on Power Electronics,1997,12(6):1028-1040.
    [46]Uddin M N, Hao Wen. Model Reference Adaptive Flux Observer Based Neuro-Fuzzy Controller for Induction Motor Drive [C]. The Fourtieth IEEE IAS Annual Meeting,2005,2:1279-1285.
    [47]Chen F, Dunnigan M W. Comparative study of a sliding-mode observer and kalman filters for full state estimation in an induction machine [J]. IEE Proceedings of Electric Power Applications,2002,149(1):53-64.
    [48]Cuibus M, Bostan V, Ambrosii S, et al. Luenberger, Kalman and Neural Network Observers For Sensorless Induction Motor Control [J]. Proceedings of the Third International Power Electronics and Motion Control Conference,2000,3:1256-1261.
    [49]Li Jingchuan, Xu Longya, Zhang Zheng.An adaptive sliding mode observer for induction motor sensorless speed control [C]. The 39th IEEE IAS Annual Meeting,2004,2:1329-1334.
    [50]Mifsud C C, Asher G M, Sumner M, et al. Effect of Motor Type on Performance of Sensorless Induction Motor Control Using HF Injection [C].International Conference on Power Electronics, Machines and Drives,2002:515-521.
    [51]Jansen P L, Lorenz R D. Transducerless Position and Velocitv Estimation in Induction and Salient AC Machines [J]. IEEE Transactions on Industry Applications,1995,31(2): 240-247.
    [52]Ide K, Ha J I, Sawamura M, et al. High frequency injection method improved by flux observer for sensorless control of an induction motor [C]. Proceedings of the Power Conversion Conference, Osaka, Japan:2002:516-521.
    [53]秦峰,贺益康,刘毅,等.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [54]Zhu H, Xiao X, Li Y D. A Simplified High Frequency Injection Method For PMSM Sensorless Control [J]. IEEE 6th International Power Electronics and Motion Control Conference, 2009:401-405.
    [55]Jung-Ik Ha, Seung-Ki Sul, Ide K, et al. Physical Understanding of High Frequency Injection Method to Sensorless Drives of an Induction Machine [C]. IEEE Industry Applications Conference,2000,3:1802-1808.
    [56]Ha J I,Sul S K. Sensorless field-orientation control of an induction machine by high-frequency signal injection [J].IEEE Transactions on Industrial Applications, 1999,35(1):45-51.
    [57]Ji-Hoon Jang,Seung-Ki Sul, Jung-Ik Ha, et al. Sensorless Drive of SMPM motor by High Frequency Signal Injection [J]. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition,2002,1:279-285.
    [58]Holtz J. Sensorless Control of Induction Machines—With or Without Signal Injection? [J]. IEEE Transactions on Industrial Electronics,2006,53(1):7-30.
    [59]Silva C, Asher G M, Sumner M. Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed [J]. IEEE Transactions on Industrial Electronics,2006,53(2):373-378.
    [60]Piippo A, Hinkkanen M, Luomi J. Sensorless control of PMSM drives using a combination of voltage model and HF signal injection [C].The 39th IEEE IAS Annual Meeting,2004,2: 964-970.
    [61]Tursini M, Petrella R, Parasiliti F. Sensorless control of an IPM synchronous motor for city-scooter applications [C].The 38th IEEE IAS Annual Meeting,2003,3:1472-1479.
    [62]Nian H,He Y K, Huang L, et al. Sensorless operation of an inset PM Bearingless motor implemented by the combination approach of MRAS and HF signal injection [C]. Proceedings of the 6th world congress on intelligent control and automation, Dalian, China:2006:8163-8167.
    [63]巫庆辉,邵诚.一种基于锁相环原理的参考模型自适应感应电机转速估计方法[J].自动化学报,2006,32(5):713-721.
    [64]Nam S W, Uddin M N. Model-based loss minimization control of an induction Motor drive [C].IEEE International Symposium on Industrial Electronics,2006, (3):2367-2372.
    [65]Lorenz R D. Key technologies for future motor drives [C]. Proceedings of the 8th International Conference on Electrical Machines and Systems,2005:1-6.
    [66]李发海,王岩.电机与拖动基础[M].北京:中央广播电视大学出版社,1992.
