用户名: 密码: 验证码:
压力容器外部冷却系统内局部温度场及两相分布特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力容器外部冷却(ERVC)作为一项先进压水堆严重事故缓解措施,以其结构简单、良好的经济性和非能动安全等优点得到了广泛的研究和应用。ERVC流道内的两相局部分布和冷却水池的热分层现象通过影响自然循环流动会间接影响到外部冷却能力;而现有的针对ERVC两相局部分布和热分层现象等方面的基础研究实验和数值研究非常罕见,尚无研究者能够确定这两个现象对外部冷却能力的影响程度。本文主要针对先进压水堆外部冷却流道内局部空泡份额和冷却水池内的局部温度场分布进行实验测量,分析和总结局部空泡份额及热分层的分布特征和发展规律,为ERVC流动传热现象和机理研究提供详细的实验数据;同时采用FLUENT程序对下封头外部流道内的两相流分布及水箱热分层现象进行模拟计算,对相关模型的适用性进行评价,为程序计算模型的优化提供改进建议。
     在ERVC流道内的两相局部分布研究中,采用自制的电导探针测量了不同液相/气相流量下ERVC上升通道内局部空泡份额的分布;实验发现,流道截面局部空泡份额分布特征主要受测点位置和流动条件影响;采用统计学中的峰度系数和偏度系数对局部空泡率的分布进行定量分析:下封头底部的局部空泡份额分布为壁面峰值分布,而中上部则逐渐发展为近壁面峰值分布,上升段则基本发展成为中心分布。对实验段内的两相流动开展FLUENT程序模拟计算时,针对实验段中心剖面进行2维建模,并分别采用欧拉和混合模型对实验工况进行了计算;对比表明,欧拉和混合两相流模型的计算结果均与实验数据存在较大差异;通过修改升力系数,虽然欧拉模型的计算结果显示了与实验相似的分布规律,但仍需要进行模型修改才能提高计算的准确性。
     而在冷却水池热分层现象研究过程中,通过实验研究和分析总结了温度场分层空间分布特征、随时间发展规律以及循环流量等因素对温度场分布的影响。实验表明温度分层现象主要体现在水箱高度方向上,据此提出了描述水箱温度场分布的一维无量纲模型;随着时间的发展,水箱内的温度场分层具有周期性现象;循环流量对热分层的发展和分布具有重要影响。采用FLUENT程序对热分层实验工况进行的1:1的三维模拟中,采用实验数据评价了各湍流模型的模拟能力,并通过实验现象与数值计算相结合的方法对水箱内温度场分布和局部流动特点进行了综合分析;计算结果与实验对比表明,合理设置模拟参数后,FLUENT程序能够较好的模拟冷却水箱热分层现象和发展过程。
External reactor pressure vessel cooling (hereinafter referred to asERVC), as one of the severve accident mitigation measurements, has beenextensively studied and widely applicated in advanced PWRs becasure ofits simplified structures, good economy and passive safety features, andetc. The ERVC cooling capacity could be affected mainly by the local voiddistribution in the channel and heat stratification in the cooling pool.Currently, most of the existing experimental and numerical studies onERVC focus on the engineering applications. However, the researches onthe ERVC two-phase distribution and thermal stratification are very rare.This dissertation mainly focuses on advanced PWR external cooling flowchannel local void fraction and temperature distribution. The outcomingsof this dissertation are providing analysis and summaries on the featuresand mechanismes of ERVC local void fraction distribution and thermalstratification, and detailed experimental data. FLUENT simulations areperformed according to the experimental parameters, and the CFD models are evaluated with test data.
     During the studies on the two phase flow, the local void distributionsin the ERVC flow channel were measured with conductivity pobes. It wasfound that the local void distribution along the cross-section is mainlyaffected by the measuring point positions and air/water flow rates. Thedistribution of the void fraction was quantitativly analyed with a statisticalmethod using coefficient of kurtosis and skewness, and it was showed thatthe local void fraction distribution at the bottom of the RPV lower head iswall-peak distribution, while the upper part of RPV lower head isnear-wall peak distribution, and in the vertical pipe is basically developedinto a center peak distribution. The CFD simulation was carried out with atwo-dimensional modeling and experimental parameters; Euler-Euler andEuler-Mixture two phase models were used, respectively. Comparisonbetween the simulation results and test data shows a large difference;Though Euler model simulation result could show a similar distributionwith the test results by modifying the lift force coefficient, it is stillrequired many modifications on the FLUENT simulation to obtainaccurate results.
