用户名: 密码: 验证码:
AACT技术用于QSG-7701/QGY-7703定量蛋白质组研究并寻找肝癌发生相关分子标志物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要通过蛋白质相对定量展开和深入研究与肝癌相关的工作。该论文运用的核心技术,氨基酸质量标签(amino acid coded-mass tagging,AACT)技术,是本课题组发明并发展的生物代谢标记结合质谱技术进行蛋白质准确定量的技术路线。研究对象是我国的重大疾病肝癌,在蛋白质水平系统研究其发生和转移在理论上为疾病机理探究、临床中为预诊和治疗的分子标志物的筛选都有重大意义。
     本论文分为六章,主要工作集中在四部分:第一部分为氨基酸季铵化技术的初探;第二部分AACT定量蛋白质组技术平台的建立和优化;第三部分AACT技术平台用于对肝癌发生/转移相关的细胞株的定量蛋白组学的研究;最后亚细胞器蛋白质组研究中常规技术的优化工作。下面按照章节做介绍:
     (1)前言部分对定量白质组技术的发展做了总结回顾,比较了各种技术的优缺点。着强调了“量”的概念,根据定量的准确性作了方法和技术的分类阐述。同时对肝癌蛋白质组学在国际上的研究水平和国内的现状作了总结,提出本论文选题的意义和创新点。
     (2)氨基酸季铵化技术初探和定量蛋白质组学中的潜在应用:初步尝试用化学的方法解决实验过程中遇到的问题,发展了新的季铵化修饰的方法。该技术不仅大大提高了氨基酸/肽的离子化效率,而且可以在季铵化的过程中可以引入同位素进行定量标记。这一新方法在化学标记定量蛋白质组技术的舞台上有着广阔的应用前景。
     (3)以生物质谱为基础的AACT蛋白质定量技术平台的建立:本论文将AACT技术运用到本课题组,建立并优化了整套稳定可靠的AACT定量蛋白质组技术平台。内容包括细胞株标记,同位素氨基酸的选择、标记程度的鉴定标准建立,LC-MS分离鉴定参数的优化,手动、自动定量标准的制定、标记技术的误差考察、AACT技术差异蛋白阈值的设定等,为本课题以及本课题组后续运用该技术定量蛋白质以及发展用于相互作用研究工作的开展奠定了坚实的理论和实验的基础。
     (4)AACT技术用于QSG-7701/QGY-7703定量蛋白质组研究肝癌的发生:首先,研究对象选择一对典型的细胞模型,宿主肝细胞系QSG-7701和病灶部位肝癌细胞QGY-7703,这对细胞源自同一病人手术标本,是一对典型的细胞株用来研究原发性肝癌发生相关蛋白质组的模型。运用AACT技术首次在蛋水平研究QSG-7701/QGY-7703细胞株,提供了翔实的蛋白质表达谱和定量谱的数据。鉴定到1343个非冗余蛋白,511个蛋白有准确的定量信息,找到132个肝癌发生相关的蛋白质,有部分已经有文献报道,我们在肝癌中也找到同样的蛋白,有些是验证了已有和肝癌相关的,还有部分新发现与肝癌相关,western验证了部分蛋白质。在这一章节我们还对差异表达得的功能蛋白做了详尽讨论。通过进一步在组织中验证,提出了几个潜在的肝癌发生的标志物分子。
     (5)AACT技术用于MHCC97H/L定量蛋白质组研究肝癌的转移:肝癌不能治愈主要原因来自其侵袭性即容易发生转移。复旦大学肝癌研究所建立了一对典型研究和肝癌转移潜能相关细胞株MHCC97H/L。我们进一步运用AACT技术的研究得到准确蛋白质定量谱,得到疾病转移相关蛋白定性和定量信息。深入了对疾病发生和发展的研究,提供了更加系统翔实的数据,为临床提供了诊断和药靶的候选分子,找到的差异蛋白可以帮助深入理解肝癌的发生发展机理。
     (6)蛋白质组研究中常规技术的优化:针对细胞、小鼠肝脏和正常人肝样品优化了亚细胞器(细胞核和线粒体)的分离和纯化技术形成一整套方案。同时通过染色、电镜以及免疫组化技术对纯度作了系统评价。
The thesis was focused on quantitative proteomics platform of mass spectrometry based amino acid-coded tagging(AACT) technique.To investigate candidates of diagnostic or therapeutic biomarkers for liver cancers,we comprehensively measured systematic changes in protein expression of human hepatocellular carcinoma(HCC). The effective treatment of liver cancer relies on the diagnosis of the disease at an early stage.
     The research work of this dissertation was composed of four parts.The first parts was about A novel method of quaternizing amino acid/peptide and its product in situ analysis using ESI-MS;In the second part,we set up a high throughput platform for global quantitative exploration of proteome using AACT proteomics technologies; The third part was comparative proteomic analysis of two paired HCC cell lines with the same genetic background to investigate markers for HCC and metastasis.And the last part was optimization routine technology for organelles.The details were described as the chapters in the following:
     (1) The preface part summarized recent research progresses on quantitative proteomics and in the context of their respective strengths/weakness,especially emphasized the application of major amino acid-coded mass tagging based quantitative proteomics approaches.
     (2) A new method of quaternizing amino acid and peptide was reported.This method could offer a potential chance to combine quanternizing and mass spectrometry which is helpful for the future use of quanternizing reaction in quantitative proteomics.
     (3) We set up a high throughput platform for global exploration of quantitative proteome based on the amino acid coded-mass tagging technologies.Content includes cell labeling,choice of isotope amino acid,the label degree detection,LC-MS separates the optimization of parameter's,threshold value setting for quantification, quantify standard build up et.al..Finally we set up a platform for the following work in quantification and protein-protein interaction.
     (4) Comparative proteomic analysis of a paired human liver normal-carcinoma cell lines with the same genetic background to investigate hepatocellular carcinoma Markers.Quantitative proteomic analysis of two cell lines derived from healthy liver and carcinoma tissue of a same donor,i.e.,QSG-7701 for the normal and QGY-7703 for the cancer cells respectively,was conducted using AACT.Among a total of 1343 proteins,511 was precisely quantified in HCC cells.According to their previously characterized functions,the differentially expressed proteins were found associated with five major functional categories.The accuracy of the AACT-based quantification was validated by Western blotting.Furthermore,the differentially expressed proteins were identified in HCC specimen.The consistency between cell lines and clinic tissues,comprised a part of reported biomarker for HCC.Altogether our study provides some insights into the molecular events that may lead to diverse strategies for diagnosis and treatment of HCC.
     (5) Comprehensive profiling of metastasis-related proteins in paired hepatocelluar carcinoma cells with different metastasis potential.Metastasis is the primary cause of death in hepatocelluar carcinoma(HCC) patients.To identify those proteins associated with metastasis potential,we have conducted comparative proteomic analysis on a pair of the HCC cell lines characterized with different metastasis potential originated from a same donor(MHCC97L versus MHCC97H) by employing an amino acid-coded mass tagging(AACT)-based quantitative proteomic method.
     (6) We optimized routine technology for organelle,especially for nucleus and mitochondrial in three level cells,mice tissues and healthy human liver.
引文
[1]Hanash,S.,Disease proteomics.Nature 2003,422,226-232.
    [2]Pandey,A.,Mann,M.,Proteomics to study genes and genomes.Nature 2000,405,837-846.
    [3]Aebersold,R.,Mann,M.,Mass spectrometry-based proteomics.Nature 2003,422,198-207.
    [4]Pieroni,E.,Van Bentem,S.D.,Mancosu,G.,Capobianco,E.,et al.,Protein networking:insights into global functional organization of proteomes.Proteomics 2008,8,799-816.
    [5]Yan,W.,Chen,S.S.,Mass spectrometry-based quantitative proteomic profiling.Brief Funct Genomic Proteomic 2005,4,27-38.
    [6]Ong,S.E.,Mann,M.,Mass spectrometry-based proteomics turns quantitative.Nature Chemical Biology 2005,1,252-262.
    [7]Ong,S.E.,Foster,L.J.,Mann,M.,Mass spectrometric-based approaches in quantitative proteomics.Methods 2003,29,124-130.
    [8]Pennington SR,D.M.编.,钱小红等译,蛋白质组学:从序列到功能[M],北京:科技出版社 2002.