    [67]王金东,张和生.感应电机优化SVPWM调制策略研究[J].电力电子技术,2009,43(9):55-57.
    [68]Oikonomou N, Holtz J.Closed-Loop Control of Medium-Voltage Drives Operated With Synchronous Optimal Pulsewidth Modulation [J].IEEE Transactions on Industry Applications,2008,44(1):115-123.
    [69]常进,张曾科.感应电机恒功率因数控制的研究[J].中国电机工程学报,2002,22(11):70-74.
    [70]Andersen H R, Pedersen J K. Low cost energy optimized control strategy for a variable speed three-phase induction motor [C]. Proc. IEEE PESC 96, Baveno, Italy, 1996:920-924.
    [71]Choy I,Kwon S H, Choi J Y. On-line efficiency optimization control of a slip angular frequency controlled induction motor drive using neural networks [C]. IEEE IECON 22nd International Conference,1996, (2):1216-1221.
    [72]Kim H G, Sul S K, Park M H. Optimal Efficiency Drive of a Current Source Inverter Fed Induction Motor by Flux Control [J]. IEEE Transactions on Industry Applications, 1984,20(6):1453-1459.
    [73]Cacciato M, Consoli A, Scarcella G, et al. Efficiency Optimization Techniques via Constant Optimal Slip Control of Induction Motor Drives [C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion,2006:38-43.
    [74]Famouri P, Cathey J J. Loss Minimization Control of an Induction Motor Drive [J]. IEEE Transactions on Industry Applications,1991,27(1):32-37.
    [75]Park M H, Sul S K. Microprocessor-Based Optimal-Efficiency Drive of an Induction Motor [J].IEEE Transactions on Industrial Electronics,1984,31(1):69-73.
    [76]Sul S K, Park M H. A Novel Technique for Optimal Efficiency Control of a Current-Source Inverter-Fed Induction Motor [J]. IEEE Transactions on Power Electronics,1988,3(2): 192-199.
    [77]Abrahamsen F, Blaabjerg F, Pedersen J K, et al. On the Energy Optimized Control of Standard and High-Efficiency Induction Motors in CT and HVAC Applications [J]. IEEE Transactions on Industry Applications,1998,34(4):822-831.
    [78]崔纳新,张承慧,孙丰涛.异步电动机的效率优化快速响应控制研究[J].中国电机工程学报,2005,25(11):118-123.
    [79]崔纳新,张承慧,杜春水.变频调速异步电动机效率优化控制的研究进展[J].电工技术学报,2004,19(5):36-42.
    [80]Kirschen D S, Novotny D W, Suwanwisoot W. Minimizing Induction Motor Losses by Excitation Control in Variable Frequency Drives [J]. IEEE Transactions on Industry Applications, 1984,20(5):1244-1250.
    [81]Abrahamsen F, Blaabjerg F, Pedersen J K, et al. Efficiency-Optimized Control of Medium-Size Induction Motor Drives [J]. IEEE Transactions on Industry Applications, 2001,37(6):1761-1767.
    [82]Matsuse K, Yoshizumi T, Katsuta S. High-Response Flux Control of Direct-Field-Oriented Induction Motor with High Efficiency Taking Core Loss into Account [J]. IEEE Industry Applications Society Annual Meeting, New Orleans, Louisiana,1997:410-417.
    [83]Krishnan R, Bharadwaj A S. A Review of Parameter Sensitivity and Adaptation in Indirect Vector Controlled Induction Motor Drive Systems [J].IEEE Transactions on Power Electronics,1991,6(4):695-703.
    [84]Toliyat H A, Levi E, Raina M. A Review of RFO Induction Motor Parameter Estimation Techniques [J]. IEEE Transactions on Energy Conversion,2003,18(2):271-283.
    [85]Lorenz R D, Lipo T A, Novotny D W. Motion Control with Induction Motors [J]. Proceedings of the IEEE,1994,82(8):1215-1240.
    [86]Wen Xuhui, Gao Jianhua, Hua Yang. The Influence for Field Orient of Rotor Resistance in Induction Motor [C]. Sixth International Conference on Electrical Machines and Systems, 2003,2:581-584.