     During the investigations on the thermal stratification in the ERVCcooling pool, the spatial distribution and time histories of temperature stratification, and the effect of circulating flow rate and other factors onthermal distribution were analyzed and summarized. Experimental resultsshow that water in the tank stratified mainly in the gravity direction, and itis believd that one-dimensional model could be used to describe thetemperature distribution in the water tank. The circulation flow rate showsa critical effect on the development and distribution of thermalstratification, and the effect of initial temperature field, thermalstratification between cooling rate and other factors are very small.1:1scale,3D FLUENT simulations were performed to calculate thethermal stratification pheonema in the tank. The simulation results show agood agreement with experimental data, and it is concluded that FLUENTcode has a good capability to simulate the heat stratification and itsdevelopment process in the cooling pool.
引文
[1] Nuclear Safety Analysis Center, Analysis of Three Mile Island-Unit2Accident,NSAC-80-1[R]. Electric Power Research Institute,1980.
    [2] International Nuclear Safety Advisory Group, Summary Report on thePost-Accident Review Meeting on the Chernobyl Accident,75-INSAG-l [R].IAEA, Vienna,1986.
    [3] The Fukushima Nuclear Accident Independent Investigation Commission, Theofficial report of The Fukushima Nuclear Accident Independent InvestigationCommission [R]. The National Diet of Japan,2012.
    [4] Müller W. C. Review of debris bed cooling in the TMI-2accident [J]. NuclearEngineering and Design,2006,236:1965-1975.
    [5] Theofanous T.G., Liu C., Additon S., et al. In-vessel cooliability and retention of acore melt [J]. Nuclear Engineering and Design,1997,169:1-48.
    [6] Kymalainen O., Tuomisto H., Theofanous T.G. In-vessel retention of corium at theLoviisa plant [J]. Nuclear Engeering and Design,1997,169:109-130.
    [7] Rogov M. F., Loginov S. A., Granovsky V. S., et al. Analyzing the Possibility ofRetaining the Corium in the Vessel of a VVER-640Reactor in a Severe Accidentwith a Damage Core [J]. Thermal Engineering,1996,43:888-892.
    [8] Brettschuh W. SWR1000: An advanced, Medium-Sized Boiling Water Reactor,Ready for Deployment. In: Proceeding of ICAPP’06[C]. Reno, USA,2006.
    [9] Oh S. J., Parc K. C., Kim H. G. Advanced Design Features of APR1400andRealization in Shin Kori Construction Project. In: Proceeding of ICAPP’06[C].Reno, USA,2006.
    [10]Akers D.W., Schuetz B.K. Examination of Fuel Debris Adjacent to the Lower Headof the TMI-2Reactor Vessel, OECD VIP Report [R]. OECD,1993:257-268.
    [11]Rubin, A.M. Overview and Organization of the TMI Unit2Vessel Project OECDVIP Report [R]. OECD,1993:63–79.
    [12]Russell M.L., McCardell R.K. Three Mile Island unit2core geometry [J]. NuclearTechnology,1989,87:865–874.
    [13]Korth G.E., Diercks D.R., Neimark L.A. Results of examinations of pressurevessel samples and instrument nozzles from the TMI-2lower head [J], NuclearEngineering and Design,1997,167:267-285.
    [14]Seong H. Overview of In-Vessel Retention concept involving level of passivity:with application to evolutionary pressurized water reactor design [J]. Annals ofNuclear Energy,1998,25:997-1010.
    [15]Herry R.E., Dube D.A. Water in the RPV: a mechanism for cooling debris in theRPV lower head. In: OECD-CSNI Specialists Meet. On Accident Management [C].Stockholm,1994.
    [16]Wolf J.R., Rempe R.E. TMI-2vessel investigation project, TMI V(93)EG10, INELRep. prepared as part of the OECD-NEA-TMI-2Vessel Investigation Project forthe Division of Systems Research, Office of Nuclear Regulatory Research [R].USNRC,1993.
    [17]Suh K.Y., Henry R.E.Integral analysis of debris material and heat transport inreactor vessel lower plenum [J]. Nuclear Engineering and Design,1994,106:274-291.