    [9] Grow, A. E., Wood, L. L., Claycomb, J. L., Thompson, P. A., New biochip technology for label-free detection of pathogens and their toxins. Journal of Microbiological Methods 2003,53,221-233.
    [10] Yu, X. B., Xu, D. K., Cheng, Q., Label-free detection methods for protein microarrays.Proteomics 2006,6, 5493-5503.
    [11] Boozer, C., Kim, G., Cong, S. X., Guan, H. W., Londergan, T., Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnology 2006,17,400-405.
    [12] Ong, S. E., Mann, M., A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Protocols 2006, 1, 2650-2660.
    [13] Ong, S. E., Kratchmarova, I., Mann, M., Properties of C-13-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research 2003,2,173-181.
    [14] Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Molecular & Cellular Proteomics 2002,1,376-386.
    [15] Chen, X., Sun, L. W., Yu, Y. B., Xue, Y., Yang, P. Y., Amino acid-coded tagging approaches in quantitative proteomics. Expert Review of Proteomics 2007, 4,25-37.
    [16] Shui, W. Q., Liu, Y. K., Fan, H. Z., Bao, H. M., et al., Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging. Journal of Proteome Research 2005,4, 83-90.
    [17] Gu, S., Du, Y. C., Chen, J., Liu, Z. H., et al., Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging. Journal of Proteome Research 2004,3,1191-1200.
    [18] Gu, S., Liu, Z. H., Pan, S. Q., Jiang, Z. Y., et al., Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Molecular& Cellular Proteomics 2004,3,998-1008.
    
    [19] Invitrogen (Ed.), SILAC~(?) Protein Identification (ID) and Quantitation Kits 2006. [20] Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology 1999,17, 994-999.
    [21] Zhang, R. J., Sioma, C. S., Thompson, R. A., Xiong, L., Regnier, F. E., Controlling deuterium isotope effects in comparative proteomics. Analytical Chemistry 2002, 74, 3662-3669.
    [22] Han, D. K., Eng, J., Zhou, H. L., Aebersold, R., Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotechnology 2001,19, 946-951.
    [23] Qu, J., Jusko, W. J., Straubinger, R. M., Utility of cleavable isotope-coded affinity-tagged reagents for quantification of low-copy proteins induced by methylprednisolone using liquid chromatography/tandem mass spectrometry. Analytical Chemistry 2006, 78,4543-4552.
    [24] Barnidge, D. R., Jelinek, D. F., Muddiman, D. C., Kay, N. E., Quantitative protein expression analysis of CLL B cells from mutated and unmutated IgV(H) subgroups using acid-cleavable isotope-coded affinity tag reagents. Journal of Proteome Research 2005, 4, 1310-1317.
    [25] Li, J. X., Steen, H., Gygi, S. P., Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents - The yeast salinity stress response. Molecular & Cellular Proteomics 2003, 2, 1198-1204.
    [26] Hansen, K. C., Schmitt-Ulms, G., Chalkley, R. J., Hirsch, J., et al., Mass spectrometric analysis of protein mixtures at low levels using cleavable C-13-isotope-coded affinity tag and
    
    multidimensional chromatography. Molecular & Cellular Proteomics 2003,2, 299-314.
    [27] Lu, Y., Bottari, P., Turecek, F., Aebersold, R., Gelb, M. H., Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. Analytical Chemistry 2004,76,4104-4111.
    [28] Bottari, P., Aebersold, R., Turecek, F., Gelb, M. H., Design and synthesis of visible isotope-coded affinity tags for the absolute quantification of specific proteins in complex mixtures. Bioconjugate Chemistry 2004,15, 380-388.
    [29] Qiu, Y. C, Sousa, E. A., Hewick, R. M., Wang, J. H., Acid-labile isotope-coded extractants: A class of reagents for quantitative mass spectrometric analysis of complex protein mixtures. Analytical Chemistry 2002, 74,4969-4979.
    [30] Zhang, Z. J., Man, Z. X., Shi, S. H., An efficient multiparty quantum key distribution scheme.International Journal of Quantum Information 2005, 3, 555-560.
    [31] Wiese, S., Reidegeld, K. A., Meyer, H. E., Warscheid, B., Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7,340-350.
    [32] Chong, P. K., Gan, C. S., Pham, T. K., Wright, P. C., Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. Journal of Proteome Research 2006,5,1232-1240.
    [33] Yao, X. D., Freas, A., Ramirez, J., Demirev, P. A., Fenselau, C, Proteolytic 0-18 labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Analytical Chemistry 2001,75,2836-2842.
    [34] Schnolzer, M., Jedrzejewski, P., Lehmann, W. D., Protease-catalyzed incorporation of O-18 into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 1996,17,945-953.
    [35] Miyagi, M., Rao, K. C. S., Proteolytic O-18-labeling strategies for quantitative proteomics. Mass Spectrometry Reviews 2007,26, 121-136.
    [36] Rao, K. C. S., Carruth, R. T., Miyagi, M., Proteolytic O-18 labeling by peptidyl-Lys metalloendopeptidase for comparative proteomics. Journal of Proteome Research 2005,4,507-514.
    [37] Weckwerth, W., Willmitzer, L., Fiehn, O., Comparative quantification and identification of phosphoproteins using stable isotope labeling and liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 2000,14, 1677-1681.
    [38] Goshe, M. B., Veenstra, T. D., Panisko, E. A., Conrads, T. P., et al., Phosphoprotein isotope-coded affinity tags: Application to the enrichment and identification of low-abundance phosphoproteins. Analytical Chemistry 2002, 74, 607-616.
    [39] Goshe, M. B., Conrads, T. P., Panisko, E. A., Angell, N. H., et al., Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses.Analytical Chemistry 2001, 73, 2578-2586.
    [40] Wang, Y. K., Ma, Z. X., Quinn, D. F., Fu, E. W., Inverse O-18 labeling mass spectrometry for the rapid identification of marker/target proteins. Analytical Chemistry 2001, 73, 3742-3750.
    [41] Sechi, S., Chait, B. T., A method to define the carboxyl terminal of proteins. Analytical Chemistry 2000, 72, 3374-3378.
    [42] Tang, Z. Y., Ye, S. L., Liu, Y. K., Qin, L. X., et al., A decade's studies on metastasis of hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology 2004,130,187-196.
    [43] Parkin, D. M., Bray, F., Ferlay, J., Pisani, P., Estimating the world cancer burden: GLOBOCAN 2000. International Journal of Cancer 2001, 94, 153-156.
    [44] Tang, Z. Y., Zhou, X. D., Lin, Z. Y., Yang, B. H., et al., Surgical treatment of hepatocellular carcinoma and related basic research with special reference to recurrence and metastasis. Chinese Medical Journal 1999,112, 887-891.
    [45] Feitelson, M. A., Sun, B., Tufan, N. L. S., Liu, J., et al., Genetic mechanisms of hepatocarcinogenesis. Oncogene 2002,21,2593-2604.
    [46] Ding, S. J., Li, Y., Tan, Y. X., Jiang, M. R., et al., From proteomic analysis to clinical significance- Overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Molecular& Cellular Proteomics 2004, 3, 73-81.
    [47] Sanchez, J. C, Wirth, P., Jaccoud, S., Appel, R. D., et al., Simultaneous analysis of cyclin and oncogene expression using multiple monoclonal antibody immunoblots. Electrophoresis 1997,18,638-641.
    [48] Seow, T. K., Ong, S. E., Liang, R., Ren, E. C, et al., Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 2000,21,1787-1813.
    [49] Ou, K., Seow, T. K., Liang, R., Ong, S. E., Chung, M. C. M., Proteome analysis of a human heptocellular carcinoma cell line, HCC-M: An update. Electrophoresis 2001,22,2804-2811.
    [50] Choong, M. L., Tan, L. K., Lo, S. L., Ren, E. C, et al., An integrated approach in the discovery and characterization of a novel nuclear protein over-expressed in liver and pancreatic tumors. Febs Letters 2001, 496, 109-116.
    [51] Nissom, P. M., Lo, S. L., Lo, J. C. Y., Ong, P. F, et al., Hcc-2, a novel mammalian ER thioredoxin that is differentially expressed in hepatocellular carcinoma. Febs Letters 2006,580,2216-2226.