    [87]Khedher A, Mimouni M F, Derbel N, et al. Effects of the rotor time constant and the mutual inductance on the behaviour of a vector controlled induction motor [C].IEEE International Conference on Systems, Man and Cybernetics,2002,5.
    [88]Levi E, Wang M. Impact of Parameter Variations on Speed Estimation in Sensorless Rotor Flux Oriented Induction Machines [C]. IEE Conference on Power Electronics and Variable Speed Drives,1998: 305-310.
    [89]Kioskeridis I,Margaris N. Loss minimization in scalar-controlled induction motor drives with search controllers [J]. IEEE Transactions on Power Electronics,1996,11(2): 213-220.
    [90]Sousa G C D, Bose B K, Cleland J, et al. Loss modeling of converter induction machine system for variable speed drive[C]. Proceedings of IEEE IECON'92, New York,1992,1:114-120.
    [91]Chakraborty C, Hori Y. Fast efficiency optimization techniques for the indirect vector-controlled induction motor drives [J]. IEEE Transactions on Industry Applications,2003,39(4):1070-1076.
    [92]Ghozzi S, Jelassi K, Roboam X. Energy optimization of induction motor drives [C].IEEE International Conference on Industrial Technology,2004,2:602-610.
    [93]Barra K, Benmahammed K. Cascaded predictive control CGPC of an induction motor drive under constrained efficiency optimization [C].IEEE the 32nd Annual Conference on Industrial Electronics,2006:1316-1321.
    [94]Haddoun A,Benbouzid M E H, Diallo D, et al. A loss-minimization DTC scheme for EV induction motors [J]. IEEE Transactions on Vehicular Technology,2007,56(1):81-88.
    [95]Lim S, Nam K. Loss-minimising control scheme for induction motors [J].IEE Proceedings-Electric Power Applications,2004,151(4):385-397.
    [96]张立伟,温旭辉,陈桂兰.Matlab/simulink环境下异步电机建模及其工程应用[J].电气应用,2006,25(4):119-122.
    [97]Mino A G, Moreno E J M, Pryymak B, et al.A self-tuning loss-model based efficiency controller for an induction motor drive [C].12th International Power Electronics and Motion Control Conference,2006:1137-1142.
    [98]Kirschen D S, Novotny D W, Lipo T A. Optimal Efficiency Control of an Induction Motor Drive [J].IEEE transactions on Energy conversion,1987,2(1):70-76.
    [99]Kirschen D S, Novotny D W, Lipo T A. On-Line Efficiency Optimization of a Variable Frequency Induction Motor Drive [J]. IEEE Transactions on Industry Applications,1985, 21(4):610-616.
    [100]Kim G K, Ha I J, Ko M S. Control of induction motors for both high dynamic performance and high power efficiency [J]. IEEE Transactions on Industrial Electronics,1992,39(4): 323-333.
    [101]Ta M C, Hori Y. Convergence improvement of efficiency-optimized control of induction motor drives [J]. IEEE Transactions on Industrial Applications,2001,37(6):1746-1753.
    [102]Chakraborty C, Ta M C, Uchida T, et al. Fast Search Controllers for Efficiency Maximization of Induction Motor Drives Based on DC Link Power Measurement [C]. Proceedings of the Power Conversion Conference, Osaka,2002,2:402-408.
    [103]张承慧,崔纳新,李珂,等.电动汽车感应电机驱动系统效率优化控制[J].控制理论与应用,2006,23(5):773-778.
    [104]刘小虎,谢顺依,郑力捷.一种改进的感应电机最大效率控制技术研究[J].中国电机工程学报,2005,25(6):95-98.
    [105]Kaboli S, Zolghadri M R, Emadi A. A Fast Flux Search Controller for DTC Based Induction Motor Drives [J]. IEEE 36th Power Electronics Specialists Conference,2005:739-744.
    [106]Vukosavic S N, Levi E. Robust DSP-based efficiency optimization of a variable speed induction motor drive [J]. IEEE Transactions on Industrial Electronics,2003,50(3): 560-570.
    [107]Sousa G C D, Bose B K, Cleland J G. Fuzzy Logic Based On-line Efficiency Optimization Control of an Indirect Vector-controlled Induction Motor Drive [J]. IEEE Transactions on industrial Electronics,1995,42(6):192-198.
