用户名: 密码: 验证码:
悬浮阵列技术检测循环肿瘤细胞预测乳腺癌早期复发转移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     乳腺癌是严重威胁妇女健康的疾病,乳腺癌的早期检出能够降低乳腺癌病人的死亡率。乳腺癌病人死亡与早期肿瘤复发转移密切相关,而早期转移往往发生在乳腺癌的较早阶段。而循环肿瘤细胞具有原发肿瘤的特征,肿瘤转移前后都可以检测到循环肿瘤细胞。乳腺癌循环肿瘤细胞的检测意义重大,包括乳腺癌的早期诊断,复发转移的早期诊断,指导术后治疗等多个方面。因此通过改善血液中隐蔽转移肿瘤细胞的检测方法以做出乳腺癌早期复发转移的诊断,对于病人的预后以及治疗措施的选择具有重大意义。
     悬浮阵列是一种多功能的生物芯片平台,它有机地整合了编码微珠、激光技术、应用流体学、高速数字信号处理器和计算机运算法则,造就了其检测的高特异性和高灵敏度,可广泛应用于DNA杂交、免疫分析、基因及蛋白质表达谱分子检测等多个研究领域,也是目前唯一被美国FDA批准用于临床诊断的生物芯片平台。
     本课题基于Luminex?100激光流式分析仪平台,建立可以同时检测乳腺癌患者外周血中8种循环肿瘤细胞基因(包括hMAM、HER2、CK-19、SBEM、EPG2、hTERT、β-HCG和B305D)表达水平的悬浮阵列方法,以探讨多基因联合检测在乳腺癌早期复发转移诊断中的应用价值。
     方法
     1.参考国外文献我们选择了8种循环乳腺癌细胞相关基因进行研究,并使用Primer 5.0软件设计引物和探针序列;
     2.将人乳腺癌细胞株MCF7加至健康人外周血中,制成含有不同浓度乳腺癌细胞的外周血标本模型,用于建立可以同时检测8种循环肿瘤细胞基因表达水平的逆转录PCR方法;
     3.合成好的探针用于包被Luminex微珠,制备Luminex杂交液;
     4.建立可以同时检测8种循环肿瘤细胞基因表达水平的悬浮阵列方法,并进行方法学评价;
     5.收集乳腺癌患者外周血标本,以悬浮阵列技术检测乳腺癌患者外周血循环肿瘤细胞癌基因;
     6.分析乳腺癌相关基因表达与肿瘤组临床病理因素、临床分期的关系,并用Cox比例风险模型寻找乳腺癌术后复发转移的独立预后因素。
     结果
     成功建立了可以同时检测乳腺癌患者外周血中8种循环肿瘤细胞基因(包括HER2、CK-19、hMAM、SBEM、hTERT、β-HCG、EGP2和B305D-C)表达水平的悬浮阵列测定方法,本方法检测限为从1ml全血中可以检测到50个MCF7细胞。悬浮阵列方法特异性评估分析结果显示,每种微珠上包被的特异性探针仅和相应基因的PCR产物杂交,没有发现交叉反应,未检测到假阴性和假阳性的结果。在全部73例乳腺癌患者中,单个基因检测的阳性率从大到小排列的结果为hMAM、HER2、CK19、SBEM、EPG2、hTERT、β-HCG和B305D,分别为58%、58%、53%、52%、31%、26%、22%和15%;多基因联合检测与血清CA15-3比较,检测乳腺癌预后有更高的灵敏度(P<0.05);8个乳腺癌相关基因的表达与患者的年龄、肿瘤大小和肿瘤类型无关(P>0.05),其中只有SBEM的表达与临床分期有比较明显的相关性(X2=8.310,P=0.040<0.05)。Cox比例风险模型发现hMAM、SBEM、HER2、ER为乳腺癌复发转移的独立预后因素,其相对危险度(HR)分别为2.66、2.88、2.63和0.43。
     结论
     建立的悬浮阵列方法在乳腺癌的预后判断和临床治疗方面具有很大的实用价值。外周血循环肿瘤细胞hMAM、SBEM和HER2的表达可以作为分子标记物预测乳腺癌的复发转移。
Backgroud and Objective
     Early detection of breast cancer can reduce the morbidity and mortality of breast cancer patients . Breast cancer mortality occurs in a substantial portion of breast cancer patients and is increasingly linked to early metastases, which are often occult at the time of primary diagnosis. Because undetected micrometastases can contribute to the failure of primary treatment, their identification in patients with early breast cancer relapse may have a substantial impact on prognosis and treatment choice for these patients. It is very convenient for collecting peripheral blood samples to detect occult circulating peripheral tumor cells, which is more favourable for clinical monitoring consecutively. Thus, improved direct identification of these occult metastases in blood offers a critical opportunity to optimize management of breast cancer patients.