    [52] Ding, S. J., Li, Y., Shao, X. X., Zhou, H., et al., Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics 2004,4,982-994.
    [53] Cui, J. F., Liu, Y. K., Pan, B. S., Song, H. Y., et al., Differential proteomic analysis of human hepatocellular carcinoma cell line metastasis-associated proteins. Journal of Cancer Research and Clinical Oncology 2004,130, 615-622.
    [54] Cui, J. F., Liu, Y. K., Zhang, L. J., Shen, H. L., et al., Identification of metastasis candidate proteins among HCC cell lines by comparative proteome and biological function analysis of S100A4 in metastasis in vitro. Proteomics 2006,6,5953-5961.
    [55] Dai, Z., Liu, Y. K., Cui, J. F., Shen, H. L., et al., Identification and analysis of altered alpha 1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics 2006, 6, 5857-5867.
    [56] Alaiya, A. A., Franzen, B., Auer, G., Linder, S., Cancer proteomics: From identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis 2000, 21,1210-1217.
    [57] Liu, Q., Wang, H., Hu, D. C, Ding, C. J., et al., Effects of trace elements on the telomere lengths of hepatocytes L-02 and hepatoma cells SMMC-7721. Biological Trace Element Research 2004,100,215-227.
    [58] Zeindl-Eberhart, E., Haraida, S., Liebmann, S., Jungblut, P. R., et al, Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas. Hepatology 2004,39, 540-549.
    [59]Zeindl-Eberhart,E.,Klugbauer,S.,Dimitrijevic,N.,Jungblut,P.R.,et al.,Proteome analysis of rat hepatomas:Carcinogen-dependent tumor-associated protein variants.Electrophoresis 2001,22,3009-3018.
    [60]Lim,S.O.,Park,S.J.,Kim,W.,Park,S.G.,et al.,Proteome analysis of hepatocellular carcinoma.Biochemical and Biophysical Research Communications 2002,291,1031-1037.
    [61]Li,C.,Tan,Y.X.,Zhou,H.,Ding,S.J.,et al.,Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma:Identification of potential tumor markers.Proteomics 2005,5,1125-1139.
    [62]Blanc,J.F.,Lalanne,C.,Plomion,C.,Schmitter,J.M.,et al.,Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C.Proteomics 2005,5,3778-3789.
    [63]Jungblut,P.R.,Zimny-Arndt,U.,Zeindl-Eberhart,E.,Stulik,J.,et al.,Proteomics in human disease:Cancer,heart and infectious diseases.Electrophoresis 1999,20,2100-2110.
    [64]Kim,W.,Lim,S.O.,Kim,J.S.,Ryu,Y.H.,et al.,Comparison of proteome between hepatitis B virus-and hepatitis C virus-associated hepatocellular carcinoma.Clinical Cancer Research 2003,9,5493-5500.
    [65]Shen,H.L.,Cheng,G.,Fan,H.Z.,Zhang,J.,et al.,Expressed proteome analysis of human hepatocellular carcinoma in nude mice(LCI-D20) with high metastasis potential.Proteomica 2006,6,528-537.
    [66]Luk,J.M.,Lam,C.T.,Siu,A.F.M.,Lam,B.Y.,et al.,Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins(Hsp27,Hsp70,GRP78) up-regulation and their associated prognostic values.Proteomics 2006,6,1049-1057.
    [67]Poon,T.C.W.,Johnson,P.J.,Proteome analysis and its impact on the discovery of serological tumor markers.Clinica Chimica Acta 2001,313,231-239.
    [68]Ward,D.G.,Cheng,Y.,N'Kontchou,G.,Thar,T.T.,et al.,Changes in the serum proteome associated with the development of hepatocellular carcinoma in hepatitis C-related cirrhosis.British Journal of Cancer 2006,94,287-292.
    [69]黄成,樊.,周俭,等,不同临床病理因素对肝细胞肝癌患者血清蛋白质指纹图谱的影响.中华外科杂志 2006 44,4452-4449.
    [70]黄成,樊.,周俭,等,肝细胞癌门静脉癌栓形成相关的血清蛋白质分子标记物研究.中华医学杂志,2005,85,781-785.
    [71]Le Naour,F.,Brichory,F.,Misek,D.E.,Brechot,C.,et al.,A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis.Molecular & Cellular Proteomics 2002,1,197-203.
    [72]Steel,L.F.,Shumpert,D.,Trotter,M.,Seeholzer,S.H.,et al.,A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma.Proteomics 2003,3,601-609.
    [73]Paradis,V.,Degos,F.,Dargere,D.,Pham,N.,et al.,Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases.Hepatology 2005,41,40-47.
    [74]Lee,I.N.,Chen,C.H.,Sheu,J.C.,Lee,H.S.,et al.,Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach.Proteomics 2006,6,2865-2873.
    [75] Feng, J. T., Liu, Y. K., Song, H. Y., Dai, Z., et al, Heat-shock protein 27: A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 2005,5,4581-4588.
    [76] Yoshida, S., Kurokohchi, K., Arima, K., Masaki, T., et al, Clinical significance of lens culinaris agglutinin-reactive fraction of serum alpha-fetoprotein in patients with hepatocellular carcinoma.International Journal of Oncology 2002,20, 305-309.
    [77] Gorg, A., Weiss, W., Dunn, M. J., Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4, 3665-3685.
    [78] Nishigaki, R., Osaki, M., Hiratsuka, M., Toda, T., et al, Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 2005, J, 3205-3213.
    [79] Bingham, S., Riboli, E., Diet and cancer - The European prospective investigation into cancer and nutrition. Nature Reviews Cancer 2004, 4, 206-215.
    [80] Fuchs, C. S., Mayer, R. J., Medical Progress - Gastric-Carcinoma. New England Journal of Medicine 1995, 333, 32-41.
    [81] Park, K. S., Kim, H., Kim, N. G., Cho, S. Y., et al, Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology 2002,35,1459-1466.
    [82] Yokoyama, Y., Kuramitsu, Y., Takashima, M., Lizuka, N., et al, Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 2004,4,2111-2116.
    
    [83] Okuda, K., Hepatocellular carcinoma. Journal of Hepatology 2000,32,225-237.
    [84] Skandarajah, A. R., Moritz, R. L., Tjandra, J. J., Simpson, R. J., Proteomic analysis of colorectal cancer: discovering novel biomarkers. Expert Review of Proteomics 2005,2,681-692.
    [85] Lee, C. H., Lum, J. H. K., Cheung, B. P. Y., Wong, M. S., et al, Identification of the heterogeneous nuclear ribonucleoprotein A2/B1 as the antigen for the gastrointestinal cancer specific monoclonal antibody MG7. Proteomics 2005,5,1160-1166.
    [86] Liu, W. W., Guan, M., Wu, D. L., Zhang, Y. F., et al., Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. European Urology 2005, 47, 456-462.
    [87] Melle, C., Ernst, G., Schimmel, B., Bleul, A., et al, Characterization of pepsinogen C as a potential biomarker for gastric cancer using a histo-proteomic approach. Journal of Proteome Research 2005, 4,1799-1804.
    [88] Lin, Z., Crockett, D. K., Jenson, S. D., Lim, M. S., Elenitoba-Johnson, K. S., Quantitative proteomic and transcriptional analysis of the response to the p38 mitogen-activated protein kinase inhibitor SB203580 in transformed follicular lymphoma cells. Mol Cell Proteomics 2004, 3,820-833.
    [89] Ryu, J. W., Kim, H. J., Lee, Y. S., Myong, N. H., et al, The proteomics approach to find biomarkers in gastric cancer. Journal of Korean Medical Science 2003,18, 505-509.
    [90] Hong, S. H., Misek, D. E., Wang, H., Puravs, E., et al, An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Research 2004, 64, 5504-5510.
    [91] He, Q. Y., Cheung, Y. H., Leung, S. Y., Yuen, S. T., et al, Diverse proteomic alterations in gastric adenocarcinoma. Proteomics 2004, 4, 3276-3287.
    [92] Kim, Y. S., Hwang, S. Y., Oh, S., Sohn, H., et al, Identification of target proteins of N-acetylglucosaminyl-transferase V and fucosyltransferase 8 in human gastric tissues by glycomic approach.Proteomics 2004,4,3353-3358.