    [108]Chis M, Jayaram S, Ramshaw R, et al. Efficiency optimization of EV drive using fuzzy logic [C]. Thirty-Second IEEE IAS Annual Meeting, New Orleans Louisiana,1997,2:934-941.
    [109]Ramesh L, Chowdhury S P, Chowdhury S, et al. Efficiency Optimization of Induction Motor Using a Fuzzy Logic Based Optimum Flux Search Controller [C]. International Conference on Power Electronics, Drives and Energy Systems, New Delhi, India,2006:1-6.
    [110]Moreno J, Cipolla M, Peracaula J, et al. Fuzzy logic based improvements in efficiency optimization of induction motor drives [C]. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems,1997,1:219-224.
    [111]Moreno J, Cipolla M, Peracaula J, et al. Induction motor optimum flux search algorithms with transient state loss minimization using a fuzzy logic based supervisor [C].28th Annual IEEE Power Electronics Specialists Conference,1997,2:1302-1308.
    [112]Li Jingchuan, Xu Longya, Zhang Zheng. A New Efficiency Optimization Method on Vector Control of Induction Motors [C].IEEE International Conference on Electric Machines and Drives,2005:1995-2001.
    [113]Zhang L W, Liu J, Wen X H. A New Fuzzy Logic Based Search Control for Efficiency Optimization of Induction Motor Drives [C].The 7th International Power Engineering Conference, Toki Messe, Niigata, Japan,2005,29:1-526.
    [114]Sepahvand H, Farhangi S. Enhancing Performance of a Fuzzy Efficiency Optimizer for Induction Motor Drives [C].37th IEEE Power Electronics Specialists Conference,2006: 1-5.
    [115]Durval de Almeida Souza, Wilson C P de Aragao Filho, Sousa G C D. Adaptive Fuzzy Controller for Efficiency Optimization of Induction Motors [J]. IEEE Transactions on industrial Electronics,2007,54(4):2157-2164.
    [116]Li J, Zhong Y R. Efficiency Optimization of Induction Machines Based on Fuzzy Search Controller [C]. Proceedings of the 4th International Conference on Machine Learning and Cybernetics, Guangzhou, China,2005,4:2518-2533.
    [117]Bose B K, Patel N R, Rajashekara K. A neuro-fuzzy-based on-line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive [J]. IEEE Transactions on Industrial Electronics,1997,44(2):270-273.
    [118]Mino-Aguilar G, Moreno-Eguilaz J M, Pryymak B, et al.A Comparative Analysis of Two Neural-Network-Based Estimators for Efficiency Optimization of an Induction Motor Drive [C].10th IEEE International Power Electronics Congress,2006:1-6.
    [119]Mino-Aguilar G, Moreno-Eguilaz J M, Pryymak B, et al.A Neural Network Based Optimal Rotor Flux Estimator for Efficiency Optimization of an Induction Motor Drive [C]. IEEE ISIE 2006, Montreal, Quebec, Canada,2006:2528-2534.
    [120]Poirier E, Ghribi M, Kaddouri A. Loss minimization control of induction motor drives based on genetic algorithms [C].IEEE International Electric Machines and Drives Conference,2001:475-478.
    [121]Abrahamsen F, Blaabjerg F, Pedersen J K, et al. On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications [J]. IEEE Transactions on Industry Applications,1998,34(4):822-831.
    [122]Chang J H, Kim B K. Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,1997,44(6): 809-815.
    [123]Wallace I T, Novotny D W, Lorenz R D, et al. Verification of enhanced dynamic torque per ampere capability in saturated induction machines [J]. IEEE Transactions on Industry Applications,1994,30(5):1193-1201.
    [124]Vukosavic S N, Levi E. A Method for Transient Torque Response Improvement in Optimum Efficiency Induction Motor Drives [J].IEEE Transactions on Energy Conversion, 2003,18 (4):484-493.
    [125]Matsuse K, Taniguchi S, Yoshizumi T, et al. A Speed-Sensorless Vector Control of Induction Motor Operating at High Efficiency Taking Core Loss into Account [J]. IEEE Transactions on Industry Applications,2001,37(2):548-558.