     Microsphere-based suspension array technologies, such as the Luminex xMAP system, offer a new platform for high-throughput nucleic acid detection which is being used in a variety of applications. Some benefits of suspension array technology include rapid data acquisition, excellent sensitivity and specificity, and multiplexed analysis capability. As compared to planar microarrays, suspension arrays have the benefits of ease of use, low cost, statistical superiority, faster hybridization kinetics and more flexibility in array preparation.
     So we want to develop a Suspension array assay for the detection of marker genes expression for human circulating breast cancer cells ,in order to analyze the independent prognostic predictors of breast cancer metastasis.
     Methods
     1. The Primer 5.0 software is used to design the primers and probes sequences for marker genes for human circulating breast cancer cells.
     2. In order to prepare Luminex hybridization liquid, the specific probes was used to coat Luminex beads.
     3. The human MCF7 cells is used as a model to develop a Suspension array assay for the detection of marker genes expression for human circulating breast cancer cells.
     4. Then our suspension array is used to examine the multigene expression in PBMC of 73 breast cancer patients,including the breast cancer relapse patients.
     5. COX proportional hazard modle was used to find the independent prognostic predictors of breast cancer relapse.
     Results
     We develop successfully a suspension array assay for the detection of marker genes expression for human circulating breast cancer cells (including hMAM、HER2、CK19、SBEM、EPG2、hTERT、β-HCG and B305D) ,and the detection limit of this assay is to detect 50 MCF7 tumor cells per milliliter peripheral blood. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The assay was optimized to allow for maximum sensitivity in a multiplexed format. And there were no false-positive results or false-negative results being detected. Gene expression analysis of cells collected from blood of 73 women with breast cancer was performed with the multigene RT-PCR and suspension array assay. hMAM expression was detected in 58%, HER2 in 58%, CK19 in 53%, SBEM in 52%, EPG2 in 31%, hTERT in 26%,β-HCG in 22% and B305D in 15% of the blood samples, respectively. But detection in peripheral blood of any of the eight marker genes included in the multigene assay is not significantly associated with increasing age, tumor size and tumor type.And we discover that hMAM, SBEM, HER2 and ER could be considered as the independent prognostic predictors of breast cancer relapse by using Cox PH model, and the Relative hazard(HR) of hMAM, SBEM, HER2 and ER is 2.66,2.88,2.63 and 0.43, respectively.
     Conclusion
     The sensitivity and specificity of the suspension array assay for the detection of marker genes expression for human circulating breast cancer cells are rather high, and the characterization of circulating tumor cells based on the detection of breast-specific marker genes with a suspension array assay has good potential for early detection of early detection of breast cancer relapse. And the expression of hMAM、SBEM and HER2 in peripheral blood can be considered as the independent prognostic predictors of breast cancer metastasis.
引文
1 Reinholz MM, Nibbe A, Jonart LM, et al. Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin Cancer Res, 2005,11(10):3722-3732.
    2 Carcoforo P, Bergossi L, Basaglia E, et al. Prognostic and therapeutic impact of sentinel node micrometastasis in patients with invasive breast cancer. Tumori, 2002,88 (3): S4-S5.
    3 Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol, 2004,5(2):79-88.
    4 Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev, 2001,27(3):137-142.
    5 Ferretti G, Felici A, Papaldo P, et al. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol JT - Current opinion in obstetrics & gynecology, 2007,19(1):56-62.
    6 Oakley GJ 3rd, Tubbs RR, Crowe J, et al. HER-2 amplification in tubular carcinoma of the breast. Am J Clin Pathol JT - American journal of clinical pathology, 2006,126(1):55-8.
    7 Pinzani P, Salvadori B, Simi L, et al. Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum Pathol JT - Human pathology, 2006,37(6):711-8.
    8 Prati R, Apple SK, He J, et al. Histopathologic characteristics predicting HER-2/neu amplification in breast cancer. Breast J JT - The breast journal, 2005,11(6):433-9.
    9 Lopez-Guerrero JA, Llombart-Cussac A, Noguera R, et al. HER2 amplification in recurrent breast cancer following breast-conserving therapy correlates with distant metastasis and poor survival. Int J Cancer JT - International journal of cancer. Journal international du cancer, 2006,118(7):1743-9.