    [93]Chignard,N.,Shang,S.F.,Wang,H.,Marrero,J,et al.,Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma:Detection of generated fragments in patient sera.Gastroenterology 2006,130,2010-2022.
    [94]Chambers,G.,Lawrie,L.,Cash,P.,Murray,G.I.,Proteomics:a new approach to the study of disease.Journal of Pathology 2000,192,280-288.
    [95]Xu,L.,Hui,L.J.,Wang,S.H.,Gong,J.L.,et al.,Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma.Cancer Research 2001,61,3176-3181.
    [96]Hanash,S.M,,Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients:Current status.Electrophoresis 2000,21,1202-1209.
    [97]Li,C.,Hong,Y.,Tan,Y.X.,Zhou,H.,et al.,Accurate qualitative and quantitative proteomic analysis of clinical hepatoceltular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry.Mol Cell Proteomics 2004,3,399-409.
    [98]Park,K.S.,Cho,S.Y.,Kim,H.,Paik,Y.K.,Proteomic alterations of the variants of human aldehyde dehydrogenase isozymes correlate with hepatocellular carcinoma.International Journal of Cancer 2002,97,261-265.
    [99]Kim,J.,Kim,S.H.,Lee,S.U.,Ha,G.H.,et al.,Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of disease-related proteins.Electrophoresis 2002,23,4142-4156.
    [100]Fujii,K.,Kondo,T.,Yokoo,H.,Yamada,T,et al.,Proteomic study of human hepatocellular carcinoma using two-dimensional difference gel electrophoresis with saturation cysteine dye.Proteoraics 2005,5,1411-1422.
    [101]Takashima,M.,Kuramitsu,Y.,Yokoyama,Y.,Iizuka,N.,et al.,Proteomie profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma.Proteomics 2003,3,2487-2493.
    [102]Takashima,M.,Kuramitsu,Y.,Yokoyama,Y.,Iizuka,N.,et al.,Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma:Association with tumor progression as determinedby proteomic analysis.Proteomics 2005,5,1686-1692.
    [103]Kummitsu,Y.,Harada,T.,Takashima,M.,Yokoyama,Y.,et al.,Increased expression and phosphorylation of liver glutamine synthetase in well-differentiated hepatocellular carcinoma tissues from patients infected with hepatitis C virus.Electrophoresis 2006,27,1651-1658.
    [104]Takashima,M.,Kuramitsu,Y.,Yokoyama,Y.,Iizuka,N.,et al.,Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma.Proteomics 2006,6,3894-3900.
    [1]Gevaert,K.,Goethals,M.,Martens,L.,Van Damme,J.,et al.,Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.Nature Biotechnology 2003,21,566-569.
    [2]Wang,S.H.,Zhang,X.,Regnier,F.E.,Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates.Journal of Chromatography A 2002,949,153-162.
    [3]Chakraborty,A.,Regnier,F.E.,Global internal standard technology for comparative proteomics.Journal of Chromatography A 2002,949,173-184.
    [4]Wang,S.H.,Regnier,F.E.,Proteomics based on selecting and quantifying eysteine containing peptides by covalent ehrnmatography.Journal of Chromatography A 2001,924,345-357.
    [5]Zhang,R.J.,Sioma,C.S.,Thompson,R.A.,Xiong,L.,Regnier,F.E.,Controlling deuterium isotope effects in comparative proteomics.Analytical Chemistry 2002,74,3662-3669.
    [6]Hsu,J.L.,Huang,S.Y.,Chow,N.H.,Chen,S.H.,Stable-isotope dimethyl labeling for quantitative proteomics.Analytical Chemistry 2003,75,6843-6852.
    [7]Ji,J.Y.,Chakraborty,A.,Geng,M.,Zhang,X.,et al.,Strategy for qualitative and quantitative analysis in proteomics based on signature peptides.Journal of Chromatography B 2000,745,197-210.
    [8]Geng,M.H.,Ji,J.Y.,Regnier,F.E.,Signature-peptide approach to detecting proteins in complex mixtures.Journal of Chromatography A 2000,870,295-313.
    [9]Che,F.Y.,Fricker,L.D.,Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry.Analytical Chemistry 2002,74,3190-3198.
    [10]Martin,D.B.,Gifford,D.R.,Wright,M.E.,Keller,A.,et al.,Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium.Cancer Res 2004,64,347-355.
    [11]Hale,J.E.,Butler,J.P.,Knierman,M.D.,Becker,G.W.,Increased sensitivity of tryptic peptide detection by MALDI-TOF mass spectrometry is achieved by conversion of lysine to homoarginine.Analytical Biochemistry 2000,287,110-117.
    [12]Beardsley,R.L.,Sharon,L.A.,Reilly,J.P.,Peptide de novo sequencing facilitated by a dual-labeling strategy.Analytical Chemistry 2005,77,6300-6309.
    [13]Cagney,G.,Emili,A.,De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging.Nature Biotechnology 2002,20,163-170.
    [14]Warwood,S.,Mohammed,S.,Cristea,I.M.,Evans,C,.et al.,Guanidination chemistry for qualitative and quantitative proteomics.Rapid Communications in Mass Spectrometry 2006,20,3245-3256.
    [15]Beardsley,R.L.,Reilly,J.P.,Quantitation using enhanced signal tags:A technique for comparative proteomics.Journal of Proteome Research 2003,2,15-21.
    [16]Lemmel,C.,Weik,S.,Eberle,U.,Dengjel,J.,et al.,Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling.Nature Biotechnology 2004,22,450-454.
    [17]Nam,H.W.,Simpson,R.,Kim,Y.S.,N-terminal isotope tagging with propionic anhydride:Proteomic analysis of myogenic differentiation of C2C12 cells,dournal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2005,826,91-107.
    [18]Schmidt,A.,Kellermann,J.,Lottspeich,F.,A novel strategy for quantitative proteornics using isotope-coded protein labels.Proteomics 2005,5,4-15.
    [19]Li,S.W.,Zeng,D.X.,CILAT-a new reagent for quantitative proteomics.Chemical Communications 2007,2181-2183.
    [20]Gao,H.F.,Kelly,M.,Hamann,M.T.,Bromotyrosine-derived metabolites from the sponge Aiolochroia crassa.Tetrahedron 1999,55,9717-9726.
    [21]Wang,S.F.,Braekman,J.C.,Daloze,D.,Pasteels,J.M.,Signatipennine:A new alkaloid from the New Guinean ladybird Epilachna signatipennis(Coccinellidae).Bulletin Des Societes Chimiques Belges 1996,105,483-487.
    [22]Francis C.M.Chen,N.L.B.,Can.d.Chem.[J],1976,54,3310.
    [1]Gu,S.,Du,Y.,Chen,J.,Liu,Z.,et al.,Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging.J Proteome Res 2004,3,1191-1200.
    [2]Gu,S.,Liu,Z.,Pan,S.,Jiang,Z.,et al.,Global Investigation of p53-induced Apoptosis Through Quantitative Proteomic Profiling Using Comparative Amino Acid-coded Tagging.Mol Cell Proteomics 2004,3,998-1008.
    [3]Shui,W.Q.,Liu,Y.K.,Fan,H.Z.,Bao,H.M.,et al.,Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging.Journal of Proteome Research 2005,4,83-90.
    [4]Chen,X.,Sun,L.W.,Yu,Y.B.,Xue,Y.,Yang,P.Y.,Amino acid-coded tagging approaches in quantitative proteomics.Expert Review of Proteomics 2007,4,25-37.
    [5]Gu,S.,Chen,X.,Precise proteomic identification using mass spectrometry coupled with stable isotope labeling.Analyst 2005,130,1225-1231.
    [6]Gu,S.,Du,Y.C.,Chen,J.,Liu,Z.H.,et al.,Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging.Journal of Proteome Research 2004,3,1191-1200.
    [7]Gu,S.,Liu,Z.,Pan,S.,Jiang,Z.,et al.,Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging.Mol Cell Proteomics 2004,3,998-1008.
    [8]Gu,S.,Pan,S.,Bradbury,E.M.,Chen,X.,Use of deuterium-labeled lysine for efficient protein identification and peptide de novo sequencing.Anal Chem 2002,74,5774-5785.
