用户名: 密码: 验证码:
地菍护坡性能及开发价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探明地菍(Melastoma dodecandrum Lour)作为边坡防护植物的性能,于2005至2007年间通过野外考查和引种栽培,观察测定了地菍的繁殖特性,对其栽培技术作了必要研究;通过对地菍覆被土体及模拟植被冠层覆被土体的人工降雨试验及径流冲刷试验,测试了地菍植被对土壤水力侵蚀的消减效率,并分析了地菍植被主要特征对降低土壤侵蚀量的贡献;以素土、金银花植根土为对照,通过大型原位直剪试验及根量根强度分析,测试了地菍植根土的抗剪强度、分析了地菍根系对土壤抗剪强度两参数的增强效果、比较了地菍根系与金银花根系的固土效果,分析了根量、根强度与植根土抗剪强度的相关关系;比较了常规直剪与大型原位直剪测试植根土抗剪强度的合理性。主要研究结果如下:
     1.地菍的绿期及花期长度:在长沙,地菍成株绿期约为10个月,花期约长5个月。
     2.地菍的种子繁殖性能:①地菍种子存在明显的休眠现象,用75%硫酸浸种50s,并用1000mg·L~(-1)的赤霉素浸种36h可打破地菍种子的休眠,并使发芽率达到80%;②在室内袋装保藏的条件下,地菍种子的可使用寿命在11个月以下。③试验地地菍种子产量水平为40.18g/m~2,以春播当年封行为标准的理论播种量为12.35kg·hm~(-2),种子直播的保苗系数为4.59,繁殖系数为5599,显示出良好的种子繁殖潜力。
     3.地菍对栽培和环境条件的要求:①地菍冠层扩展阶段N、P_2O_5、K_2O的最佳配合施用量为1.916g/株、1.345(g/株)、1.039(g/株)。②地菍是喜光植物,但可耐受一定的阴蔽,在遮光率为42%时其冠层发育虽不如全光照条件下好,但仍保持了良好的状态。③地菍有一定的耐旱力,在夏秋季高温条件下可耐受2个月以上的干旱。
     4.地菍植被降低土壤侵蚀量的效率:①测算出地菍覆被土较之裸置土的减侵蚀率达97.90%。②根据模拟冠层降雨冲刷试验所得冠层盖度、叶弯曲刚度、叶面积指数三因素对土壤侵蚀模数的二次回归方程及连地茎密度对土壤侵蚀模数的二次回归方程,推算出地菍冠层覆被下土壤的减侵蚀率为96.02%,其中叶层的减侵蚀率为90.64%,地菍叶层覆被降低土壤侵蚀的效应为叶层潜在最佳效应的96.84%。③在单宽径流量80L·m~(-1)·min~(-1)及坡度40度的条件下地菍根系对地表径流的减侵蚀效率达87.55%,较对照金银花根系的72.33%高出15个百分点,其原因在于地菍植根土所含根的长度是金银花植根土的2.0032倍,还在于地菍植根土的单位根长抗冲系数为1.366 L·s·g-1·m~(-1),高于金银花植根土的单位根长抗冲系数(1.313 L·s·g-1·m~(-1))。④地菍植根土、金银花植根土及裸置土的侵蚀模数与根长的关系可以很好地联合回归拟合为二次曲线y=3.785x~2-12.281x+10.501,表现出土体的侵蚀模数的降幅随根长的增长而减缓,在所测金银花根长的范围内侵蚀模数随根长的增长有较大的降幅,而在地菍根长度范围内侵蚀模数降幅很小,显示地菍根的单位土体积长度就增强表土抗侵蚀力而言已近最大有效值。
     5.地菍根系强固土体效果及其与金银花根系之差异:在本试验之土地条件和管理条件下,在种植期为15个月,以及土壤含水量约为22%时,地菍植根土10cm、20cm、30cm、45cm土层原位直快剪之抗剪参数较裸置土有较大的增量,其中粘聚力增量(Δc/kPa)分别为32.41、17.17、11.89、3.04,内摩擦角增量(Δφ/°)分别为2.39、0.76、0.72、0.15;地菍植根土各土层Δc是金银花植根土的1.87倍、2.11倍、2.64倍、1.74倍,Δφ是金银花的3.46倍、3.17倍、4.24倍、1.5倍。
     6.地菍及金银花植根土试样剪切面上之根特征及其与土体抗剪强度的关系:①与金银花相比,地菍植根土在四个土层剪切面上有着略高的根截面积比和明显高出的根的平均强度、根抗强度有效率,这三个方面的差异共同构成了两种植根土抗剪强度之差异。②获得地菍植根土四个测试土层之土体抗前强度(⊿τ/kPa)与单位土体截而积根抗拉强度(T/kPa)的关系式如下:10cm土层,⊿τ=0.9264T-31.111(A);20cm土层,⊿τ=0.3845T-0.3809(B);30cm土层,⊿τ=0.3699T+0.1187(C);45cm土层,⊿τ=0.3594T-0.1319(D)。其中方程A有数值很大的常量项,与Wu,T.H.(1976)提出并为有关研究广泛引用的根系对土壤抗剪强度增量的力学模式⊿τ=T_N·(sinθ+cosθ·tanφ)·A_r/A_s=T_N·δ·A_r/A_s存在实质性差异。
     6.常规直快剪与原位直快剪方法测试植根土抗剪强度的合理性:用常规直剪仪测定原状植根土抗剪强度时测得值偏小,当土体密度较小时偏差更大;常规直剪仪测定地菍植根土10cm土层的抗剪强度出现规律性异化和损失性偏差。
     上述结果表明,从繁殖、抗性、控制土壤水力侵蚀、增强土壤抗剪强度等方面看,地菍具有良好的护坡性能,有开发价值。
In order to find out the performance of Melastoma dodecandrum(Melastoma dodecandrum Lour) as a slop-protection plant,from 2005 to 2007,through field examination and plant introduction,the reproduction characteristics of Melastoma dodecandrum were observed,and the cultivation techniques were studies.Through the artificial precipitation test and the surface runoff test on the soil covered by Melastoma dodecandrum and the one covered by simulate vegetation canopy,the efficiency of decreasing soil erosion of Melastoma dodecandrum was tested and the