    10 Dybdal N, Leiberman G, Anderson S, et al. Determination of HER2 gene amplification by fluorescence in situ hybridization and concordance with the clinical trials immunohistochemical assay in women with metastatic breast cancer evaluated for treatment with trastuzumab. Breast Cancer Res Treat JT - Breast cancer research and treatment, 2005,93(1):3-11.
    11 Tse C, Brault D, Gligorov J, et al. Evaluation of the quantitative analytical methods real-time PCR for HER-2 gene quantification and ELISA of serum HER-2 protein and comparison with fluorescence in situ hybridization and immunohistochemistry fordetermining HER-2 status in breast cancer patients. Clin Chem JT - Clinical chemistry, 2005, 51(7):1093-101.
    12 Lottner C, Schwarz S, Diermeier S, et al. Simultaneous detection of HER2/neu gene amplification and protein overexpression in paraffin-embedded breast cancer. J Pathol JT- The Journal of pathology, 2005,205(5):577-84.
    13 Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med JT- The New England journal of medicine, 2004,351(27):2817-26.
    14 Erdokan S, Ergin M, Tuncer I. Comparison of differential PCR and immunohistochemistry for the evaluation of c-erbB-2 in breast carcinoma and relationship to other prognostic factors. Neoplasma JT- Neoplasma, 2003,50(5): 326 -30.
    15 Lumachi F,Basso SM. Serum tumor markers in patients with breast cancer. Expert Rev Anticancer Ther, 2004,4(5):921-931.
    16 Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science JT - Science (New York, N.Y.), 1997,277(5328):955-9.
    17 Harrington L, Zhou W, McPhail T, et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev JT - Genes & development, 1997,11(23):3109-15.
    18 Xu D, Gruber A, Peterson C, et al. Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br J Haematol JT - British journal of haematology, 1998,102(5):1367-75.
    19 Villa R, Zaffaroni N, Folini M,et al. Telomerase activity in benign and malignant breast lesions: a pilot prospective study on fine-needle aspirates. J Natl Cancer Inst, 1998,90(7):537-539.
    20 Elkak A, Mokbel R, Wilson C, et al. hTERT mRNA expression is associated with a poor clinical outcome in human breast cancer. Anticancer Res JT - Anticancerresearch, 2006,26(6C):4901-4.
    21 Pinto AE, Andre S, Pereira T, et al. DNA flow cytometry but not telomerase activity as predictor of disease-free survival in pT1-2/N0/G2 breast cancer. Pathobiology JT - Pathobiology : journal of immunopathology, molecular and cellular biology, 2006,73 (2):63-70.
    22 Murillo-Ortiz B, Astudillo-De la Vega H, Castillo-Medina S, et al. Telomerase activity, estrogen receptors (alpha, beta), Bcl-2 expression in human breast cancer and treatment response. BMC Cancer JT - BMC cancer, 2006,6:206.
    23 Gellert GC, Dikmen ZG, Wright WE, et al. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat JT - Breast cancer research and treatment, 2006,96(1):73-81.
    24 Kalogeraki A, Kafousi M, Ieromonachou P, et al. Telomerase activity as a marker of invasive ductal breast carcinomas on FNABs and relationship to other prognostic variables. Anticancer Res JT - Anticancer research, 2005,25(3B):1927-30.
    25 Meeker AK, Argani P. Telomere shortening occurs early during breast tumorigenesis: a cause of chromosome destabilization underlying malignant transformation?. J Mammary Gland Biol Neoplasia JT - Journal of mammary gland biology and neoplasia, 2004,9(3):285-96.
    26 Baykal A, Rosen D, Zhou C, et al. Telomerase in breast cancer: a critical evaluation. Adv Anat Pathol JT - Advances in anatomic pathology, 2004,11(5):262-8.
    27 Yoshida K, Toge T. [Telomerase activity in gastrointestinal, bladder and breast carcinomas and their clinical applications]. Nippon Rinsho JT - Nippon rinsho. Japanese journal of clinical medicine, 2004,62(7):1368-76.
    28 Yan P, Benhattar J, Seelentag W, et al. Immunohistochemical localization of hTERT protein in human tissues. Histochem Cell Biol JT - Histochemistry and cell biology, 2004,121(5):391-7.