    [9]Gu,S.,Pan,S.,Bradbury,E.M.,Chen,X.,Precise peptide sequencing and protein quantification in the human proteome through in vivo lysine-specific mass tagging,J Am Soc Mass Spectrom 2003,14,1-7.
    [10]Gu,S.,Pan,S.Q.,Bradbury,E.M.,Chen,X.,Use of deuterium-labeled lysine for efficient protein identification and peptide de novo sequencing.Analytical Chemistry 2002,74,5774-5785.
    [11]Gu,S.,Chen,J.,Dobos,K.M.,Bradbury,E.M.,et al.,Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain.Molecular & Cellular Proteomics 2003,2,1284-1296.
    [12]Ferguson,R.E.,Carroll,H.P.,Harris,A.,Maher,E.R.,et al.,Housekeeping proteins:A preliminary study illustrating some limitations as useful references in protein expression studies.Proteomics 2005,5,566-571.
    [13]Invitrogen(Ed.),SILAC~(TM) Protein Identification(ID) and Quantitation Kits 2006.
    [14]Ong,S.-E.,Center for Experimental BioInformatics,CEBI,http://msquant.sourceforge.net.
    [15]Everley,P.A.,Krijgsveld,J.,Zetter,B.R.,Gygi,S.P.,Quantitative cancer proteomics:Stable isotope labeling with amino acids in cell culture(SILAC) as a tool for prostate cancer research.Molecular & Cellular Proteomics 2004,3,729-735.
    [16] Gronborg, M., Kristiansen, T. Z., Iwahori, A., Chang, R., et al, Biomarker Discovery from Pancreatic Cancer Secretome Using a Differential Proteomic Approach. Mol Cell Proteomics 2006,5, 157-171.
    [17] Ong, S. E., Kratchmarova, I., Mann, M., Properties of C-13-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research 2003,2,173-181.
    [18] Ong, S. E., Mann, M., A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Protocols 2006,1,2650-2660.
    [19] Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Molecular & Cellular Proteomics 2002,1, 376-386.
    [20] Mann, M., Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 2006, 7,952-958.
    [21] Spooncer, E., Brouard, N., Nilsson, S. K., Williams, B., et al., Developmental fate determination and marker discovery in hematopoietic stem cell biology using proteomic fingerprinting. Molecular & Cellular Proteomics 2008, 7,573-581.
    [1]Seow,T.K.,Liang,R.,Leow,C.K.,Chung,M.C.M.,Hepatocellular carcinoma:From bedside to proteomics.Proteomics 2001,1,1249-1263.
    [2]Liang,R.,Neo,J.C.H.,Lo,S.L.,Tan,G.S.,et al.,Proteome database of hepatocellular carcinoma.Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2002,771,303-328.
    [3]Ding,S.J.,Li,Y.,Tang,Y.X.,Zeng,R.,et al.,From proteomic analysis to clinical significance:overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis.Faseb Journal 2004,18,C67-C67.
    [4]Dvorchik,I.,Demetris,A.J.,Geller,D.A.,Carr,B.I.,et al.,Prognostic models in hepatocellular carcinoma(HCC) and statistical methodologies behind them.Current Pharmaceutical Design 2007,13,1527-1532.
    [5]Lee,J.S.,Thorgeirsson,S.S.,Comparative and integrative functional genomics of HCC.Oncogene 2006,25,3801-3809.
    [6]Pignata,S.,Gallo,C.,Daniele,B.,Elba,S.,et al.,Characteristics at presentation and outcome of hepatocellular carcinoma(HCC) in the elderly-A study of the Cancer of the Liver Italian Program (CLIP).Critical Reviews in Oncology Hematology 2006,59,243-249.
    [7]Zhu,D.,and Wang,J.,The culture of the liver cell line QSG-7701,from a hepatoma donor,and its comparison with other hepatoma cell lines.Cancer Res.Prev.Treat.1979,6,7-9.
    [8]Wang,J.,Zhu,D.,Ye,X.,and Chen,R.,Establishment and some characteristics of a hepatoma cell line(QGY-7703).Chin.J.Oncol.1981,3,241-244.
    [9]Cheng,S.C.S.,Luo,D.,Xie,Y.,Taxol induced Bcl-2 protein phosphorylation in human hepatocellular carcinoma QGY-7703 cell line.Cell Biology International 2001,25,261-265.
    [10]Miao,L.,Yi,P.,Wang,Y.,Wu,M.,Etoposide upregulates Bax-enhancing tumour necrosis factor-related apoptosis inducing ligand-mediated apoptosis in the human hepatocellular carcinoma cell line QGY-7703. European Journal of Biochemistry 2003, 270, 2721-2731.
    [11] Li, J. H., Werner, E., Hergenhahn, M., Poirey, R., et al., Expression profiling of human hepatoma cells reveals global repression of genes involved in cell proliferation, growth, and apoptosis upon infection with parvovirus H-1. Journal of Virology 2005, 79,2274-2286.
    [12] Huang, R. M., Xing, Z. G., Luan, Z. D., Wu, T. M., et al., A specific splicing variant of SVH, a novel human armadillo repeat protein, is up-regulated in hepatocellular carcinomas. Cancer Research 2003,63,3775-3782.
    [13] Gu, S., Du, Y., Chen, J., Liu, Z., et ai, Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging. J Proteome Res 2004,3,1191-1200.
    [14] Gu, S., Liu, Z., Pan, S., Jiang, Z., et al., Global Investigation of p53-induced Apoptosis Through Quantitative Proteomic Profiling Using Comparative Amino Acid-coded Tagging. Mol Cell Proteomics 2004, 3, 998-1008.
    [15] Shui, W. Q., Liu, Y. K., Fan, H. Z., Bao, H. M., et al, Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging. Journal of Proteome Research 2005,4, 83-90.
    [16] Chen, X., Sun, L. W., Yu, Y. B., Xue, Y., Yang, P. Y., Amino acid-coded tagging approaches in quantitative proteomics. Expert Review of Proteomics 2007, 4,25-37.
    [17] Schwartz, R., Ting, C. S., King, J., Whole proteome p1 values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Research 2001, 11,703-709.
    [18] Yeh, C. S., Wang, J. Y., Chung, F. Y., Lee, S. C, et al., Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncology Reports 2008,79,81-91.
    [19] Shimada, N., Shinagawa, T., Ishii, S., Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein. Genes to Cells 2008,13,245-254.
    [20] Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., Cantley, L. C., Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008,452,181-U127.
    [21] Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., et al, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008,452, 230-U274.
    [22] Elia, S., Massoud, R., Guggino, G., Cristino, B., et al, Tumor type M2-pyruvate-kinase levels in pleural fluid versus plasma in cancer patients: a further tool to define the need for invasive procedures. Eur J Cardiothorac Surg 2008, 33, 723-727.
    [23] Ahmed, A. S., Dew, T., Lawton, F. G., Papadopoulos, A. J., et al, M2-PK as a novel marker in ovarian cancer. A prospective cohort study. European Journal of Gynaecological Oncology 2007,28, 83-88.
    [24] Ahmed, A. S., Dew, T., Lawton, F. G., Papadopoulos, A. J., et al, Tumour M2-PK as a predictor of surgical outcome in ovarian cancer, a prospective cohort study. European Journal of Gynaecological Oncology 2001, 28, 103-108.
    [25] Hathurusinghe, H. R., Goonetilleke, K. S., Siriwardena, A. K., Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Annals of Surgical Oncology 2007,14, 2714-2720.
    [26] Oremek, G., Kukshaite, R., Sapoutzis, N., Ziolkovski, P., [The significance of TU M2-PK tumor marker for lung cancer diagnostics].Klin Med(Mosk) 2007,85,56-58.
    [27]Cerwenka,H.,Aigner,R.,Bacher,H.,Werkgartner,G.,et al.,TUM2-PK(pyruvate kinase type tumor M2),CA19-9 and CEA in patients with benign,malignant and metastasizing pancreatic lesions.Anticancer Research 1999,19,849-851.
    [28]Wechsel,H.W.,Petri,E.,Bichler,K.H.,Feil,G.,Marker for renal cell carcinoma(RCC):The dimeric form of pyruvate kinase type M-2(Tu M2-PK).Anticancer Research 1999,19,2583-2590.