    [18]Suh K.Y., Henry R.E. Debris interactions in reactor vessel lower plena during aseverve accident I. Predicitive model [J]. Nuclear Engineering and Design,1996,166:147-163.
    [19]Suh K.Y., Henry R.E. Debris interactions in reactor vessel lower plena during aseverve accident II. Intergral analysis [J]. Nuclear Engineering and Design,1996,166:165-178.
    [20]Suh K.Y. SONATA-IV: Simulation of naturally arrested thermal attack invessel-visulization study using Pyrex belljar and copper hemisphere heater. In:Cooperative Severve Accident Research Program (CSARP) Semiann Review Meet[C]. Bethesda, MD, May,1995.
    [21]HWANG I. S., Suh K. Y. Gap Structure for Nuclear Reactor Vessel. United States,Patent US,6195405B1, February2001.
    [22]Sehgal B.R., Karbojian A., Giri A., et al. Assessment of reactor vessel integrity(ARVI)[J]. Nuclear Engineering and Design,2003,221:23-53.
    [23]Park H.J., Dhir V.K. Effect of outside cooling on the thermal behavior of apressurized water reactor vessel lower head [J]. Nuclear Techenology,1992,100:331-346.
    [24]Theofanous T.G. In-vessel coolability and retention of a core melt [J]. NuclearEngineering and Design,1997,169:1-48.
    [25]Esmaili H., Khatib-Rahbar M. Analysis of likelihood of lower head failure andex-vessel fuel coolant interaction energetics for AP1000[J]. Engineering andDesign,2005,235:1583-1605.
    [26]Theofanous T.G., Syri S. The coolability limits of a reactor pressure vessel lowerhead [J]. Nuclear Engineering and Design,1997,169:59-76.
    [27]Angelini S., Tu J.P., Buyevich Yu.A., et al. The mechanism and prediction ofcritical heat flux in inverted geometries [J]. Nuclear Engineering and Design,2000,200:83-94.
    [28]Theofanous T.G., Angelini S. Natural convection for in-vessel retention atprototypic Rayleigh numbers [J]. Nuclear Engineering and Design,2000,200:1-9.
    [29]Kymalaiinen O., Tuomisto H., Theofanous T.G. In-vessel retention of corium at theLoviisa plant [J]. Nuclear Engineering and Design,1997,169:109-130.
    [30]Theofanous T.G., Liu C., Additon S., et al. In-vessel coolability and retention of acore melt, DOE/ID-10460[R]. US, Department of Energy,1996.
    [31]Rouge S. SULTAN test facility for large-scale vessel coolability in naturalconvection at low pressure [J]. Nuclear Engineering and Design,1997,169:185-195.
    [32]Chu T.Y., Bentz J.H., Slezak S.E., et al. Pasedag. Ex-vessel boiling experiments:laboratory-and reactor-scale testing of the flooded cavity concept for in-vesselcore retention Part II: Reactor-scale boiling experiments of the flooded cavityconcept for in-vessel core retention [J]. Nuclear Engineering and Design,1997,169:89-99.
    [33]Yang J., Dizon M. B., Cheung F. B., et al. CHF Enhancement by Vessel Coating forExternal Reactor Vessel Cooling. In: Proceedings of ICAPP’04[C]. Pittsburgh,USA, June13-17,2004.
    [34]Rempe J.L. In-Vessel Retention Strategy for High Power Reactors, Final Report,INEEL/EXT-04-02561[R]. Idaho National Engineering and EnvironmentalLaboratory,2005.
    [35]Park R.J., Ha K.S., Kim S.B., et al. Two-phase natural circulation flow of air andwater in a reactor cavity model under an external vessel cooling during a severeaccident [J]. Nuclear Engineering and Design,2006,236:2424-2430.
    [36]Theofanous T.G. In-vessel retention technology development and use for advancedPWR designs in the USA and Korea [R]. US, Westinghouse,2002.
    [37]Kang K.H., Park R.J., Kim S.B., et al. Flow analyses using RELAP5/MOD3codefor OPR1000under the external reactor vessel cooling [J]. Annals of NuclearEnergy,2006,33:966-974.
    [38]Fiorino D.P. Case study of a large, naturally stratified, chilled-water thermal energystorage system [J]. ASHRAE Transactions,1991,97(2):1161-1169.
    [39]Haller M.Y., Yazdanshenas E., Andersen E., et al. A method to determinestratification efficiency of thermal energy storage processes independently fromstorage heat losses [J]. Solar Energy,2010,84(6):997-1007.