    29 Novakovic S, Hocevar M, Zgajnar J, et al. Detection of telomerase RNA in the plasma of patients with breast cancer, malignant melanoma or thyroid cancer. Oncol Rep JT- Oncology reports, 2004,11(1):245-52.
    30 Hoon DS, Sarantou T, Doi F,et al. Detection of metastatic breast cancer by beta-hCG polymerase chain reaction. Int J Cancer, 1996,69(5):369-374.
    31 Fabisiewicz A, Kulik J, Kober P, et al. Detection of circulating breast cancer cells in peripheral blood by a two-marker reverse transcriptase-polymerase chain reaction assay. Acta Biochim Pol JT - Acta biochimica Polonica, 2004,51(3):747-55.
    32 Span PN, Manders P, Heuvel JJ, et al. Molecular beacon reverse transcription-PCR of human chorionic gonadotropin-beta-3, -5, and -8 mRNAs has prognostic value in breast cancer. Clin Chem JT - Clinical chemistry, 2003,49(7):1074-80.
    33 Janssens JP, Russo J, Russo I, et al. Human chorionic gonadotropin (hCG) and prevention of breast cancer. Mol Cell Endocrinol JT - Molecular and cellular endocrinology, 2007,269(1-2):93-8.
    34 Shi SQ, Xu L, Zhao G, et al. Apoptosis and tumor inhibition induced by human chorionic gonadotropin beta in mouse breast carcinoma. J Mol Med JT - Journal of molecular medicine (Berlin, Germany), 2006,84(11):933-41.
    35 Yi H, Rong Y, Yankai Z, et al. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine JT- Vaccine, 2006,24(14): 2575 -84.
    36 Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol JT - American journal of physiology. Regulatory, integrative and comparative physiology, 2005,289(4):R963-9.
    37 Rao ChV, Li X, Manna SK, et al. Human chorionic gonadotropin decreases proliferation and invasion of breast cancer MCF-7 cells by inhibiting NF-kappaB and AP-1 activation. J Biol Chem JT- The Journal of biological chemistry, 2004,279(24): 25503-10.
    38 Guo S, Russo IH, Lareef MH, et al. Effect of human chorionic gonadotropin in thegene expression profile of MCF-7 cells. Int J Oncol JT - International journal of oncology, 2004,24(2):399-407.
    39 Hu XC, Loo WT, Chow LW. Surgery-related shedding of breast cancer cells as determined by RT-PCR assay. J Surg Oncol JT- Journal of surgical oncology, 2003,82 (4): 228-32; discussion 233.
    40 Jiang X, Russo IH, Russo J. Alternately spliced luteinizing hormone/human chorionic gonadotropin receptor mRNA in human breast epithelial cells. Int J Oncol JT - International journal of oncology, 2002,20(4):735-8.
    41 Dangles V, Halberstam I, Scardino A, et al. Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes. Cancer Immunol Immunother JT - Cancer immunology, immunotherapy : CII, 2002,50(12):673-81.
    42 Zach O, Wagner H, Kasparu H, et al. Statistical validation of the mammaglobin -nested RT-PCR assay for tumor cell detection in blood of breast cancer patients. Biotechniques, 2001, 31(6):1358-1362.
    43 Gimbergues P, Dauplat MM, Cayre A, et al. Correlation between molecular metastases in sentinel lymph nodes of breast cancer patients and St Gallen risk category. Eur J Surg Oncol JT - European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 2007, 33(1):16-22.
    44 Ntoulia M, Stathopoulou A, Ignatiadis M, et al. Detection of Mammaglobin A-mRNA-positive circulating tumor cells in peripheral blood of patients with operable breast cancer with nested RT-PCR. Clin Biochem JT- Clinical biochemistry, 2006,39 (9): 879 -87.
    45 Benoy IH, Elst H, Philips M, et al. Prognostic significance of disseminated tumor cells as detected by quantitative real-time reverse-transcriptase polymerase chain reaction in patients with breast cancer. Clin Breast Cancer JT- Clinical breast cancer, 2006,7(2): 146-52.
    46 Benoy IH, Elst H, Van Dam P, et al. Detection of circulating tumour cells in blood by quantitative real-time RT-PCR: effect of pre-analytical time. Clin Chem Lab Med JT - Clinical chemistry and laboratory medicine : CCLM / FESCC, 2006,44(9):1082-7.
    47 Benoy IH, Elst H, Philips M, et al. Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer JT - British journal of cancer, 2006,94(5):672-80.