characteristics of Melastoma dodecandrum which help to decrease soil erosion were analyzed;with the comparison with naked soil and honeysuckle rooted soil,through large-scale in situ direct shear test and the analysis of root volume and root strength,the shear resistance of the soil rooted by Melastoma dodecandrum was tested,the effect of Melastoma dodecandrum root system on the enhancement of the two parameters of soil shear resistance was analyzed.The effects of honeysuckle root system and Melastoma dodecandrum root system on soil conservation were compared;the correlation of root volume,root strength and the shear resistance was analyzed.The rationality of using conventional direct shear method and that of using large-scale in situ direct shear method for shear resistance were compared. The main findings are as follows:
     (The results below are all under certain conditions in this study.Those conditions would not be listed in order to save space.)
     1.The green period of mature Melastoma dodecandrum plant was slightly less than 10 months;the flowering period of mature Melastoma dodecandrum plant was slightly over five months.
     2.The seed dormancy existed;after some process,the germination rate would be up to 80%.The seed yield of Melastoma dodecandrum was 40.18g/m2;the theoretic seeding rate was 12kg/hm2;the coefficient of keeping a full stand of seedlings was 4.59;the propagation coefficient was 5599;the life span of Melastoma dodecandrum seed was less than 11 months.
     3.During the canopy expansion period of Melastoma dodecandrum,the best application rate of N, P2O5,K2O were respectively 0.638g/plant/month,0.448g/line/month,0.346g/line/month.
     4.Melastoma dodecandrum was a light-loving plant,however,it could keep a good growth rate when the shading rate reached 42 percent.
     5.Melastoma dodecandrum could resist drought for two months in summer and autumn.
     6.The rate of decreasing soil erosion of soil covered by Melastoma dodecandrum was up to 97.90%; the rate of decreasing soil erosion of Melastoma dodecandrum canopy was 96.02%;the rate of decreasing soil erosion of the leaves was 90.64%.The effect of Melastoma dodecandrum leaves reducing soil erosion was 96.84%of the best potential effect of the leaves.The rate of reducing soil erosion caused by surface runoff of Melastoma dodecandrum root system was 87.55%,which was 15%higher than that of the honeysuckle root system which was 72.33%.The relation between erosion modulus and root length of Melastoma dodecandrum rooted soil,honeysuckle rooted soil and naked soil could be fitted into the conic curve:y=3.785x2-12.281x+10.501.The maximum capacity of enhancing erosion resistance of Melastoma dodecandrum was reached in terms of the root length per unit soil volume.
