用户名: 密码: 验证码:
血吸虫病门脉高压小鼠肠道黏膜屏障功能和肠系膜静脉血管病变关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1、构建稳定、可靠、符合血吸虫感染自然演变过程的血吸虫病门脉高压小鼠动物模型,研究该模型肝脏病变和门静脉高压的进展情况。
     2、研究血吸虫病门脉高压小鼠肠黏膜屏障功能的改变和内毒素血症的关系,探讨内毒素通过肠黏膜屏障的机制。
     3、研究LPS信号转导通路的跨膜受体TLR-4/MD-2在血吸虫病门脉高压小鼠肠系膜静脉中的表达,以探讨肠源性内毒素血症在门脉高压性肠系膜静脉血管病变中的作用。
     4、研究IRAK-4在血吸虫病门脉高压小鼠肠系膜静脉中的表达情况,探讨LPS导致门脉高压性肠系膜静脉血管病变的机制。
     方法:
     1、用腹部敷贴法制作血吸虫病小鼠模型,分别在感染尾蚴后6周、12周、20周,以HE染色、Masson三色染色、透射电镜观察小鼠肝脏及结肠组织病变情况,测量门静脉直径和门静脉压力以了解该模型血液动力学变化情况。
     2、用FITC-D法检测血吸虫病门脉高压小鼠肠黏膜通透性的改变,MT-1鲎试剂基质显色法测定门静脉血内毒素含量,取肝脏组织细菌培养以了解细菌移位情况;免疫组织化学和Western blot法检测结肠组织occludin蛋白表达,TUNEL法检测结肠黏膜细胞原位凋亡。
     3、RT-PCR方法检测血吸虫病门脉高压小鼠肠系膜静脉中TLR-4/MD-2及TNF-α的表达,将门静脉血内毒素含量与TLR-4/MD-2表达量行相关性分析。
     4、Western blot和RT-PCR检测IRAK-4在血吸虫病门脉高压小鼠肠系膜静脉中的表达,行IRAK-4和TNF-α表达的相关性分析。
     结果:
     1、腹部敷贴法制作血吸虫病小鼠模型,感染成功率100%,死亡率36%;动物感染后12周出现肝纤维化,20周出现肝硬化表现;门静脉压力在感染后12周就明显升高,并持续保持较高水平。
     2、与正常组对比,随着病程的进展,各时间组小鼠门静脉血FITC-D含量显著升高(p<0.01),门静脉血中内毒素含量及肝组织细菌培养均同步上升,门静脉血中内毒素含量与FITC-D含量呈显著正相关(r=0.543,p<0.01);紧密连接蛋白occludin表达显著减少;肠黏膜细胞原位凋亡明显增多。(p值均<0.01)
     3、血吸虫病小鼠肠系膜静脉中TLR-4/MD-2及TNF-α的mRNA表达均较正常组显著升高(p<0.01);20周组TLR-4/MD-2表达与12组比较显著升高(p<0.01),TLR-4/MD-2表达量与门静脉血内毒素含量呈正相关(r1=0.548, p<0.01;r2=0.534, p<0.01);TNF-α的表达12周组与20周组无显著性差异(p>0.05)。
     4、各时间组血吸虫病小鼠肠系膜静脉IRAK-4 mRNA和蛋白的表达较正常组显著升高(p<0.01),12周组与20周组间比较无显著性差异(p>0.05),IRAK-4表达量与TNF-α呈正相关(r=5.56, p<0.01)。
     结论:
     我们所构建的血吸虫病小鼠模型符合人体血吸虫病的发病规律、门静脉系统血流动力学改变明显,是研究血吸虫病及门脉高压症的理想模型;血吸虫病门脉高压小鼠随着门脉压力的增高,存在着明显的肠黏膜屏障功能障碍和肠源性内毒素血症,肠道通透性升高是肠源性内毒素血症产生的重要原因之一。细菌、内毒素等大分子物质可能通过细胞旁途径和跨细胞途径进入肠道固有层和门静脉血;入血后的内毒素通过其特异性的TLR-4信号转导途径启动对肠系膜静脉的损害,引起和加重门脉高压性血管病变;但其下游TNF-α等炎性因子表达与TLR-4表达量无明显相关,而IRAK-4可能才是内毒素诱导的炎性因子表达的关键性调控因子,其在内毒素导致的门脉高压肠系膜血管病变中起着重要作用,是治疗门脉高压性血管病变的一个有效靶点。
OBJECTIVE
     1. Design a steady、credible rat model of schistosomal portal hypertension. The model accord with the nature course of schistosomiasis. To observe the change of liver criihosis and portal hypertension.