    [40]Cai L, Stewart Jr W E, Sohn C W. Turbulent buoyant flows into a two dimensionalstorage tank [J]. International journal of heat and mass transfer,1993,36(17):4247-4256.
    [41]Aviv A., Blyakhman Y., Beeri O., et al. Experimental and numerical study ofmixing in a hot-water storage tank [J]. Journal of solar energy engineering,2009,131(1).
    [42]Ievers S, Lin W. Numerical simulation of three-dimensional flow dynamics in a hotwater storage tank [J]. Applied energy,2009,86(12):2604-2614.
    [43]Kenjo L., Inard C., Caccavelli D. Experimental and numerical study of thermalstratification in a mantle tank of a solar domestic hot water system [J]. Appliedthermal engineering,2007,27(11):1986-1995.
    [44]Asmolov V., Ponomarev-Stepnoy N.N., Strizhov V., et al. Challenges left in thearea of in-vessel melt retention [J]. Nuclear Engineering and Design,2001,209:87-96.
    [45]Rempe J.L., Knudson D.L., Condie K.G., et al. Structural integrity assessment ofthe reactor pressure vessel under the external reactor vessel cooling condition [J].Nuclear Engineering and Design,2004,230:293-309.
    [46]李海青等.两相流参数检测及应用[M].第1版.浙江:浙江大学出版社,1991.
    [47]Kendoush A A. A comparative study of the various nuclear radiations used for voidfraction measurements [J]. Nuclear engineering and design,1992,137(2):249-257.
    [48]Atkinson C.M., Kyt maa H. K. Acoustic properties of solid-liquid mixtures and thelimits of ultrasound diagnostics. I: Experiments [J]. Journal of fluids engineering,1993,115(4):665-675.
    [49]Carvalho R.D.M., Venturini O.J., Tanahashi E.I., et al. Application of the ultrasonictechnique and high-speed filming for the study of the structure of air–water bubblyflows [J]. Experimental Thermal and Fluid Science,2009,33:1065-1086.
    [50]Fiedler S., Yildiz S., Auracher H. Determination of film thickness and floodingduring reflux condensation in a small, inclined tube with an ultrasonic transducer[J]. International journal of energy research,2003,27(4):315-325.
    [51]Bensler HP, Delhaye JM, Favreau C. Measurement of interfacial area in bubblyflow by means of an ultrasonic technique [C]. ANS Proc. Of1987Nat. Heat. Trans.Conf.,1987,240-246.
    [52]Caicedo G.R., Marqués J.J.P., Ru z M.G., et al. A study on the behaviour ofbubbles of a2D gas–solid fluidized bed using digital image analysis [J]. ChemicalEngineering and Processing: Process Intensification,2003,42(1):9-14.
    [53]Laakkonen M., Honkanen M., Saarenrinne P., et al. Local bubble size distributions,gas–liquid interfacial areas and gas holdups in a stirred vessel with particle imagevelocimetry [J]. Chemical Engineering Journal,2005,109(1):37-47.
    [54]Harvel G.D., Hori K., Kawanishi K., et al. Cross-sectional void fractiondistribution measurements in a vertical annulus two-phase flow by high speedX-ray computed tomography and real-time neutron radiography techniques [J].Flow Measurement and Instrumentation,1999,10(4):259-266.
    [55]Narabayashi T., Tobimatsu T., Nagasaka H., et al. Measurement of transient flowpattern by high speed scanning X-ray void fraction meter [M]. MeasuringTechniques in Gas-Liquid Two-Phase Flows. Springer Berlin Heidelberg,1984:259-280.
    [56]Robinson A H, Wang S L. High speed motion neutron radiography of two-phaseflow [M]. Neutron Radiography. Springer Netherlands,1983:653-659.
    [57]Mitsutake T, Morooka S, Suzuki K, et al. Void fraction estimation within rodbundles based on three-fluid model and comparison with X-ray CT void data [J].Nuclear engineering and design,1990,120(2):203-212.
    [58]Chang J.S., Harvel G.D. Determination of gas-liquid bubble column instantaneousinterfacial area and void fraction by a real-time neutron radiography method [J].Chemical engineering science,1992,47(13):3639-3646.
    [59]Pike R W, Wilkins B, Ward H C. Measurement of the void fraction in two-phaseflow by x-ray attenuation [J]. AIChE Journal,1965,11(5):794-800.