     7.The soil cohesion increments(Δc/kPa)of Melastoma dodecandrum rooted soil at the depth of 10cm,20cm,30cm,45cm were 32.41,17.17,11.89,3.04 respectively;the internal friction angle increments(Δφ/°) were 2.39,0.76,0.72,0.15;
     Δcs of Melastoma dodecandrum rooted soil at these depth were 1.87 times 2.11 times 2.64 times 1.74 times of those of the honeysuckle rooted soil,Δφs were 3.46 times,3.17 times,4.24 times 1.5 times of those of honeysuckle rooted soil.
     8.Compared with honeysuckle rooted soil,the root cross areas were slightly larger on the cross surfaces of four soil layers of Melastoma dodecandrum rooted soil;the average root strength and the effective rate of root tensile strength were much higher.These differences on the three aspects between the two types of soils resulted in the differences in soil shear resistance of the two types of soils.
     9.The relations between soil shear resistance(Δτ/kPa) of the four tested soil layers of Melastoma dodecandrum rooted soil and the root tensile strength(T/kPa) per unit soil area were as follows: 10cm layer,Δτ=0.9264T-31.111(A) 20cm layer,Δτ=0.3845T-0.3809(B) 30cm layer,Δτ=0.3699T+0.1187(C) 45cm layer,Δτ=0.3594T-0.1319(D) The constant in equation A was so large that it was a substantial difference from the mechanical model of soil shear resistance increment influenced by root system,Δτ=TN·(sinθ+cosθ·tanφ)·Ar/As=TN·δ·Ar/As,which was proposed by Wu,TH(1976) and then had been widely used in studies.
     10.The shear resistance values of undisturbed original soil measured by conventional direct shear method were smaller than those measured by large-scale in situ direct shear method.The diffferece would be higher when the soil density was low.There was regular abnormal occurrence about the values of soil shear resistance of Melastoma dodecandrum rooted soil at the depth of 10 cm by the conventional direct shear method.
     These results indicate that Melastoma dodecandrum has a good reproductive capability,high-density canopy cover,strong root system,certain degrees of drought and shade tolerance,excellent ability to reduce soil erosion,and enhance the soil shear resistance.All these above show a good comprehensive value for slope protection.
引文
1.蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998.
    2.蔡志洲等.公路边坡灌木生态绿化研究[J].交通环保,2002,23(3):25-26.
    3.陈昌富,刘怀星,李亚平.草根加筋土的室内三轴试验研究[J].岩土力学,2007,28(10):2041-2045.
    4.陈法志.几个暖季型草种的播种试验[J]湖北林业科技,2005,(1):15-17.
    5.陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994:1-168.
    6.程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    7.程金花,张洪江,史玉虎,等.三崃库区三种林下地被物储水特性[J].应用生态学报,2003,14(11):1825*1828.
    8.戴鸿麟.土工试验规程(DT-92)[M].北京:地质出版社,1984:85-89.
    9.戴小英,温强,周莉荫,等.铺地锦组培快速繁殖研究[J].江西木业科技,2004,(4):22-23.
    10.丁军,王兆骞.陈欣,等.红壤丘陵区林地根系对土壤抗冲增强效应的研究[J].水土保持学报,2002.16(4):9-12.
    11.冯俊德.路基边坡植被护坡技术综术[J].路基工程,2001,98(5):20-23.
    12.洑香香,李淑娴,隋爱敏.不同处理对几种硬实种子活力的影响[J].种子,2001(2):32-34.
    13.拱祥生,林宏达.植生对边坡生态工法稳定性影响分析初探[J].技师月刊,2003,(12):60-68.
    14.韩冰,吴钦孝,刘向东,汪有科,赵鸿雁.山杨林地枯落物层对溅蚀的影响[J].植物资源与环境学报,1994,(4):5-9.