     2. To study the relation of gut barrier and endotoxemia. To explore the track of endotoxin through gut barrier.
     3. To study the changes of expression of Toll-like receptor 4 and myeloid differentiation protein-2 of mesenteric vein in rats with Schistosomal portal hypertension. To explore the role of intestinal endotoxemia in mesenteric vein vasculopahty.
     4. To study the changes of expression of interleukin 1 receptor-associated kinase 4 of mesenteric vein in mice with Schistosomal portal hypertension.
     METHODS
     1. Infected mice percutaneously with cercariae of schistosomiasis japonica. Subdividing mice into 6 week、12 week and 20 week groups. HE stain、Masson trichrome stain and transmission electron microscope examination was used to observe pathologic pattern of liver and colon. The diameter of portal vein and portal venous pressure was used to observe the change of flow dynamics.
     2. To observe the change of gut barrier function by FITC-D. Endotoxin was measured by MT-1 reagent box. Liver tissue was collected for germiculture. Immunohistochemistry and quantitative analysis of Western blot were applied to detect the protein expression of occluding. TUNEL methods was applied to detect the apoptosis of colon mucous membrane cell.
     3. RT-PCR were applied to detect the mRNA expression of TLR-4/MD-2 and TNF-αin the mesenteric vein. Analyzed the pertinency between expression of TLR-4 and endotoxemia.
     4. RT-PCR and Western blot were applied to detect the protein and mRNA expression of IRAK-4 in the mesenteric vein. Analyzed the pertinency between expression of IRAK-4 and TNF-α.
     RESULTS
     1. The infected rate of model mice is 100%, mortality rate is 36%. At the 12th week after infection, the liver fibrosis was occurred; at the 20th week after infection, the liver cirrhosis was occurred. Portal venous pressure was gradually raised at 12th week group, and keeping a high level at 20th week group.
     2. The concentration of FITC-D and in 12th week and 20th week group is significantly stronger than normal group (p<0.01), this trend was positively correlated to increased the concentration of endotoxin(r=0.543,p<0.01). The ratio of bacteria translocation in 12th week and 20th week group is also significantly higher than normal group (p<0.01). The expression of occludin in 12th week and 20th week group is significantly lower than normal group; The apoptosis index of 12th week and 20th week group is significantly higher than normal group.
     3. The expression of TLR-4、MD-2 and TNF-αmRNA in 12th week and 20th week group is significantly stronger than normal group (p<0.01). The expression of TLR-4/MD-2 mRNA was positively correlated to increased of the concentration of endotoxin(r1=0.548, p<0.01;r2=0.534, p<0.01). The expression of TNF-αmRNA in 12th week has no significantly difference(p>0.05).
     4.The expression of IRAK-4 protein and mRNA in 12th week and 20th week group is significantly stronger than normal group (p<0.01), comparing 12th week and 20th week group, there has no significantly difference(p>0.05). The expression of IRAK-4 mRNA was positively correlated to increased of the expression of TNF-αmRNA(r=5.56, p<0.01).
     CONCLUSION
     The mice model establish by infecting percutaneously with cercariae of schistosomiasis japonica has a nature course of schistosomiasis. It has a significantly change of portal flow dynamics. It is a appropriate model to study schistosomal cirrhosis and portal hypertension. The development of portal hypertension is accompanied by the damaged of gut barrier and portal endotoxemia. The raise of intestinal permeability is the main reason of intestinal endotoxemia. LPS can upregulate the expression of its signaling receptor :TLR-4. Through the TLR-4 signaling pathways, LPS can induce IRAK-4 is the key regulator in the TLR-4 signaling pathway, it play an important roll in portal hypertension vasculopahty.