    [60]Ohba K. Measurement of interfacial area in two-phase bubbly flow by lightattenuation method [C]. Proc.15thAnnual Symp. Heat Trans. Soc. Japan,1978:331-333.
    [61]Fujine S, Yoneda K, Kanda K. Digital processing to improve image quality inreal-time neutron radiography [J]. Nuclear Instruments and Methods in PhysicsResearch Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment,1985,228(2):541-548.
    [62]Uchimura K, Harvel G D, Matsumoto T, et al. An image processing approach fortwo-phase interfaces visualized by a real time neutron radiography technique [J].Flow Measurement and Instrumentation,1998,9(4):203-210.
    [63]Asano H., Takenaka N., Fujii T., et al. Image processing methods to obtainsymmetrical distribution from projection image [J]. Applied radiation and isotopes,2004,61:625-630.
    [64]Miller N, Mitchie R E. The development of a universal probe for measurement oflocal voidage in liquid-gas two-phase flow systems [M]. ASME,1969.
    [65]Cartellier A. Simultaneous void fraction measurement, bubble velocity, and sizeestimate using a single optical probe in gas-liquid two-phase flows [J]. Review ofScientific Instruments,1992,63(11):5442-5453.
    [66]Enrique J.J., Harteveld W.K., Mudde R.F., et al. On the accuracy of the voidfraction measurements using optical probes in bubbly flows [J]. Review ofscientific instruments,2005,76(3):035103-035113.
    [67]Cartellier A. Optical probes for local void fraction measurements: Characterizationof performance [J]. Review of Scientific Instruments,1990,61(2):874-886.
    [68]Morris D., Teyssedou A., Lapierre J., et al. Optical fiber probe to measure localvoid fraction profiles [J]. Applied optics,1987,26(21):4660-4664.
    [69]Hinata S. A Study on the Measurement of the Local Void Fraction by the OpticalFibre Glass Probe:1st Report, On the Method for the Measurement of the LocalVoid Fraction in a Liquid Metal Two-Phase Flow [J]. Bulletin of JSME,1972,15(88):1228-1235.
    [70]Serizawa A, Kataoka I, Michiyoshi I. Turbulence structure of air-water bubblyflow-I. Measuring techniques [J]. International Journal of Multiphase Flow,1975,2(3):221-233.
    [71]Serizawa A, Kataoka I, Michiyoshi I. Turbulence structure of air-water bubblyflow-II. Local properties [J]. International Journal of Multiphase Flow,1975,2(3):235-246.
    [72]Sekoguchi K., Fukui H., Matsuoka T., et al. Investigation into the StatisticalCharacteristics of Bubbles in Two-Phase Flow:1st Report. Fundamentals of theinstrumentation using the electric-resistivity probe technique [J]. Bulletin of JSME,1975,18(118):391-396.
    [73]Koide K., Morooka S., Ueyama K., et al. Behavior of bubbles in large scale bubblecolumn [J]. Journal of chemical Engineering of Japan,1979,12(2):98-104.
    [74]Burgess J.M., Calderbank P.H. The measurement of bubble parameters intwo-phase dispersions-I: The development of an improved probe technique [J].Chemical engineering science,1975,30(7):743-750.
    [75]Kendoush A A, Sarkis Z A. Improving the accuracy of the capacitance method forvoid fraction measurement [J]. Experimental thermal and fluid science,1995,11(4):321-326.
    [76]Geraets J.J.M., Borst J.C. A capacitance sensor for two-phase void fractionmeasurement and flow pattern identification [J]. International journal of multiphaseflow,1988,14(3):305-320.
    [77]Elkow K.J., Rezkallah K.S. Void fraction measurements in gas-liquid flows usingcapacitance sensors [J]. Measurement Science and Technology,1996,7(8):1153.
    [78]Hsu Y.Y., Simon F.F., Graham R.W. Application of hot-wire anemometry fortwo-phase flow measurements such as void fraction and slip velocity, In:Proceedings of the ASME Winter Meeting [C]. Philadelphia, PA.1963.
    [79]Toral H. A study of the hot-wire anemometer for measuring void fraction in twophase flow [J]. Journal of Physics E: Scientific Instruments,1981,14(7):822.