    15.胡松梅,蒋道松,刘作梅,等.四倍体地态快速繁殖的研究[J].安徽农学通报,2008,14(1):130-141.
    16.江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,1986,804.
    17.蒋道松,李玲,熊碧罗.地菍离体培养植株再生及其栽培试验[J].园艺学报,2007,34(3):787-790.
    18.蒋定生,李新华,范新科,等.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置[J].水土保持学报,1995,9(1):1-7.
    19.蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,(2):20-23.
    20.焦菊英,王万忠,李靖.黄土高原林草水土保持有效盖度分析[J].植物生态学报,2000,24(5):608-612.
    21.拉尔 R.土壤侵蚀研究方法[M].北京:科学出版社,1991,1-236.
    22.雷瑞德.华山松林冠对降雨动能的影响[A].林业部科技司.森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1994:235-244
    23.雷胜友.从损伤角度讨论加筋土的强度[J].铁道科学与工程学报,2006,3(6):42-45
    24.雷婉宁,温仲明.基于植物群落结构的水土流失植被因子指数研究[J].水土保持学报,2008,22(5):68-72.
    25.李红云,杨吉华,鲍玉海,等.山东省石灰岩山区灌木林枯落物持水性能的研究[J].水土保持学报,2005,19(1):44-48.
    26.李全胜,王兆骞.坡面承雨强度和土壤侵蚀临界坡度的理论探讨[J].水土保持学报,1995,9(3):50-53.
    27.李勇,吴饮孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1-6.
    28.李勇,徐晓琴.黄土高原植物根系提高土壤抗冲性机制初步研究[J].中国科学B辑.1992.(3):254-259.
    29.李勇,徐晓琴.植物根系与土壤抗冲性[J].水土保持学报,1993.7(3):11-18.
    30.李勇.黄土高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991.(12):935-938.
    31.林敬兰,蔡志发,陈明华,等.闽南地区地形坡度与土壤侵蚀的关系研究[J].福建农业学报,2002,17(2):86-89.
    32.林植芳,李双顺,林桂珠等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    33.刘世荣,孙鹏森.长江上游森林植被水文功能研究[J].自然资源学,2001(5):451-456.
    34.刘世同,陈志一.公路植草护坡草种及草种组合研究[J].华东公路,1998,110(1):68-71.
    35.刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,84-123.
    36.罗伟祥,白立强,宋西德,等.不同覆盖度林地和草地的径流量和冲刷量[J].水土保持学报,1990,4(1):30-34.
    37.马立荣,文彦.我国南方公路劣质地植被恢复方法探讨[J].中南林业调查规划,2005,24(1):16-18.
    38.潘成忠,上官周平.牧草对坡面侵蚀动力参数的影响[J].水利学报,2005,36(3):371-377.
    39.漆萍,龙志峰,李希娟.地菍繁殖研究[J].韶关学院学报(自然科学)版,2005,26(9):93-96.
    40.任凤章,周根树,赵文轸,等.梁三点弯曲法测量薄膜弹性模量[J].稀有金属材料与工程,2004,33(1):109-112.
    41.山寺喜成,安保昭,吉田宽 著,罗晶等编译.恢复自然环境绿化工程概论——坡面绿化基础与模式设计[M].北京:中国科学技术出版社,1997,1-32.
    42.沈观林等.复合材料力学[M].北京:清华大学出版社,2006,29-236.
    43.施爽,郭继勋.松嫩草原三种主要植物群落枯落物层生态水文功能[J].应用生态学报,2007,18(8):1722-1726
    44.宋维峰,陈丽华,刘秀萍.根系与土体接触面相互作用特性试验[J].中国水土保持科学,2006,4(2):62-65.
    45.唐克丽,张科利,郑粉莉等.子午岭林区自然侵蚀和人为加速侵蚀剖析[J].中国科学院水利部水土保持研究所集刊,1993,(17):17-28.
    46.天津大学等合编.地基与基础[M].北京,中国建筑工业出糖版社.1978,218-220.
    47.田佳,刘耀辉.华北地区几种常用边坡绿化植物的根系力学特性研究[J].中国水土保持,2007,(10):34-36.
    48.田佳,刘耀辉.华北地区几种常用边坡绿化植物的根系力学特性研究[J].中国水土保持,2007,(10):34-36.