    [126]许镇琳,何启莲,李国民,等.异步机矢量控制系统的电机参数自设定[J].电工技术学报,1995,(1):44-47.
    [127]Ruff M, Bunte A, Grotstollen H. A new self-commissioning scheme for an asynchronous motor drive system [C]. IEEE Industry Applications Society Annual Meeting,1994,1: 616-623.
    [128]Khambadkone A M, Holtz J. Vector-controlled induction motor drive with a self-commissioning scheme [J]. IEEE Transactions on Industrial Electronics, 1991,38(5):322-327.
    [129]Schierling H. Fast and reliable commissioning of AC variable speed drives by self-commissioning [C].IEEE Industry Applications Society Annual Meeting,1988,1: 489-492.
    [130]Sumner M, Asher G M. Autocommissioning for voltage-referenced voltage-fed vector-controlled induction motor drives [C]. IEE Proceedings Electric Power Applications,1993,140(3):187-200.
    [131]余功军,钟彦儒,杨耕.无速度传感器矢量控制系统中的电机参数辨识[J].电气传动,1999,(1):7-10.
    [132]Kwon W H, Lee C H, Youn K S, et al. Measurement of rotor time constant taking into account magnetizing flux in the induction motor [C]. IEEE Industry Applications Society Annual Meeting,1994,1:88-92.
    [133]Belloc C, Zhang H, Vagapov Y, et al.A Step Voltage Response Method for Identification of Induction Motor Parameters at Stand Still [C].IEEE International Conference on Electro/information Technology,2006:109-112.
    [134]Ertan H B, Sezgin V, Colak B. Detection of Some Parameters of Induction Motors a Proposal and Its Verification [C].7th International Conference on Power Electronics and Drive Systems,2007:1337-1343.
    [135]Castaldi P, Tilli A. Parameter estimation of induction motor at standstill with magnetic flux monitoring [J].IEEE Transactions on Control Systems Technology,2005, 13(3):386-400.
    [136]Bertoluzzo M, Buja G S, Menis R. Self-commissioning of RFO IM drives:one-test identification of the magnetization characteristic of the motor [J]. IEEE Transactions on Industry Applications,2001,37(6):1801-1806.
    [137]Godbersen J. A stand-still method for estimating the rotor resistance of induction motors [C]. Thirty-Fourth IEEE IAS Annual Meeting,1999,2:900-905.
    [138]Ruff M, Grotstollen H. Off-line identification of the electrical parameters of an industrial servo drive system [C]. Thirty-First IEEE IAS Annual Meeting,1996,1: 213-220.
    [139]Bertoluzzo M, Buja G S, Menis R.Inverter voltage drop-free recursive least-squares parameter identification of a PWM inverter-fed induction motor at standstill [C]. Proceedings of the IEEE International Symposium on Industrial Electronics,1997,2: 649-654.
    [140]Sonnaillon M 0, Bisheimer G, De Angelo C, et al. Automatic induction machine parameters measurement using standstill frequency-domain tests [J].IET Electric Power Applications,2007,1(5):833-838.
    [141]Horga V, Onea A, Ratoi M, et al. A self-commissioning method for induction motor drive systems [C]. International Symposium on Signals, Circuits and Systems,2003,1:329-332.
    [142]Aiello M, Cataliotti A, Nuccio S. A fully-automated procedure for measuring the electrical parameters of an induction motor drive with rotor at standstill [C]. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, 2002,1:681-685.
    [143]Bunte A, Grotstollen H. Parameter identification of an inverter-fed induction motor at standstill with a correlation method [C]. Fifth European Conference on Power Electronics and Applications,1993,5:97-102.
    [144]Assis Peixoto Z M, Seixas P F. Electrical parameter estimation considering the saturation effects in induction machines [C]. IEEE 31st Power Electronics Specialists Conference,2000,3:1563-1568.
    [145]Cirrincione M, Pucci M, Vitale G. A least-squares based methodology for estimating the electrical parameters of induction machine at standstill [C]. Proceedings of the 2002 IEEE International Symposium on Industrial Electronics,2002,2:541-547.