    48 Xu Y, Yao L, Li H, et al. Presence of erbB2 mRNA in the plasma of breast cancer patients is associated with circulating tumor cells and negative estrogen and progesterone receptor status. Breast Cancer Res Treat JT- Breast cancer research and treatment, 2006, 97(1):49-55.
    49 Varangot M, Barrios E, Sonora C, et al. Clinical evaluation of a panel of mRNA markers in the detection of disseminated tumor cells in patients with operable breast cancer. Oncol Rep JT - Oncology reports, 2005,14(2):537-45.
    50 Ring AE, Zabaglo L, Ormerod MG, et al. Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br J Cancer JT- British journal of cancer, 2005,92(5):906-12.
    51 O'Brien NA, O'Donovan N, Ryan B, et al. Mammaglobin a in breast cancer: existence of multiple molecular forms. Int J Cancer JT - International journal of cancer. Journal international du cancer, 2005,114(4):623-7.
    52 Ouellette RJ, Richard D, Maicas E. RT-PCR for mammaglobin genes, MGB1 and MGB2, identifies breast cancer micrometastases in sentinel lymph nodes. Am J Clin Pathol JT - American journal of clinical pathology, 2004,121(5):637-43.
    53 Schoenfeld A, Kruger KH, Gomm J, et al. The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer JT- European journal of cancer (Oxford, England : 1990), 1997,33 (6):854 -61.
    54 Slade MJ, Smith BM, Sinnett HD, et al. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol JT - Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 1999,17(3):870-9.
    55 Berger J, Mueller-Holzner E, Fiegl H, et al. Evaluation of three mRNA markers for the detection of lymph node metastases. Anticancer Res JT - Anticancer research, 2006,26(5B):3855-60.
    56 Brown NM, Stenzel TT, Friedman PN, et al. Evaluation of expression based markers for the detection of breast cancer cells. Breast Cancer Res Treat JT- Breast cancer research and treatment, 2006,97(1):41-7.
    57 Souglakos J, Vamvakas L, Apostolaki S, et al. Central nervous system relapse in patients with breast cancer is associated with advanced stages, with the presence of circulating occult tumor cells and with the HER2/neu status. Breast Cancer Res JT- Breast cancer research : BCR, 2006,8(4):R36.
    58 Alix-Panabieres C, Vendrell JP, Pelle O, et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem JT- Clinical chemistry, 2007, 53(3):537-9.
    59 Zieglschmid V, Hollmann C, Bocher O. DETECTION OF DISSEMINATED TUMOR CELLS IN PERIPHERAL BLOOD. Crit Rev Clin Lab Sci, 2005,42(2): 155- 96.
    60 Miksicek RJ, Myal Y, Watson PH, et al. Identification of a novel breast- and salivary gland-specific, mucin-like gene strongly expressed in normal and tumor human mammary epithelium. Cancer Res, 2002,62(10):2736-2740.
    61 Hube F, Chooniedass-Kothari S, Hamedani MK, et al. Identification of an octamer-binding site controlling the activity of the small breast epithelial mucin gene promoter. Front Biosci JT- Frontiers in bioscience : a journal and virtual library, 2006, 11: 2483-95.
    62 Hube F, Mutawe M, Leygue E, et al. Human small breast epithelial mucin: thepromise of a new breast tumor biomarker. DNA Cell Biol JT- DNA and cell biology, 2004, 23(12):842-9.
    63杨华伟,曹骥,杨南武.乳腺癌患者外周血SBEM mRNA的检测及其临床意义.癌症, 2005,24(7):842-845.
    64 Bosma AJ, Weigelt B, Lambrechts AC,et al. Detection of circulating breast tumor cells by differential expression of marker genes. Clin Cancer Res, 2002,8(6):1871- 1877.
    65 Houghton RL, Dillon DC, Molesh DA. Transcriptional Complementarity in Breast Cancer_Application to Detection of Circulating Tumor Cells. Mol Diagn, 2001,6(2): 79- 91.
    66 Reinholz MM, Nibbe A, Jonart LM. Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin Cancer Res, 2005,11(10):3722-32.
    67 Zehentner BK, Secrist H, Hayes DC, et al. Detection of circulating tumor cells in peripheral blood of breast cancer patients during or after therapy using a multigene real-time RT-PCR assay. Mol Diagn Ther JT - Molecular diagnosis & therapy, 2006,10(1):41-7.
    68曹文俊,吴华成.外周血基因转录本检测中2种标本处理方法的比较.上海医学检验杂志, 2003,18(5):268-271.