    [80]Bonjour J, Lallemand M. Flow patterns during boiling in a narrow space betweentwo vertical surfaces [J]. International journal of multiphase flow,1998,24(6):947-960.
    [81]Bremhorst K, Gilmore D B. Response of hot wire anemometer probes to a streamof air bubbles in a water flow [J]. Journal of Physics E: Scientific Instruments,1976,9(5):347.
    [82]Schwartz C E, Smith J M. Flow distribution in packed beds [J]. Industrial&Engineering Chemistry,1953,45(6):1209-1218.
    [83]Van Der Welle R. Void fraction, bubble velocity and bubble size in two-phase flow[J]. International journal of multiphase flow,1985,11(3):317-345.
    [84]Neal L.G., Bankoff S.G. A high resolution resistivity probe for determination oflocal void properties in gas-liquid flow [J]. AIChE Journal,1963,9(4):490-494.
    [85]Neal L.G., Bankoff S.G. Local parameters in cocurrent mercury-nitrogen flow:Parts I and II [J]. AIChE Journal,1965,11(4):624-635.
    [86]Nassos G P. Development of an electrical resistivity probe for void-fractionmeasurements in air-water flow[R]. Argonne National Labrary,1963.
    [87]Malnes D. Slip ratios and friction factors in the bubble flow regime in verticaltubes[R]. Institutt for Atomenergi, Kjeller, Norway,1966.
    [88]Zwahr H. Das Verhalten von Zwei-Phasen-Gemischen in Zentrifugalfeldren [D].Technische Universitsst Hannover, Germany,1976.
    [89]Herringe R.A., Davis M.R. Detection of instantaneous phase changes in gas-liquidmixtures [J]. Journal of Physics E: Scientific Instruments,1974,7(10):807.
    [90]Herringe R.A., Davis M.R. Structural development of gas-liquid mixture flows [J].J. Fluid Mech,1976,73(1):97-123.
    [91]Thang N.T., Davis M.R. The structure of bubbly flow through venturis [J].International Journal of Multiphase Flow,1979,5(1):17-37.
    [92]Sekoguchi K., Fukui H., Sato Y. Flow characteristics and heat transfer in verticalbubble flow[C]. Two-Phase Flow Dynamics, Japan-US Seminar. HemispherePublishing Corporation, Washington.1979.
    [93]Wu Q, Ishii M. Sensitivity study on double-sensor conductivity probe for themeasurement of interfacial area concentration in bubbly flow [J]. Int. J. MultiphaseFlow,1999,25(1):155-173.
    [94]Kataoka I, Ishii M, Serizawa A. Local formulation and measurement of interfacialarea concentration in two-phase flow [J]. Int. J. Multiphase Flow,1986,12(4):505-529.
    [95]Kalkach-Navarro S, Lahey RT, Drew DA, et al. Interfacial area density, Meanradius and number density measurements in bubbly two-phase flow [J]. NuclearEngineering and Design,1993,142:341-351.
    [96]Hibiki T, Hogsett H, Ishii M. Local measurement of interfacial area, interfacialvelocity and liquid turbulence in two-phase flow [J]. Nuclear Engineering andDesign,1998,184:287-304.
    [97]Bankoff S.G. A variable density single-fluid model for two-phase flow withparticular reference to steam-water flow [J]. Journal of Heat Transfer (US),1960,82:265-273.
    [98]Petrick M., Kudirka A.A. On the relationship between the phase distributions andrelative velocities in Two-phase flow. In: Proceedings of the Third InternationalHeat Transfer Conference [C]. Chicago, Illinois, August7-12,1966.
    [99]Leung W.H., Revankar S.T., Ishii Y., et al. Axial development of interfacial areaand void concentration profiles measured by double-sensor probe method [J].International journal of heat and mass transfer,1995,38(3):445-453.
    [100] Zhao DJ, Guo LJ, Lin CZ, et al. An experimental study on local interfacial areaconcentration using a double-sensor probe [J], International Journal of Heat andMass ransfer,2005,48(10):1926-1935.
    [101]Spindler K., Hahne E. An experimental study of the void fraction distribution inadiabatic water-air two-phase flows in an inclined tube [J]. International journal ofthermal sciences,1999,38(4):305-314.
    [102]Zuber N., Findley J.A. Average volumetric concentration on two-phase flowsystems [J]. J. Heat Trans,1965,87:453-468.
    [103]Wallis G.B. One-dimensionnal two-phase flow [M]. New York: McGraw-Hill,1969.