    [146]罗慧,刘军锋,万淑芸.感应电机参数的离线辨识[J].电气传动,2006,36(8):16-21.
    [147]刘洋,赵金,王庆义.间接矢量控制系统中的异步电动机参数辨识[J].电工技术学报,2008,23(7):21-26.
    [148]Cacciato M, Consoli A, Scarcella G, et al. Estimation of the leakage and magnetizing inductances of Induction Motors [C].13th European Conference on Power Electronics and Applications,2009:1-10.
    [149]Bellini A, Bifaretti S. A method for magnetizing curve identification in vector controlled induction motor drives [C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Taormina, Sicily, Italy,2006:955-959.
    [150]Stankovic A V, Benedict E L, John V, Lipo T A. A novel method for measuring induction machine magnetizing inductance [J]. IEEE Transactions on Industry Applications,2003, 39(5):1257-1263.
    [151]Levi E, Vukosavic S N. Identification of the magnetizing curve during commissioning of a rotor flux oriented induction machine [C]. IEE Proceedings-Electric Power Applications,1999,146(6):685-693.
    [152]Levi E, Sokola M, Vukosavic S N. A method for magnetizing curve identification in rotor flux oriented induction machines [J]. IEEE Transactions on Energy Conversion,2000, 15(2):157-162.
    [153]Levi E, Wang M Y. Online identification of the mutual inductance for vector controlled induction motor drives [J]. IEEE Transactions on Energy Conversion,2003,18(2): 299-305.
    [154]Wook-Jin Lee, Young-Doo Yoon, Seung-Ki Sut,et al.A simple induction motor parameter estimation method for vector control [C]. European Conference on Power Electronics and Applications, Aalborg, Denmark,2007:1-8.
    [155]Dae Hee Choi, Soon Bong Cho, Dong Seok Hyun. Improved torque response by tuning of the magnetizing inductance under field weakening operation region [C].The 32nd IEEE Industry Applications Society Annual Meeting, New Orleans, Los Angeles, USA,1997: 418-425.
    [156]Chen Zhenfeng, Zhong Yanru, Li Jie. Parameter identification of induction motors using Ant Colony Optimization [C].IEEE Congress on Evolutionary Computation,Hong Kong, China,2008:1611-1616.
    [157]Matsuo T, Lipo T A. A Rotor Parameter Identification Scheme for Vector-Controlled Induction Motor Drives [J]. IEEE Transactions on Industry Applications,1985,21(3): 624-632.
    [158]Chai H,Acarnley P P. Induction motor parameter estimation algorithm using spectral analysis [C].IEE Proceedings B Electric Power Applications,1992,139(3):165-174.
    [159]Ying Wu, Hongwei Gao. Induction-motor stator and rotor winding temperature estimation using signal injection method [J]. IEEE Transactions on Industry Applications,2006, 42(4):1038-1044.
    [160]Zhi Gao, Habetler T G, Harley R G, et al. A Sensorless Rotor Temperature Estimator for Induction Machines Based on a Current Harmonic Spectral Estimation Scheme [J]. IEEE Transactions on Industrial Electronics,2008,55(1):407-416.
    [161]Telford D, Dunnigan M W, Williams B W. Online identification of induction machine electrical parameters for vector control loop tuning [J].IEEE Transactions on Industrial Electronics,2003,50(2):253-261.
    [162]Proca A B, Keyhani A. Sliding-Mode Flux Observer With Online Rotor Parameter Estimation for Induction Motors [J]. IEEE Transactions on Industrial Electronics,2007,54(2): 716-723.
    [163]Barut M, Bogosyan S, Gokasan M. Experimental Evaluation of Braided EKF for Sensorless Control of Induction Motors [J].IEEE Transactions on Industrial Electronics,2008, 55(2):620-632.
    [164]Nayeem Hasan S M, Iqbal Husain. A Luenberger-Sliding Mode Observer for On-line Parameter Estimation and Adaptation in High-Performance Induction Motor Drives [C]. 41st IEEE IAS Annual Meeting,2006,5:2447-2453.
    [165]Dal M. Sensorless direct vector control of induction motor with a unified sliding mode observer [C]. Proceedings of the IEEE International Conference on Mechatronics,2004: 117-122.