    [29]Srivastava,P.K.,Amato,R.J.,Heat shock proteins:the 'Swiss Army Knife' vaccines against cancers and infectious agents.Vaccine 2001,19,2590-2597.
    [30]Feng,J.T.,Liu,Y.K.,Song,H.Y.,Dai,Z.,et al.,Heat-shock protein 27:A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis.Proteomics 2005,5,4581-4588.
    [31]King,K.L.,Li,A.F.Y.,Chau,G.Y.,Chi,C.W.,et al.,Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival.Cancer 2000,88,2464-2470.
    [32]Hayashi,E.,Kuramitsu,Y.,Okada,F.,Fujimoto,M.,et al.,Proteomic profiling for cancer progression:Differential display analysis for the expression of intracellular proteins between regressive and progressive cancer cell lines.Proteomics 2005,5,1024-1032.
    [33]Altieri,D.C.,Coupling apoptosis resistance to the cellular stress response-The IAP-Hsp90connection in cancer.Cell Cycle 2004,3,255-256.
    [34]Thanner,F.,Sutterlin,M.W.,Kapp,M.,Rieger,L.,et al.,Heat-shock protein 70 as a prognostic marker in node-negative breast cancer.Anticancer Research 2003,23,1057-1062.
    [35]Shin,B.K.,Wang,H.,Yim,A.M,,Le Naour,F.,et al.,Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function,dournal of Biological Chemistry 2003,278,7607-7616.
    [36]Chuma,M.,Sakamoto,M.,Yamazaki,K.,Ohta,T.,et al.,Expression profiling in multistage hepatocarcinogenesis:Identification of HSP70 as a molecular marker of early hepatocellular carcinoma.Hepatology 2003,37,198-207.
    [37]Reutelingsperger,C.P.M.,Dumont,E.,Thimister,P.W.,van Genderen,H.,et al.,Visualization of cell death in vivo with the annexin A5 imaging protocol.Journal of Immunologieal Methods 2002,265,123-132.
    [38]Masaki,T.,Tokuda,M.,Ohnishi,M.,Watanabe,S.,et al.,Enhanced expression of the protein kinase substrate annexin I in human hepatocellular carcinoma.Hepatology 1996,24,72-81.
    [39]Wu,W.G.,Tang,X.M.,Hu,W.,Lotan,R.,et al.,Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry.Clinical & Experimental Metastasis 2002,19,319-326.
    [40]Shi,T.,Dong,F.,Liou,L.S.,Duan,Z.H.,et al.,Differential protein profiling in renal-cell carcinoma.Molecular Carcinogenesis 2004,40,47-61.
    [41]Shibata,S.,Sato,H.,Ota,H.,Karube,A.,et al.,Involvement of annexin V in antiproliferative effects of gonadotropin-releasing hormone agonists on human endometrial cancer cell line.Gynecologic Oncology 1997,66,217-221.
    [42]Klaunig,J.E.,Xu,Y.,Isenberg,J.S.,Bachowski,S.,et al.,The role of oxidative stress in chemical carcinogenesis.Environmental Health Perspectives 1998,106,289-295.
    [43]Gu,S.,Liu,Z.,Pan,S.,Jiang,Z.,et al.,Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging.Mol Cell Proteomics 2004,3,998-1008.
    [44]Soldani,C.,Scovassi,A.I.,Poly(ADP-ribose) polymerase-1 cleavage during apoptosis:An update.Apoptosis 2002,7,321-328.
    [45]Chong,S.S.,Tanigami,A.,Roschke,A.V.,Ledbetter,D.H.,14-3-3 epsilon has no homology to LIS1 and lies telomeric to it on chromosome 17p13.3 outside the Miiler-Dieker syndrome chromosome region.Genome Research 1996,6,735-741.
    [46]Alfonso,P.,Nunez,A.,Madoz-Gurpide,J.,Lombardia,L.,et al.,Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis.Proteomics 2005,5,2602-2611.
    [47]Shuda,M.,Kondoh,N.,Imazeki,N.,Tanaka,K.,et al.,Activation of the ATF6,XBP1 and grp78genes in human hepatocellular carcinoma:a possible involvement of the ER stress pathway in hepatocarcinogenesis.Journal of Hepatology 2003,38,605-614.
    [48]Lim,S.O.,Park,S.J.,Kim,W.,Park,S.G.,et al.,Proteome analysis of hepatocellular carcinoma.Biochemical and Biophysical Research Communications 2002,291,1031-1037.
    [49]Yoon,G.S.,Lee,H.,Jung,Y.,Yu,E.,et al.,Nuclear matrix of calreticulin in hepatocellular carcinoma.Cancer Research 2000,60,1117-1120.
    [50]Ding,S.J.,Li,Y.,Shao,X.X.,Zhou,H.,et al.,Proteome analysis of hepatocellular carcinoma cell strains,MHCC97-H and MHCC97-L,with different metastasis potentials.Proteomics 2004,4,982-994.
    [51]Yu,L.R.,Zeng,R.,Shao,X.X.,Wang,N.,et al.,Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry.Electrophoresis 2000,21,3058-3068.
    [52]Pike,S.E.,Yao,L.,Setsuda,J.,Jones,K.D.,et al.,Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth.Blood 1999,94,2461-2468.
    [53]Pike,S.E.,Yao,L.,Jones,K.D.,Cherney,B.,et al.,Vasostatin,a calreticulin fragment,inhibits angiogenesis and suppresses tumor growth.Journal of Experimental Medicine 1998,188,2349-2356.
    [54]周筠梅等,蛋白质的错误折叠与疾病.生物化学生物物理进展 2000,27,579-584.
    [55]Bini,L.,Magi,B.,Marzocchi,B.,Arcuri,F.,et al.,Protein expression profiles in human breast ductai carcinoma and histologically normal tissue.Electrophoresis 1997,18,2832-2841.
    [56]Ryu,J.W.,Kim,H.J.,Lee,Y.S.,Myong,N.H.,et al.,The proteomics approach to find biomarkers in gastric cancer.Journal of Korean Medical Science 2003,18,505-509.
    [57]Szpaderska,A.M.,Frankfater,A.,An intracellular form of cathepsin B contributes to invasiveness in cancer.Cancer Research 2001,61,3493-3500.
    [58]Lincoln,D.T.,Emadi,E.M.A.,Tonissen,K.F.,Clarke,F.M.,The thioredoxin-thioredoxin reductase system:Over-expression in human cancer.Anticancer Research 2003,23,2425-2433.
    [59]L inco In DT,A.l.E.,Tonissen KF,et al.,The th io re2 doxin2th io redoxin reductase system:over expression in hu2 man cancer.A nticancer Res 2003,23.
    [60]Cuezva,J.M.,Krajewska,M.,de Heredia,M.L.,Krajewski,S.,et al.,The bioenergetic signature of cancer:A marker of tumor progression.Cancer Research 2002,62,6674-6681.
    [61]SZPADERSKA AM,F.A.,An intracellular form of cathepsin B contributes to invasiveness in cancer.Cancer Res,2001,61.
    [62]Lee,C.H.,Lum,J.H.K.,Cheung,B.P.Y.,Wong,M.S.,et al.,Identification of the heterogeneous nuclear ribonucleoprotein A2/B1 as the antigen for the gastrointestinal cancer specific monoclonal antibody MG7.Proteomics 2005,5,1160-1166.
    [63]Zech,V.F.E.,Dlaska,M.,Tzankov,A.,Hilbe,W.,Prognostic and diagnostic relevance of hnRNP A2/B1,hnRNP B1 and S100 A2 in non-small cell lung cancer.Cancer Detection and Prevention 2006,30,395-402.
    [64]Wu,S.L.,Sato,M.,Endo,C.,Sakurada,A.,et al.,hnRNP B1 protein may bca possible prognostic factor in squamous cell carcinoma of the lung.Lung Cancer 2003,41,179-186.
    [65]Bernard,K.,Litman,E.,Fitzpatrick,J.L.,Shellman,Y.G.,et al.,Functional protcomic analysis of melanoma progression.Cancer Research 2003,63,6716-6725.
    [66]Motoori,S.,Majima,H.J.,Ebara,M.,Kato,H.,et al.,Ovcrcxpression of mitochondrial manganese superoxide dismutase protects against radiation-induced cell death in the human hepatocellular carcinoma cell line HLE.Cancer Research 2001,61,5382-5388.