引文
[1]杨镇,裘法祖,王在华.家兔血吸虫模型的建立及其特点.中华实验外科杂志,1993,10(4):145-146
    [2]唐望先,吴翠环,金琦,等.肝炎平对日本血吸虫肝纤维化兔肝脏酶组织化学作用的研究.中国组织化学与细胞化学杂志,2002,15(1):82-84
    [3] Bedossa P,Houglum K, Trantwein C,et al. Stimulation of collagen I gene expression is associated with lipid peroxidation in hepatocellular injury a link to tissue fibrosis. Hepatology,1994, 19(5): 1262-1271.
    [4] Rockey DC. Vasoactive agents in intrahepatic portal hypertension and fibrogenesis: implications for therapy. Gastroenterology. 2000, 118(6): 1261-1265
    [1] Pape HC, Dwenger A, Regel G.. Increased gut permeability after multiple trauma. Br JSurg, 1994;81:850-852
    [2] Doig CJ, Sutherland LR, Sandham JD. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med, 1998;158:444-451
    [3] Chiva M, Guarner C, Peralta C, et al. Intestinal mucosal oxidative damage and bacterialtranslocation in cirrhotic rats. Eur J Gastroenterol Hepatol, 2003;15(2): 145-150.
    [4] Zhang HY, Han DW, Wang XG, et al. Experimental study on the role of endotoxin in the development of hepatopulmonary syndrome. World J Gastroenterol, 2005; 11(4): 567-572.
    [5] Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol, 2002;8(6):961-965.
    [6] Brun P, Castagliuolo I, Pinzani M, et al. Exposure to bacterial cell wall products triggers an infammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2005;289(3):G571-8.
    [7] Gonzalez-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins. [J]. Progress in Biophysies & Molecular Biology. 2003,81:1-44
    [8] Lapierre LA. The molecular structure of the tight junction. [J]. Advanced Drag Delivery Reviews. 2000,Jun;41(3):255-264.
    [9] Beltinger J, Mckaing BC, Makh S. et al. Human colonic subepithelial myofibroblasts modulate transepithelial resistance and sceretory response. [J]. Am J physiol. 1999,Aug;277 (2 pt 1): C271-279.
    [10] Berkes J, Viswanathan VK, Sarkovic SD, et al.: Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut. 2003 Mar; 52(3):439-51. Review.
    [11] Mazzon E, Sturniolo GC, Puzzolo D, et al. Effect of stress on the paracellular barrier in the rat ileum. GUT, 2002, Oct;51(4):507-513
    [12]王莉,李健,陈延民,等.不同月龄大鼠空肠粘膜上皮细胞的形态增殖及凋亡.动物学报,2000;49(1):91-97.
    [13]姚国相,沈忠义,薛新波,等. CCL4致肝硬变门静脉高压大鼠肠黏膜通透性的变化.世界华人消化杂志2005,13(13):1606-1608.
    [14] Drewe J, Beglinger C, Fricker G. Effect of ischemia on intestinal permeability of lipopolysaccharides.European Journal of Clinical Investigation, 2001;31(2):138-144.
    1.Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science,1998,282:2085-2088
    2. Chow JC, Young DW, Golenbock DT, et al. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Biol Chem, 1999,274:10689-10692.
    3 Visintin A, Latz E, Monks BG, et al. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. Biol Chem, 2003, 278: 48313-48320.
    4.Tasaka S, Ishizaka A, Yamada W, et al. Effect of CD14 blockade endotoxin-induced acute lung injury in mice. Am J Respir Cell Mol Biol, 2003,29:252-258.
    5.Yang Z, Zhang L, Li D P, et al. Pathological morphology alteration of splanchnic vascular wall in portal hypertensive patients. Chinese Medical J, 2002, 115: 559-562.
    6.杨镇,任大宏,胡虞乾,等.肝硬化病人脾静脉和胃冠状静脉壁类粥样硬化改变.中华实验外科杂志,1999,16:575.
    7.Paik YH, Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003, 37: 1043-1055.
    8. An H, Yu Y, Zhang M, et al. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Int J Clin Pharmacol Ther, 2004,42:63-72.
    9.王洪艳,曲鹏,吕申,等. Toll样受体4/核因子κB和氧化低密度脂蛋白受体LOX-1对单核内皮细胞黏附的影响.中华心血管杂志,2005,9:827-831.
    [1] Tasaka S, Ishizaka A, Yamada W, et al. Effect of CD14 blockade endotoxin-induced acute lung injury in mice. Am J Respir Cell Mol Biol, 2003,29:252-258.