    [104]Ishii M. Thermo-fluid dynamic theory of two-phase flow [R]. NASA STI/ReconTechnical Report A,1975,75:29657.
    [105]Vernier P., Delhaye J.M. General two-phase flow equations applied to thethermohydrodynamics of boiling nuclear reactor [J]. Energie Primaire,1968,4(1):3-43.
    [106]Ekambara K., Sanders R.S., Nandakumar K., et al. CFD simulation of bubblytwo-phase flow in horizontal pipes [J]. Chemical Engineering Journal,2008,144(2):277-288.
    [107]Iskandrani A., Kojasoy G. Local void fraction and velocity field description inhorizontal bubbly flow [J]. Nuclear Energy and Design,2001,204:117-128.
    [108] Kocamustafaogullari G., Wang Z. An experimental study on local interfacialparameters in a horizontal bubbly two-phase flow [J]. Int. J. Multiphase Flow,1991,17:553-572.
    [109]Kocamustafaogullari G., Huang W.D., Razi J. Measurement and modeling ofaverage void fractions, bubble size and interfacial area [J]. Nuclear Energy andDesign,1994,148:437-453.
    [110]Monahan S.M. Computational fluid dunamics analysis of air-water bubblecolumns [D]. Iowa State University, the USA,2007.
    [111]Zurigat Y.H., Ghajar A.J., Moretti P.M. Stratified thermal storage tank inletmixing characterization [J]. Applied energy,1988,30:99-111.
    [112]Zurigat Y.H., Liche P.R., Ghajar A.J. Influence of inlet geometry on mixing inthermocline thermal energy storage [J]. International Journal of Heat and MassTransfer,1991,34(1):115-125.
    [113]Shah L J, Furbo S. Entrance effects in solar storage tanks [J]. Solar Energy,2003,75(4):337-348.
    [114]Furbo S. Optimum design of small DHW low flow solar heating systems [J].1993.
    [115]Eames P.C., Norton B. An evaluation of the effect of storage tank geometry onstore performance, using a transient3-dimensional numerical model validated for awide range of thermally stratified hot water stores, when subject to low Reynoldsnumber flows. In: Eurotherm Seminar, Vol49[C]. Eindhoven University ofTechnology,1996.
    [116]Hollands K.G.T., Lightstone M.F. A review of low-flow, stratified-tank solar waterheating systems [J]. Solar Energy,1989,43(2):97-105.
    [117]Yoo H., Pak E.T. Theoretical model of the charging process for stratified thermalstorage tanks [J]. Solar Energy,1993,51(6):513-519.
    [118] Al-Nimr M.A. Temperature distribution inside a solar collector storage tank offinite wall thickness [J]. Journal of Solar Energy Engineering (United States),1993,115:112-116.
    [119]Gretarsson S P, Pedersen C O, Strand R K. Development of a fundame ntallybased stratified thermal storage tank model for energy analysis calculations [J].ASHRAE Trans.,1994,100:1213-1220.
    [120]Nelson J.E.B, Balakrishnan A.R., Murthy S.S. Parametric studies on thermallystratified chilled water storage systems [J]. Applied Thermal Engineering,1999,19(1):89-115.
    [121]Cabelli A. Storage tanks-a numerical experiment [J]. Solar Energy,1977,19(1):45-54.
    [122]Jaluria Y., Gupta S.K. Decay of thermal stratification in a water body for solarenergy storage [J]. Solar Energy,1982,28:137-143.
    [123]Guo K L, Wu S T. Numerical study of flow and temperature stratifications in aliquid thermal storage tank [J]. J. Sol. Energy Eng.,1985,107:15-20.
    [124]Sha W.T., Lin E.I.H. Three dimensional mathematical model of flow stratificationin thermocline storage tanks [J]. Application of Solar Energy,1978,1:185-202.
    [125]Sliwinski B.J., Mech A.R., Shih T.S. Stratification in thermal storage duringcharging. In: proceeding of6th International Heat Transfer Conference[C]. ASME,1978,4:149-154.
    [126]Ievers S., Lin W. Numerical simulation of three-dimensional flow dynamics in ahot water storage tank [J]. Applied energy,2009,86(12):2604-2614.
    [127]Chung J.D., Cho S.H., Tae C.S., et al. The effect of diffuser configuration onthermal stratification in a rectangular storage tank [J]. Renewable Energy,2008,33(10):2236-2245.