    [67]Spataro,V.,Norbury,C.,Harris,A.L.,The ubiquitin-proteasome pathway in cancer.British Journal of Cancer 1998,77,448-455.
    [68]Sanchez,J.C.,Schaller,D.,Ravier,F.,Golaz,O.,et al.,Translationally controlled tumor protein:a protein identified in several non-tumoral cells including erythrocytes Electrophoresis 1997,18,150.
    [69]Shields,J.M.,Rogers-Graham,K.,Der,C.J.,Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways.Journal of Biological Chemistry 2002,277,9790-9799.
    [70]Qi,Y.J.,Chiu,J.F.,Wang,L.D.,Kwong,D.L.W.,He,Q.Y.,Comparative proteomic analysis of esophageal squamous cell carcinoma.Proteomics 2005,5,2960-2971.
    [71]Li,K.W.,L.Cheng,J.Lu,YY.et.al.,Interaction between hepatitis C virus core protein and translin protein-a possible molecular mechanism for hepatocellular carcinoma and lymphoma caused by hepatitis C virus.WORLD JOURNAL OF GASTROENTEROLOGY 2003,9,The CAG repeat within the androgen receptor gene and its relationship to prostate cancer.
    [72]Seow,T.K.,Ong,S.E.,Liang,R.,Ren,E.C.,et al.,Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line,HCC-M,and identification of the separated proteins by mass spectrometry.Electrophoresis 2000,21,1787-1813.
    [73]Sanchez,J.C.,Schaller,D.,Ravier,F.,Golaz,O.,et al.,Translationally controlled tumor protein:A protein identified in several nontumoral cells including erythrocytes.Electrophoresis 1997,18,150-155.
    [74]Laronga,C.,Yang,H.Y.,Neal,C.,Lee,M.H.,Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression.Journal of Biological Chemistry 2000,275,23106-23112.
    [75]Cliby,W.,Sarkar,G.,Ritland,S.R.,Hartmann,L.,et al.,Absence of Prohibitin Gene-Mutations in Human Epithelial Ovarian-Tumors.Gynecologic Oncology 1993,50,34-37.
    [1]Tang,Z.Y.,Ye,S.L.,Liu,Y.K.,Qin,L.X.,et al.,A decade's studies on metastasis of hepatocellular carcinoma.Journal of Cancer Research and Clinical Oncology 2004,130,187-196.
    [2]Tang,Z.,Zhou,X.,Lin,Z.,Yang,B.,et al.,Surgical treatment of hepatocellular carcinoma and related basic research with special reference to recurrence and metastasis.Chin Med J(Engl) 1999,112,887-891.
    [3]Parkin,D.M.,Bray,F.,Ferlay,J.,Pisani,P.,Estimating the world cancer burden:GLOBOCAN 2000.International Journal of Cancer 2001,94,153-156.
    [4]Parkin,D.M.,Bray,F.,Ferlay,J.,Pisani,P.,Global Cancer Statistics,2002.CA Cancer J Clin 2005,55,74-108.
    [5]Gygi,S.P.,Rist,B.,Gerber,S.A.,Turecek,F.,et al.,Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.Nat Biotechnol 1999,17,994-999.
    [6]Futcher,B.,Latter,G.I.,Monardo,P.,McLaughlin,C.S.,Garrels,J.I.,A Sampling of the Yeast Proteome.Mol.Cell.Biol.1999,19,7357-7368.
    [7]Lincoln,D.T.,Ali Emadi,E.M.,Tonissen,K.F.,Clarke,F.M.,The thioredoxin-thioredoxin reductase system:over-expression in human cancer.Anticancer Res 2003,23,2425-2433.
    [8]Ding,S.J.,Li,Y.,Shao,X.X.,Zhou,H.,et al.,Proteome analysis of hepatocellular carcinoma cell strains,MHCC97-H and MHCC97-L,with different metastasis potentials.Proteomics 2004,4,982-994.
    [9]Snijders,A.P.,de Vos,M.G.,de Koning,B.,Wright,P.C.,A fast method for quantitative proteomics based on a combination between two-dimensional electrophoresis and 15N-metabolic labelling.Electrophoresis 2005,26,3191-3199.
    [10]Shui,W.,Liu,Y.,Fan,H.,Bao,H.,et al.,Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging.J Proteome Res 2005,4,83-90.
    [11] Zhang, G., Neubert, T. A., Automated Comparative Proteomics Based on Multiplex Tandem Mass Spectrometry and Stable Isotope Labeling. Mol Cell Proteomics 2006, 5, 401-411.
    [12] Shevchenko, A., Sunyaev, S., Loboda, A., Shevchenko, A., et al., Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 2001, 73, 1917-1926.
    [13] Gene Ontology, C., The Gene Ontology (GO) project in 2006. Nucl. Acids Res.2006, 34, D322-326.
    [14] Robinson, P. N., Bohme, U., Lopez, R., Mundlos, S., Nurnberg, P.,Gene-Ontology analysis reveals association of tissue-specific 5' CpG-island genes with development and embryogenesis. Hum. Mol. Genet. 2004,13, 1969-1978.
    [15] Gu, S., Liu, Z., Pan, S., Jiang, Z., et al., Global Investigation of p53-induced Apoptosis Through Quantitative Proteomic Profiling Using Comparative Amino Acid-coded Tagging. Mol Cell Proteomics 2004, 3, 998-1008.
    [16] Vasiliev, J. M., Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. Int J Dev Biol 2004, 48, 425-439.
    [17] Hayashi, E., Kuramitsu, Y., Okada, F., Fujimoto, M., et al., Proteomic profiling for cancer progression: Differential display analysis for the expression of intracellular proteins between regressive and progressive cancer cell lines.Proteomics 2005, 5, 1024-1032.
    [18] Hendrix, M. J., Seftor, E. A., Chu, Y. W., Trevor, K. T., Seftor, R. E., Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1996, 15, 507-525.
    [19] Goldschmidt-Clermont, P. J., Machesky, L. M., Doberstein, S. K., Pollard, T. D.,Mechanism of the interaction of human platelet profilin with actin. J. Cell Biol.1991, 113, 1081-1089.
    [20] Didry, D., Carlier, M.-F., Pantaloni, D., Synergy between Actin Depolymerizing Factor/Cofilin and Profilin in Increasing Actin Filament Turnover. J. Biol. Chem.1998,273,25602-25611.
    [21] Todorov, P. T., Hardisty, R. E., Brown, S. D., Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B).Biochem J 2001, 354, 267-274.
    [22] Inoue, A., Ikebe, M., Characterization of the Motor Activity of Mammalian Myosin VIIA. J. Biol. Chem. 2003, 278, 5478-5487.
    [23] Lengauer, C., Kinzler, K. W., Vogelstein, B., Genetic instabilities in human cancers. Nature 1998, 396, 643-649.
    [24] McCartney, B. M., Dierick, H. A., Kirkpatrick, C, Moline, M. M., et al.,Drosophila APC2 Is a Cytoskeletally-associated Protein that Regulates Wingless Signaling in the Embryonic Epidermis. J. Cell Biol. 1999, 146, 1303-1318.
    [25] Yu, X., Bienz, M., Ubiquitous expression of a Drosophila adenomatous polyposis coli homolog and its localization in cortical actin caps. Mech Dev 1999,84, 69-73.
    [26] Yu, X., Waltzer, L., Bienz, M., A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nat Cell Biol 1999, 1, 144-151.
    [27] Jarrett, C. R., Blancato, J., Cao, T., Bressette, D. S., et al., Human APC2 Localization and Allelic Imbalance. Cancer Res 2001, 61, 7978-7984.
    [28] McClung, J. K., Jupe, E. R., Liu, X. T., Dell'Orco, R. T., Prohibitin: Potential role in senescence, development, and tumor suppression. Experimental Gerontology 1995, 30, 99-124.
    [29] Nakagawa, H., Murata, Y., Koyama, K., Fujiyama, A., et al., Identification of a brain-specific APC homologue, APCL, and its interaction with beta-catenin.Cancer Res 1998, 58, 5176-5181.