    [2] Kopp EB, Medzhitov R. Toll receptor family and control innate immunity. J Curr Opin Immunol,1999 ,11:13-18
    [3] Vives PM,Somoza N, Fernandez-Alvarez J,et al. Evidence of expression of endotoxin receptors CD14,Toll like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells.[J] Clin ExP Immuno1,2003, 133(2): 208 -218.
    [4] Hatao F, Muroi M, Hiki N, et al. Prolonged Toll-like receptor stimulation leads to down-regulation of IRAK-4 protein. [J] Leukoc Biol, 2004, 76:904-908.
    [5] Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. [J] Endotoxin Res, 2004,10:71-84.
    [6] Lye E, Mirtsos C, Suzuki N, et al. The role of IRAK-4 kinase activity in IRAK-4 mediated signaling. [J] Biol Chem, 2004, 279:40653-40658.
    [1] Meclzhitov R, Preston Hulhurt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.[J].Nature, 1997, 388(6640):394~97.
    [2] Yoshimura A, Lien E,Ingalls RR,et al.Cutting edge recognition of gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2 [J].J.Immunol, 1999,163: 1-5
    [3] Kopp EB, Medzhitov R. Toll receptor family and control innate immunity. J Curr Opin Immunol,1999 ,11:13-18
    [4] Muzio M , Bosiso D , Polenarufi N ,et al. Differential expression and regulation of Toll-like receptors(TLRs ) in human leukcocytes; selective expression of TLRs in dendritic cells. J Immuno1,2000,164;5998-6004.
    [5] Tasaka S, Ishizaka A, Yamada W, et al. Effect of CD14 blockade endotoxin-induced acute lung injury in mice. Am J Respir Cell Mol Biol, 2003,29:252-258.
    [6] MuroiM,Ohnishi T,Tanamoto K.Regions of the mouse CD14 molecu1e requirecl for toll-like receptor 2- and 4-mediated activation of NF-kappa B.[J] J Bio; Chem,2002, 277 ( 44): 42372-42379
    [7] Shimazu R, Akashi S,Ogata H,et al.MD-2,a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4.J Exp Med,1999, 189: 1777-1782.
    [8] Visintin A, Latz E, Monks BG, et al. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. Biol Chem, 2003, 278: 48313-48320.
    [9] Correia JS,Soldau K,Christen U,et al. Lipopolysaccharideis in close proximity to each of the prote in its menhrane receptor complex Transfer from CD14 to TLR4 and MD-2.[J] Biol Chem,2001, 276:21129-21135
    [10] Nagai Y,Akashi S,Nagafuku M at al. Essential role of MD 2 in LPS responsiveness and TLR4 distribution.Nat Inmunol, 2002,3(7):667
    [11] Akashi S, Saitoh S,Wakabayashi Y, et al Lipcpclysaccharicle in teraction with cell surface Toll-like receptor 4/MD-2:higher affinity than that with MD-2 or CD14.[J] JExp Med,2003,198(7):1035-1042.
    [12] Li YL, Liang YC, Lee SS, et al. Polysaccharide purified from Genoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-κB and p38 mitogen-activated protein kinase pathways.[J] Leukoc Bio1,2005, 78; 533-543.
    [13] Kim GY, Han MG, Song YS, et al. Proteoglycan isolated from Phellinus linteus induces Toll-like receptors 2- and 4-mediated maturation of murine dendritic cells via activation of ERK,p38,and NF-κB. Biol Pharm Bu11,2004,27;1656-1662.
    [14] Netea MG, Sutmuller R,Hennann C,et e1.Toll-like receptor 2 suppresses immunity against candide albicans through induction of IL-10 and regulatory T cells. [J] Immuno1,2004,172;3712-3718.
    [15] Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immuno1, 2000, 1; 398-401
    [16] Homer AA, Rodecke V, Raz E. Toll-like receptor ligands: hygiene, atopy and therapeutic implications.[J] Curr Opin Allergy Cain Imnunol, 2004, 4( 6):555-561
    [17] Kariko K,Weissman D,Welsh FA. Inhibition of tolk-like receptor and cptokine signalinb -A unifying theme in iechemic tolerance. J Cereb Blood Flow Metab,2004,24 (11): 1288-1304.