    49.汪有科,吴钦孝,赵鸿雁,刘向东,韩冰.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(11):75-80.
    50.王晗生,刘国彬.试论防蚀有效植被的基本特征:贴地而覆盖[J].中国水土保持,2000,3:28-31.
    51.王礼先,解明曙主编.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社.1997:1-361.
    52.王柳英等.平西高速公路曾家堡段护坡植物筛选研究初报[J].四川草原,2005,116(7):12-15.
    53.王文生,杨晓华等.公路边坡植物的护坡机理[J].长安大学学报,2005,25(4):26-30.
    54.王亚娟.护坡植物马蔺的生物学特性及应用前景[J]水土保持科技情报,2005,(4):29-31.
    55.王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41-44.
    56.魏天兴,朱金兆.黄土残塬沟壑区坡度和坡长对土壤侵蚀的影响分析[J].北京林业大学学报,2002,24(1):59-62.
    57.吴长文,王礼先.林地坡面的水动力学特性及其阻延地表径流的研究[J].水土保待学报,1995,9(2):32-38.
    58.吴钦孝,刘向东,苏宁虎.山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71-76.
    59.吴钦孝,赵鸿雁,韩冰.黄土丘陵区草灌植被的减沙效益及其特征[J].草地学报,2003,11(1):23-26.
    60.夏汉平,刘世忠,敖惠修.介绍两种优良的“铺地”植物[J].中国园林,2002(4):78-80.
    61.肖培青,史学建,吴卿等.植物措施防护边坡的试验研究[J].水土保持学报,2003,17(4):119-121.
    62.胥晓刚等.公路区域生态破坏及植被恢复技术应用与研究进展[J].中国园林,2005(1):51-54.
    63.徐本美,顾增辉.硫酸处理硬实种子的效果[J].植物生理学通讯,1985(2):22-25.
    64.徐向舟等.SX2002管网式降雨模拟装置的试验研究[J].中国水土保持.2006,(4):8-10.
    65.颜启传.种子学[M].北京:中国农业出版社,2001.73-120.
    66.杨利平,庄斌,苏正华,等.野牡丹属植物种子特征的初步研究[J].植物遗传资源学报,2008,9(2):248-252.
    67.杨利平,庄斌,苏正华,等.野牡丹属植物种子特征的初步研究[J].植物遗传资源学报,2008,9(2):248-252.
    68.姚劲松,曹平.高速公路边坡稳定性分析及与环境保护相协调的治理措施研究[J].岩土工程技术,2005,19(1):9-12.
    69.叶建军,许文年,鄢朝勇,等.边坡生物治理回顾与展望[J].水土保持研究,2005,12(1):173-177.
    70.余新晓,秦富仓,李建牢,等.流域侵蚀动力学[M].北京:科学出版社,2007,130-136.
    71.余新晓.森林植被减弱降雨侵蚀能量的数理分析(1)[J].水土保持学报,1987(2):24-30.
    72.余新晓.森林植被减弱降雨侵蚀能量的数理分析(2)[J].水土保持学报,1987(3):9-10.
    73.余作岳,皮永丰.广东热带沿海侵蚀地的植被恢复途径极其效应[J].热带亚热带森林生态系统研究,1985:(3)97-108.
    74.张朝阳,许桂芳.铺地锦的组织培养和快速繁殖[J].西北林学院学报,2004,19(2):75-77.
    75.张飞,陈静曦,陈向波.边坡生态防护中表层含根系土抗剪试验研究[J].土工基础,2005,19(3):25-27.
    76.张洪江,解明曙,杨柳春,等.长江三峡花岗岩地区坡而糙率系数研究[J].水土保持学报,1994,8(1):33-38.
    77.张洪江.北原曜.远藤泰造.几种林木枯落物对糙率系数n值的影响[J].水土保持学报,1994,8(4):4-10.
    78.张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2000,12-64.
    79.张金池.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2)43-55.
    80.张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001,(4):23-25.
    81.张谢东,石明强,沈雪香,等.高速公路生态防护根系固坡的力学试验研究[J].武汉理工大学学报,2008,32(1):59-61.