    [30] Bienz, M., Hamada, F., Adenomatous polyposis coli proteins and cell adhesion.Curr Opin Cell Biol 2004, 16, 528-535.
    [31] Nakagawa, H., Koyama, K., Murata, Y., Morito, M., et al., APCL, a Central Nervous System-specific Homologue of Adenomatous Polyposis Coli Tumor Suppressor, Binds to p53-binding Protein 2 and Translocates it to the Perinucleus.Cancer Res 2000, 60, 101-105.
    [32] Naumovski, L., Cleary, M., The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol Cell Biol 1996, 16,3884-3892.
    [33] Thannickal, V. J., Fanburg, B. L., Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000, 279, L1005-1028.
    [34] Shin, B. K., Wang, H., Yim, A. M., Le Naour, F., et al., Global Profiling of the Cell Surface Proteome of Cancer Cells Uncovers an Abundance of Proteins with Chaperone Function. J. Biol. Chem. 2003, 278, 7607-7616.
    [35] Kropotov, A., Sedova, V., Ivanov, V., Sazeeva, N., et al., A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. Eur J Biochem 1999, 260, 336-346.
    [36] Stenmark, H., Olkkonen, V. M., The Rab GTPase family. Genome Biol 2001, 2,REVIEWS3007.
    [37] Zerial, M., McBride, H., Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001, 2, 107-117.
    [38] Schlierf, B., Fey, G. H., Hauber, J., Hocke, G. M., Rosorius, O., Rab11b Is Essential for Recycling of Transferrin to the Plasma Membrane. Exp Cell Res 2000, 259, 257-265.
    [39] Simpson, J. C, Griffiths, G., Wessling-Resnick, M., Fransen, J. A. M., et al., A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 2004,117,6297-6311.
    [40] Junutula, J. R., De Maziere, A. M., Peden, A. A., Ervin, K. E., et al., Rab14 Is Involved in Membrane Trafficking between the Golgi Complex and Endosomes.Mol. Biol. Cell 2004, 15, 2218-2229.
    [41] Feng, J. T., Liu, Y. K., Song, H. Y., Dai, Z., et al., Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 2005, 5, 4581-4588.
    [42] Meresse, S., Gorvel, J. P., Chavrier, P., The rab7 GTPase resides on a vesicular compartment connected to lysosomes. J Cell Sci 1995, 108, 3349-3358.
    [43] Vitelli, R., Santillo, M., Lattero, D., Chiariello, M., et al., Role of the Small GTPase RAB7 in the Late Endocytic Pathway. J. Biol. Chem. 1997, 272,4391-4397.
    [44] Gebhardt, C., Breitenbach, U., Richter, K. H., Furstenberger, G., et al.,c-Fos-Dependent Induction of the Small Ras-Related GTPase Rab11a in Skin Carcinogenesis. Am J Pathol 2005,167,243-253.
    [45] Boros, L. G., Puigjaner, J., Cascante, M., Lee, W.-N. P., et al., Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation. Cancer Res 1997, 57,4242-4248.
    [46] Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., et al., Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000, 19, 4310-4322.
    [47] Beere, H. M., 'The stress of dying': the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004, 117, 2641-2651.
    [48] Rane, M. J., Pan, Y., Singh, S., Powell, D. W., et al., Heat Shock Protein 27 Controls Apoptosis by Regulating Akt Activation. J. Biol. Chem. 2003, 278,27828-27835.
    [49] Charette, S. J., Lavoie, J. N., Lambert, H., Landry, J., Inhibition of Daxx-Mediated Apoptosis by Heat Shock Protein 27. Mol. Cell. Biol. 2000, 20,7602-7612.
    [50] Lewis, J., Devin, A., Miller, A., Lin, Y., et al., Disruption of Hsp90 Function Results in Degradation of the Death Domain Kinase, Receptor-interacting Protein (RIP), and Blockage of Tumor Necrosis Factor-induced Nuclear Factor-kappa B Activation. J. Biol. Chem. 2000, 275, 10519-10526.
    [51] Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., et al., Regulation of survivin function by Hsp90. PNAS 2003, 100, 13791-13796.
    [52] Basso, A. D., Solit, D. B., Chiosis, G., Giri, B., et al., Akt Forms an Intracellular Complex with Heat Shock Protein 90 (Hsp90) and Cdc37 and Is Destabilized by Inhibitors of Hsp90 Function. J. Biol. Chem. 2002, 277, 39858-39866.
    [53] Piotrowicz, R. S., Levin, E. G., Basolateral Membrane-associated 27-kDa Heat Shock Protein and Micro filament Polymerization. J. Biol. Chem. 1997, 272,25920-25927.
    [54] Piotrowicz, R. S., Hickey, E., Levin, E. G., Heat shock protein 27 kDa expression and phosphorylation regulates endothelial cell migration. FASEB J.1998, 12, 1481-1490.
    [55] Eustace, B. K., Sakurai, T., Stewart, J. K., Yimlamai, D., et al., Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 2004, 6, 507-514.
    [56] Rousseau, S., Houle, F., Huot, J., Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 2000,10,321-327.
    [57] Abe, M., Manola, J. B., Oh, W. K., Parslow, D. L., et al., Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 2004, 3, 49-53.
    [58] Thanner, F., Sutterlin, M. W., Kapp, M., Rieger, L., et al., Heat-shock protein 70 as a prognostic marker in node-negative breast cancer. Anticancer Res 2003, 23,1057-1062.
    [59] Syrigos, K. N., Harrington, K. J., Karayiannakis, A. J., Sekara, E., et al., Clinical significance of heat shock protein-70 expression in bladder cancer. Urology 2003,61, 677-680.
    [60] Li, Y., Tian, B., Yang, J., Zhao, L., et al., Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 2004, V130,460-468.
    [61] Wang, J. B., Establishment and some characteristics of a hepatoma cell line(QGY-7703) Zhonghua Zhong Liu Za Zhi 1981, 3, 241-244.
    [1]Jung,E.,Heller,M.,Sanchez,J.C.,Hochstrasser,D.F.,Proteomics meets cell biology:The establishment of subcellular proteomes.Electrophoresis 2000,21,3369-3377.
    [2]Haynes,P.A.,Roberts,T.H.,Subcellular shotgun proteomics in plants:Looking beyond the usual suspects.Proteomics 2007,7,2963-2975.
    [3]Pshezhetsky,A.V.,Fedjaev,M.,Ashmarina,L.,Mazur,A.,et al.,Subcellular proteomics of cell differentiation:Quantitative analysis of the plasma membrane proteome of Caco-2 cells.Proteomics 2007,7,2201-2215.
    [4]Dreger,M.,Subcellular proteomics.Mass Spectrometry Reviews 2003,22,27-56.
    [5]Huber,L.A.,Pfaller,K.,Vietor,I.,Organelle proteomics-Implications for subcellular fractionation in proteomics.Circulation Research 2003,92,962-968.
    [6]Rout,M.P.,Aitchison,J.D.,Molecular Trafficking 2000,pp.75-88.
    [7]Rout,M.P.,Aitchison,J.D.,Suprapto,A.,Hjertaas,K.,et al.,The yeast nuclear pore complex:Composition,architecture,and transport mechanism.Journal of Cell Biology 2000,148,635-651.
    [8]Heller,M.,Goodlett,D.R.,Watts,J.D.,Aebersold,R.,A comprehensive characterization of the T-cell antigen receptor complex composition by microcapillary liquid chromatography-tandem mass spectrometry.Electrophoresis 2000,21,2180-2195.
    [9]Wigge,P.A.,Jensen,O.N.,Holmes,S.,Soues,S.,et al.,Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization(MALDI) mass spectrometry.Journal of Cell Biology 1998,141,967-977.
    [10]莱因万德,黄培堂等译,D.L.斯.R.D.戈.L.A.,Cell:A Laboratory Manual 细胞实验指南,科学出版社,北京 2001.
    [11]Camera,P.,Da Silva,J.S.,Griffiths,G.,Giuffrida,M.G.,et al.,Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation.Nature Cell Biology 2003,5,1071-1078.
    [12]Jung,E.,Hoogland,C.,Chiappe,D.,Sancbez,J.C.,Hochstrasser,D.F.,The establishment of a human liver nuclei two-dimensional electrophoresis reference map.Electrophoresis 2000,21,3483-3487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700