    [18] Vives PM,Somoza N, Fernandez-Alvarez J,et al. Evidence of expression of endotoxin receptors CD14,Toll like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells.[J] Clin ExP Immuno1,2003, 133(2):208-218.
    [19] Hwang D,Jang BC,Yu G, et al.Expression of mitogen inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-kappaB signaling pathways in macrophages [J].Biochem Pharmacol, 1997, 54(1): 87-96.
    [20] Kawai T,Adachi O,Ogawa T,et al.Unresponsiveness of MyD88-deficient mice to enclotoxin [J].Immunity, 1999, 11(1):115-122
    [21] Hoshino K,KaishoT,Iwabe T,et al.Differential involvement of IFN-a in Toll-like receptor-stimulated dendritic cell activation. [J]Int Immunol,2002,14(10):1225-1231.
    [22] YamamotoM,Sato S,Mori K,et al.Cutting edge: A novel Toll/IL-1 receptor domain- containing adapter that preferentially activates the IFN-a promoter in the Toll-like receptor singaling. [J] Immunol,2002,169(12):6668-6672.
    [23] Fitzgerald KA, Rowe DC, Barnes BJ,et al. LPS-TLR4 signaling to IRF-3/7 and NF-kB involves the Toll adapters TRAM and TRIF. [J] Exp Med,2003,198(7):1043-1055.
    [24] Rosenzweig HL,Lessov NS,Henshall DC,et al. Enclotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice.[J] Stroke, 2004, 35:2576-2581
    [25] Siedlar M,Frankenberger M,Benkhart E,et al.Tolerance induced by the lipopeptide Pam3Cys is due to ablation of IL-1R-associated kinase-1.[J] Immunol,2004, 173 (4) :2736 - 2745.
    [26] Fan H, Cook,JA. Molecular mechanisms of enclotoxin tolerance.[J] Endotoxin Res, 2004, 10:71-84.
    [27] Qureshi ST.Lariviere L,Leveque G,et al.Endoloxin toleranl mice have mutations in Toll like receptor 4(T Ir4).[J]Exp Med,1999,189,615-625.
    [28] Nancv CA,Lorenz E,Brain CS,eL al.TLR4 mutation are associated with endoloxin hyporesponsiveness in human. Nature Genetics. 2000,25,187-191.
    [29] Ohta S, Bahrun U, Tanaka M,e1 al. Identification of a novel isoform of MD-2 that down regulates lipopolysaccharirle sigaling.[J] Biochem B iophys Res Commun, 2004, 323:1103-1108.
    [30] Qin J,Qian Y,Yao J,et al.SIGIRR inhihits interleukin-1 receptor and toll like receptor 4-mediated signaling through different mechanims. [J] Biol Chem, 2005, 280, 25233-25241.
    [31] Brint EK, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin 1 receptor and toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol, 2004,5, 373-379
    [32] Burns K, Janssens S, Brissoni B. Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced short form of MyD88 is due to its failure to recruit IRAK-4.J Exp Med,2003,197:263-268
    [33] Siedlar M,Frankenher M,Benkhart E,et al.Tolerance induced by the lipopeptide Pam3Cys is due to ablation of IL-1R-associated kinase-1.[J] Immunol,2004, 173(4):2736-2745.
    [34] Picard C, Puel A, Bonnet M,et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. [J] Science, 2003, 299: 20776-2079.
    [35] Anssens S,Beyaert R.Functional diversity and regulation of different Interleukin-1 receptor-associated kinase(IRAK) family members. Mol Cell, 2003, 2:293-302.
    [36] Janssens S,Burns K,Vercammen E,eL al MyD88s, a splice variant of MyD88, differenlly modulates NF-kappaB and AP-1-dependent gene expression. FEBS Lett, 2003, 548 :103-107.
    [37] Lye E, Mirtsos C, Suzuki N,et al. The role of IRAK-4 kinase activity in IRAK-4 mediated signaling .[J] Biol Chem,2004,279:40653-40658
    [38] Currie AJ, Davidson DJ, Reid GS, et al. Primary immunodeficiency to pneumococcal infection due to a defect in Toll-like receptor signaling. [J] Pediatr, 2004,144:512-518.
    [39] Puel A,Picard C, Ku CL,et al. Inherited disorders of NF-kappaB-mediated immunity in man.[J] Curr Opin Immunol,2004,16:34-41.