    82.张谢东,石明强,沈雪香,等.高速公路生态防护根系固坡的力学试验研究[J].武汉理工大学学报 2008,32(1):59-61.
    83.张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143.
    84.张志良,瞿伟箐.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003,1-163.
    85.赵鸿雁,吴钦孝.油松枯落物的水土保持作用研究.中国水土保持,1993(11):36-37.
    86.赵丽兵,张宝贵,苏志珠.草本植物根系增强土壤抗剪切强度的量化研究[J].中国生态农土学报,2008,16(3):718-722.
    87.赵晓光,石辉.缓坡坡面径流在土粒分散阶段的作用[J].山地学报,2002,20(4):427-431.
    88.郑粉莉,白红英,安韶山.草被地上和地下部分拦蓄径流和减少泥沙的效益分析[J].水土保持研究,2005,12(5):86-88.
    89.郑世清,周保林,赵克信.长武王东沟试验区沟坡道路侵蚀及其防治措施[J].水土保持学报,1994,8(30):29-35.
    90.中国科学院中国植物志编辑委员会.中国植物志(第五十三卷 第一分册)[M].北京:科学出版社,198,152.
    91.周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003,1-322.
    92.周国逸,彭少麟,余作岳.退化生态系统恢复中水热限制因子的作用——广东沿海台地水热条件的生态后果[A].中国科学技术协会第二届青年学术年会论文集[M].北京:中国科学技术出版社,1995,597-601.
    93.周国逸,余作岳,彭少麟.小良试验站3种生态系统水量平衡的研究[J].生态学报,1995,15,增刊(A):223-229.
    94.周国逸,余作岳,彭少麟.广东小良水保站三种生态系统地表侵蚀的研究[J].热带亚热带植物学报,1995,3(2):70-76.
    95.周国逸.几种常用造林树种冠层对降水动能分配及其生态效应分析[J].植物生态学报,1997,21(3)250-259.
    96.周跃等.云南松林的林冠对土壤侵蚀的影响[J].山地学报,1999,17(4):324-328.
    97.周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性[J].生态学报,2006,26,(10):3270-3275
    98.周志刚,郑健龙.公路土工合成材料设计原理及工程应用[M].北京:人民交通出版社,2001,33-36
    99.周自玮,孟广涛,毛熔,等.三种多年生牧草保水能力及土壤改良作用的研究[J].中国草地学报,2008,30(1):66-71.
    100.朱显谟.黄土高原地区植被因素对于水土流失的影响[J].土壤学报.1960,8(2):110-120.
    101.邹清成,骆霞红,金关荣,等.表油菜素内酯和赤霉素浸种对地稔种子发芽影响的试验初报[J].浙江农业科学,2008,(6):677-678.
    102.熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    103.Abe K and Ziemer R R.Effect of tree roots on a shear zone:modeling reinforced shear stress[J].Canadian Journal of Forest Research,1991,21(7):1012-1019.
    104.Bormann F H and Likens G E.Pattern and Process in a Forested Ecosystem[M].New York:Springer-Verlag Inc.1979,1-253.
    105.Croke J,Mockler S.Gully initiation and road-to-stream linkage in a forested catchment,southeastern Australia.Earth Surface Process and Landforms,2001,26:205-217.
    106.Ekanayake Jagath C,Phillips Chris J.Reply to the discussion by Tien H.Wu on "Slope stability thresholds for vegetated hill slopes:a composite model"[J]Canadian Geotechnical Journal,2003,40:1063-1066.
    107.Fredlund D G.Rahordio H.Soil mechanics for unsaturated soils[M].New York:John Wily and Sons INC.1993,1-544.
    108.Frydman S,Operstein V.Numerical simulation of direct shear of root-reinforced soil[J].Ground Improvement,2001,5(1):41-48.
    109.Goldsmith W.Soil strength reinforcement by plants[A].Proceedings of Annual Conference of International Erosion Control Association[C],Long Beach,California:2006,81-88.
    110.Gray D H and Megahan W F.Forest vegetation removal and slope stability in the Idaho Batholith.USDA Research Paper,1980,(271):23.
    111.Gray D H and Sotir B R.Biotechnical and soil Bioengineering Slope Stabilization:A Practical Guide for Erosion Control[M].New York:John Wiley& Sons Inc.,1996,106-129.