    [166]Tlili A S, Braiek E B. A reduced-order robust observer using nonlinear parameter estimation for induction motors [C]. IEEE International Conference on Systems, Man and Cybernetics,2002,6.
    [167]Maiti S, Chakraborty C, Sengupta S. Adaptive Estimation of Speed and Rotor Time Constant for the Vector Controlled Induction Motor Drive Using Reactive Power [C]. IEEE 33rd Industrial Electronics Society,2007:286-291.
    [168]Rashed M, MacConnell P F A, Stronach A F. Nonlinear adaptive state-feedback speed control of a voltage-fed induction motor with varying parameters [J]. IEEE Transactions on Industry Applications,2006,42(3):723-732.
    [169]Marcetic D P, Vukosavic S N. Speed-Sensorless AC Drives With the Rotor Time Constant Parameter Update [J].IEEE Transactions on Industrial Electronics,2007,54(5): 2618-2625.
    [170]Velez-Reyes M, Mijalkovic M, Stankovic A M, et al. Output selection for tuning of field oriented controllers:steady state analysis [C].38th IEEE IAS Annual Meeting,2003,3: 2012-2017.
    [171]VukosaviC S N, StojiC M R. On-Line Tuning of the Rotor Time Constant for Vector-Controlled Induction Motor in Position Control Applications [J]. IEEE Transactions on Industrial Electronics,1993,40(1):130-138.
    [172]Karanayil B, Rahman M F, Grantham C.Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive [J]. IEEE Transactions on Industrial Electronics,2007, 54(1):167-176.
    [173]Brandstetter P, Cajka R, Skuta O. Rotor time constant adaptation with ANN application [C]. European Conference on Power Electronics and Applications,2007:1-10.
    [174]Karanayil B,Rahman M F, Grantham C. Rotor resistance identification using artificial neural networks for a speed sensorless vector controlled induction motor drive [C].The 29th Annual Conference of the IEEE Industrial Electronics Society,2003, 1:419-424.
    [175]Bim E. Fuzzy optimization for rotor constant identification of an indirect FOC induction motor drive [J].IEEE Transactions on Industrial Electronics,2001,48(6): 1293-1295.
    [176]Villazana S, Caralli A, Seijas C, et al. A Novel Method to Estimate the Rotor Resistance of the Induction Motor Using Support Vector Machines [C].32nd IEEE Annual Conference on Industrial Electronics,2006:952-957.
    [177]Villazana S, Seijas C, Caralli A, et al. SVM-based and Classical MRAS for On-line Rotor Resistance Estimation:A Comparative Study [C].IEEE International Symposium on Intelligent Signal Processing,2007:1-6.
    [178]Toliyat H A, Arefeen M S, Rahman K M, et al. Rotor time constant updating scheme for a rotor flux-oriented induction motor drive [J]. IEEE Transactions on Power Electronics, 1999,14(5):850-857.
    [179]Cupertino F, Mininno E, Salvatore L, et al. A novel technique to estimate rotor time constant in vector controlled induction motor drives [C]. European Conference on Power Electronics and Applications,2005:1-10.
    [180]Guerrero J M, Degner M W, Briz F. Slip Gain Estimation for Indirect Field Controlled Drives Using Stator Transient Signals [C].41st IEEE IAS Annual Meeting,2006,5: 2472-2479.
    [181]Degner M W, Guerrero J M, Briz F. Slip-gain estimation in field-orientation-controlled induction machines using the system transient response [J].IEEE Transactions on Industry Applications,2006,42(3):702-711.
    [182]Levi E. Impact of iron loss on behavior of vector controlled induction machines [J]. IEEE Transactions on Industry Applications,1995,31(6):1287-1296.
    [183]Sokola M, Levi E, Boglietti A, et al. Detuned operation of rotor flux oriented induction machines in the field-weakening region due to iron loss [C]. IEE Colloquium on Vector Control and Direct Torque Control of Induction Motors,1995:4/1-4/6.
    [184]Sokola M, Levi E. Combined impact of iron loss and main flux saturation on operation of vector controlled induction machines [C]. Sixth International Conference on Power Electronics and Variable Speed Drives,1996:36-41.