    [40] Hatao F,Muroi M,Hiki N,et al. Prolonged Toll-like receptor stimulation leads to down-regulation of IRAK-4 protein. [J] Leukoc Biol, 2004,76:9074-9083.
    [41] Otte M, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cell. [J] Gastroenterology, 2004,126: 1054-1070.
    [42] De Nardo D,Masendycz P,Ho S. A central role for the Hsp90-cdc37 molecular chaperone module in interleukin-1 receptor-associated-kinase-depedent signaling by toll-like receptors. [J] Biol Chem, 2005, 280 9813-9822.
    [43] Baetz A,Frey M,Heeg K,et al Suppressor of cytokine signaling(SOCS) proteins indirectly regulate toll-like receptor signaling in innate inmune cells.[J] Biol Chem, 2004, 279: 54708-54715.
    [44] Li X, Qin J. Modulalion of toll-interleukin 1 receptor mediated signaling. [J] Me1 Med, 2005, 83:258-266.
    [45] Mostecki J, Showalter BM, Rothman PB. Early growth response-1 regulates lipopolysaccharide -induced suppressor of cytokine signaling-1 transcription.[J] Biol Chem,2005,280:2596-2605.
    [46] Liew FY, Komai-Koma M,Xu D. A toll for T cell costimulation. [J].Ann Rheum Dis, 2004, 63( Suppl 2):ii76-ii78.
    [47] Kaisho T, Takeudi O,Kawai T, et al. Endotoxin-induced maturation of MyD88- deficient dendritic ce11s. [J] J Immunol, 2001, 166(9):5688-5694.
    [48] Liu N,Ohnishi N,Ni L,et al. CpG driectly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. [J] Nat Immunol,2003,4(7):687-693.
    [49] Eisenbarth SC, Piagott DA, Huleatt JW, et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen [J].J Exp Med, 2002,196(12):1645-1651.
    [50] Zeuk ES, Ulner AJ, Kusumoto S, et al. TLR4-mediated in flammatory activation of human coronary artery endothelial cells by LPS.[J] Cardiovase Res,2002, 56(1): 126- 134.
    [51] Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions.[J] Circulation,2002, 106: 1985 -1990.
    [52] Shi W, Wang X, Tangchipiyanond K, et al. A therosclerosis in C3H/HeJ mice reconstituted with apolipoprotein E-null bone marrow.[J] Arterioscler Thromb Vasc Biol,2002,22:650-655.
    [53] Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed in murine and human lpid-rich atherosclerotic plaques and upregulate by oxidized LDL.[J] Circulation, 2001,104:3103-3108.
    [54] Hausmann M,Kiessling S, Mestermann S, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. [J] Gastroenterology, 2002, 122(7): 1987-2000.
    [55] Franchimont D, Vemeire S, Housni H, et al Deficient hostbacteria interactions in inflammatory bowel disease? The toll-like receptor(TLR) 4 Asp299g1y polymorphism is associated with Crohn disease and Ulcerative colitis. Gut, 2004, 53:987-992.
    [56] Paik YH, Schwabe RF, Bataller B,et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003,37:1043-1055.
    [57] Kono H, Wheeler MD, Rusyn I, et al. Gender differences in early alcohol-induced liver injury: role of CD14, NF-κB, and TNF-α.[J] Am J Physiol Gastrointest Liver Physiol,2000,278(4):G652-661.
    [58] Uesugi T, Froth M, Arteel GE, et al. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice.[J] Hepatology, 2001,34(1):101-108.
    [59] Liu Y, Wang Y, Yamakuchi M, et al. Upregulation of Toll-like receptor 2 gene expression in macrophage response to peptidoglycan and high concentration of lipopolysaccharide is involved in NF-Κb activation.[J] Infect Immun, 2001, 69(5): 2788-2796.
    [60] Manigold T, Bocker U, Hanck C, et al. Differential expression of toll-like receptors 2 and 4 in patients with liver cirrhosis. Eur J Gastroenterol Hepatol, 2003,15: 275-282.
    [61] Machida K, ChengKT, Sung VM,et al. Hepatitis C virus induces Toll-like receptor 4 expression ,leading to enhanced production of beta interferon and interleukin-6.[J] Virol, 2006,80;866-874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700