    112.Gray D and A Leiser.Biotechnical slope protection and erosion control[M].New York:Van Nostrand Reinhold,1982,1-27.
    113.Gray D H and W F Megahan.Forest vegetation removal and slope stability in the Idaho Batholith[R].USDA Research Paper INT-271,1981:23.
    114.Greenway D R.Vegetation and slope stability[A].Slope stability[M].Chichester:Wiley,1987.187-230.
    115.Copin N J,Greenwood J R,Morgan RPC,et al.CIRIA field evaluation and demonstration trials for bioengineering[A].International Conference on Vegetation and Slopes,Oxford:CIRIA,1994,93-398.
    116.Greenwood J R and Norris J E.Measurement of changes in geotechnical parameters due to the effects of vegetation[A].2nd International Conference on Landslides,Slope Stability and the Safety of Infrastructures,Singapore:the organizing committee,1999,87-94.
    117.Greenwood J;Norris J & Wint J.Assessing the contribution of vegetation to slope stability[J].Proceedings of the Institution of Civil Engineers,2004,157(4):199-207.
    118.Gregory J M.Prediction of soil erosion by water and wind for various fractions of cover[J].Trans ASAE,1984(27):1345-1350.
    119.Hoover M D.Water and timber management[J].Soil and water Conserve,1952,7(4):75-78.
    120.Marks D B,Tschantz B A.A technical manual on the effects of tree and woody vegetation root penetrations on the safety of earthen dams.Carolina:Marks Enterprises of NC,PLLC,2002,2-3-2-6.
    121.Marshall J,Rutledge R,Blumwald E,et al.Reduction in turgid water volume in jack pine,white spruce and black spruce in response to drought and paclobutrazol[J].Tree Physiology,2000.20:701-707.
    122.Mattia C;Bishetti G & Gentile F.Biotechnical characteristics of root systems of typical Mediterranean species[J].Plant and Soil,2005 278(1):23-32.
    123.Norris J.Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England[J]Plant and Soil,2005,278(1):43-53.
    124.Osman N & Barakabah S.2006,Parameters to predict slope stability-Soil water and root profiles[J].Ecological Engineering,28(1):90-95.
    125.Putuhena W M,Cordery I.Estimation of interception capacity of the forest floor[J].Journal of Hydrology;1996:283-299.
    126.Renner F G.Conditions influencing erosion of the boise river watershed[Z].U.S.Dept.Agric Tech.Bull.1936,528.
    127.Reza Shahalipour,MazaheryAv,Karaj.The Effects of Tree's Root Density on Shear Strength of Soil by using Large Scale Shear Tests[A].18th World Congress of Soil Science[C],Pennsylvania,USA:International Union of Soil Sciences,2006,89-2.
    128.Swanston D N.Slope stability problems associated with timber[R].Forest Service General Technical Report PNW-21,1974,14.
    129.Thurow,T.L.Hydrology and erosion[A].Grazing Management:an Ecological Perspective[C].Portland,Oregon:Timber Press,1991,141-159.
    130.Tschantz B A,J D Weaver.Tree growth on earth dams:A survey of state policy and practice[M].Civil Engineering Department.University of Tennessee,1988.36.
    131.Waldron L J.The shear resistance of root permeated homogeneous and stratified soil[J].Soil Science Society of America Journal,1977,41:843-849.
    132.Ward R,Robinson M.Principles of Hydrology[M].London:Me Graw-Hill Book Company(UK) Limited,1990.356.
    133.Wu T H.Investigation of Landslides on Prince of Wales Island,Alaska[J].Columbus:Geotechmcal Engineering Report(Terracon),1976.5:94-95.
    134.Wu T H,Mckinell W P and Swanston D N.Strength of Tree Roots and Landslides on Prince and Wales Island,Alaska[J].Canadian Geotechnical Journal,1979,16(1):19-33.
    135.Yu Z Y,Rehabilitation of eroded tropical coastal land in Guangdong,China[J].Journal of Tropical Forest Science,1994:7(1) 28-38.
    136.Zingg A W.Degree and length of land slope as it affects soil loss in runoff[J].Agric Eng,1940(21):59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700