    [128]Aviv A., Blyakhman Y., Beeri O., Ziskind G., Letan R. Experimental andnumerical study of mixing in a hot-water storage tank [J]. Journal of Solar EnergyEngineering,2009,131:011011-011018.
    [129]Ohno S., Ohki H., Sugahara A., et al. Validation of a computational simulationmethod for evaluating thermal stratification in the reactor vessel upper plenum offast reactors [J]. Journal of nuclear science and technology,2011,48(2):205-214.
    [130]Ishii M. Outline of research for interfacial area transport phenomena in two-phaseflow [J]. Multiphase Science and Technology,2003,15(1-4):33-43.
    [131]Ishii M, Kim S. Micro four-sensor probe measurement of interfacial area transportfor bubbly flow in round pipes [J]. Nucl. Eng. Des.,2001,205:123-131.
    [132]Kim S, Ishii M, Wu Q, et al. Interfacial structures of confined air-water two-phasebubbly flow [J]. Experimental Thermal and Fluid Science,2002,26:461-472.
    [133]Hibiki T, Ishii M. One-group interfacial area transport of bubbly flows in verticalround tubes [J]. Int. J. Heat Mass Transfer,2000,43:2711-2726.
    [134]Cartellier A, Achard JL. Local phase detection probes in fluid/fluid two-phaseflows [J]. Rev. Sci. Instrum.,1991,62(2):279-303.
    [135]赵冬建.油水两相流相界面浓度与含油率实验与理论研究[D].西安:西安交通大学博士学位论文,2006.
    [136]Angeli P. Liquid-liquid dispersed flows in horizontal pipes [D]. Imperial College,UK,1996.
    [137]Kobori T., Terada N. Transient two-phase flow. In: Proceeding of second CSNIspecialists meeting [C]. Paris,12-14June,1978.
    [138]Telste J.G. Inviscid flow about a cylinder rising to a free surface [J]. Journal ofFluid Mechanics,1987,182:149-168.
    [139]Lee S.H., Leal L.G. The motion of a sphere in the presence of a deformableinterface: II. A numerical study of the translation of a sphere normal to an inte rface[J]. Journal of Colloid and Interface Science,1982,87(1):81-106.
    [140]Shiffman M, Spencer D C. The force of impact on a cone striking a water surface(vertical entry)[J]. Communications on Pure and Applied Mathematics,1951,4(4):379-417.
    [141]Cheng X., Yang Y.H., Huang S.F. A simplified method for heat transferprediction of supercritical fluids in circular tubes [J]. Annals of Nuclear Energy,2009,36:1120-1128.
    [142]徐济鋆.沸腾传热与气液两相流[M].第2版.北京:原子能出版社,2001.
    [143]Shen XZ, Mishima K, Nakamura H. Two-phase phase distribution in a verticallarge diameter pipe [J]. Int. J. Heat and Mass Transfer,2005,48:211-225.
    [144]Eames P.C, Norton B. The effect of tank geometry on thermally stratified sensibleheat storage subject to low Reynolds number flows [J]. International journal ofheat and mass transfer,1998,41(14):2131-2142.
    [145]Matsudaira H., Tanaka Y. Dynamic characteristics of a heat storage water tank [J].ASHRAE Transactions,1979,86(1):110-124.
    [146]Miller C.W. The effect of a conducting wall on a stratified fluid in a cylinder. In:Proceedings of the AIAA12thThermophysics Conference [C]. Albuquerque, USA,1977,1-9.
    [147]Sherman C., Wood B.D., Mason J. Effect of vertical wall conductance ontemperature relaxation in thermally stratified liquid thermal storage tanks. In:Proceedings of the ISES Conference [C]. Atlanta, USA,1979,1:591-595.
    [148]Murthy S.S., Nelson J.E.B, Rao T.L. Effect of wall conductivity on thermalstratification [J]. Solar energy,1992,49(4):273-277.
    [149]Haller M. Y., etc. al. Methods to determine stratification efficiency of thermalenergy storage processes-Review and theoretical comparison [J]. Solar Energy,2009,83:1847-1860.
    [150]Castell A., Medrano M., Sole C., Cabeza L.F. Dimensionless numbers used tocharacterize stratification in water tanks for discharging at low flow rates [J].Renewable Energy,2010,35:2192-2199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700