    [185]Levi E, Sokola M, Boglietti A, et al. Iron loss identification and detuning evaluation in rotor flux oriented induction machines [C].27th IEEE Power Electronics Specialists Conference,1996,2:1555-1561.
    [186]Levi E, Sokola M, Boglietti A, et al. Iron loss in rotor-flux-oriented induction machines: identification, assessment of detuning, and compensation [J].IEEE Transactions on Power Electronics,1996,11(5):698-709.
    [187]Levi E, Wang M. Impact of iron loss on speed estimation in sensorless vector controlled induction machines [C].23rd International Conference on Industrial Electronics, Control and Instrumentation,1997,2:977-982.
    [188]Sokola M, Vuckovic V, Levi E. Iron losses in current-controlled PWM inverter fed induction machines [C].8th Mediterranean Electrotechnical Conference,1996, 1:361-364.
    [189]Boglietti A, Ferraris P, Lazzari M, et al. Energetic behavior of induction motors fed by inverter supply [C]. Conference Record of the 1993 IEEE Annual Meeting,1993,1: 331-335.
    [190]Jung J, Nam K. A vector control scheme for EV induction motors with a series iron loss model [J].IEEE Transactions on Industrial Electronics,1998,45(4):617-624.
    [191]Dittrich A. Model based identification of the iron loss resistance of an induction machine [C]. Seventh International Conference on Power Electronics and Variable Speed Drives,1998:500-503.
    [192]Khambadkone A M, Holtz J. Vector-Controlled Induction Motor Drive with a Self-Commissioning Scheme [J]. IEEE Transactions on Industrial Electronics,1991, 38(5):322-327.
    [193]Stephan J, Bodson M, Chiasson J. Real-time estimation of the parameters and fluxes of induction motors [J]. IEEE Transactions on Industry Applications,1994,30(3):746-759.
    [194]Beineke S, Schutte F, Wertz H, et al. Comparison of parameter identification schemes for self-commissioning drive control of nonlinear two-mass systems [C]. Thirty-Second IEEE IAS Annual Meeting,1997,1:493-500.
    [195]Yen-Shin Lai, Juo-Chiun Lin, Jennshing Wang. Self-commission of induction motor drives based on direct torque control [C]. IEEE Power Engineering Society Summer Meeting,2000, 4:2481-2486.
    [196]Kubota H, Matsuse K. Simultaneous estimation of speed and rotor resistance of field oriented induction motor without rotational transducers [C]. Conference Record of the Power Conversion Conference, Yokohama,1993:473-477.
    [197]Akatsu K, Kawamura A. Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection [J]. IEEE Transactions on Industry Applications,2000,36(3):764-771.
    [198]Campbell M L, Chiasson J, Bodson M, et al. Speed Sensorless Identification of the Rotor Time Constant in Induction Machines [J]. IEEE Transactions on Automatic Control,2007, 52(4):758-763.
    [199]Jeong S K, Lee Z G, Toliyat H A, et al.Sensorless control of induction motors with simultaneous on-line estimation of rotor resistance and speed based on the feedforward torque control scheme [C].IEEE International Electric Machines and Drives Conference,2003,3:1837-1842.
    [200]Bolognani S, Zigliotto M. Self-commissioning compensation of inverter non-idealities for sensorless AC drives applications [C]. International Conference on Power Electronics, Machines and Drives,2002:30-37.
    [201]Bolognani S, Peretti L, Zigliotto M. Repetitive-Control-Based Self-Commissioning Procedure for Inverter Nonidealities Compensation [J]. IEEE Transactions on Industry Applications,2008,44(5):1587-1596.
    [202]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,1994.
    [203]盛昌达,张国权,赵家礼,等.异步电动机运行节能[M].北京:水利电力出版社,1989.
    [204]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.
    [205]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社,2001.
    [206]Wu Qinghui, Shao Cheng. Novel Hybrid Sliding-mode Controller for Direct Torque Control Induction Motor Drives [C]. American Control Conference,2006:2754-2758.
    [207]VukosaviC S N, StojiC M R.On-Line Tuning of the Rotor Time Constant for Vector-Controlled Induction Motor in Position Control Applications [J]. IEEE Transactions on Industrial Electronics,1993,40(1):130-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700