    69 Pachmann K, Clement JH, Schneider CP, et al. Standardized quantification of circulating peripheral tumor cells from lung and breast cancer. Clin Chem Lab Med, 2005,43(6):617-627.
    1 Reinholz MM, Nibbe A, Jonart LM, et al. Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin Cancer Res, 2005, 11 (10):3722-3732.
    2 Carcoforo P, Bergossi L, Basaglia E, et al. Prognostic and therapeutic impact of sentinel node micrometastasis in patients with invasive breast cancer. Tumori, 2002, 88(3): S4-S5.
    3 Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol, 2004, 5(2):79-88.
    4鞠少卿,王旭东,王跃国,等.悬浮阵列技术在研究与临床中的应用.中华检验医学杂志, 2006,29(5):393-396.
    5 Spiro A, Lowe M, Brown D. A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. Appl Environ Microbiol, 2000,66(10):4258-4265.
    6 Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev, 2001,27(3):137-142.
    7 Lumachi F,Basso SM. Serum tumor markers in patients with breast cancer. Expert Rev Anticancer Ther, 2004,4:921-931.
    8 Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin Oncol, 1999,26(4 Suppl 12):71-77.
    9 Zach O, Wagner H, Kasparu H, et al. Statistical validation of the mammaglobin-nested RT-PCR assay for tumor cell detection in blood of breast cancer patients. Biotechniques, 2001, 31(6):1358-1362.
    10 Zieglschmid V, Hollmann C, Bocher O. Detection of disseminated tumor cells in peripheral blood. Crit Rev Clin Lab Sci, 2005,42(2):155-196.
    11 Miksicek RJ, Myal, Y, Watson PH, et al. Identification of a novel breast- and salivary gland-specific, mucin-like gene strongly expressed in normal and tumor human mammary epithelium. Cancer Res, 2002,62(10):2736-2740.
    12杨华伟,曹骥,杨南武.乳腺癌患者外周血SBEM mRNA的检测及其临床意义.癌症, 2005,24(7):842-845.
    13 Villa R, Zaffaroni N, Folini M,et al. Telomerase activity in benign and malignant breast lesions: a pilot prospective study on fine-needle aspirates. J Natl Cancer Inst, 1998,90(7):537-539.
    14 Leelawat K, Leelawat S, Ratanachu-Ek T,et al. Circulating hTERT mRNA as a tumor marker in cholangiocarcinoma patients. World J Gastroenterol, 2006,12(26):4195 -4198.
    15 Hoon DS, Sarantou T, Doi F,et al. Detection of metastatic breast cancer by beta-hCG polymerase chain reaction. Int J Cancer, 1996,69(5):369-374.
    16 Bosma AJ, Weigelt B, Lambrechts AC,et al. Detection of circulating breast tumor cells by differential expression of marker genes. Clin Cancer Res, 2002,8(6): 1871 -1877.
    17 Houghton RL, Dillon DC, Molesh DA, et al. Transcriptional complementarity in breast cancer: application to detection of circulating tumor cells. Mol Diagn, 2001,6(2): 79-91.
    18 Pachmann K, Clement JH, Schneider CP, et al. Standardized quantification of circulating peripheral tumor cells from lung and breast cancer. Clin Chem Lab Med, 2005,43(6):617-627.
    19孙凯,汪谦.液相芯片技术在小分子RNA检测分析中的应用.中华医学杂志, 2006,86(20):1437-1439.
    20 Dunbar SA. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta, 2005,363(1):71-82.
    21 Nolan JP, Mandy FF. Suspension array technology: new tools for gene and proteinanalysis. Cell Mol Biol, 2001,47(7):1241-1256.
    22 Nishihama K, Yamada Y, Matsuo H, et al. Association of gene polymorphisms with myocardial infarction in individuals with or without conventional coronary risk factors. Int J Mol Med JT - International journal of molecular medicine, 2007,19(1):129-41.
    23 Fouda GG, Leke RF, Long C, et al. Multiplex assay for simultaneous measurement of antibodies to multiple Plasmodium falciparum antigens. Clin Vaccine Immunol JT- Clinical and vaccine immunology : CVI, 2006,13(12):1307-13.
    24 Yamaguchi S, Yamada Y, Metoki N, et al. Genetic risk for atherothrombotic cerebral infarction in individuals stratified by sex or conventional risk factors for atherosclerosis. Int J Mol Med JT- International journal of molecular medicine, 2006,18(5): 871-83.
    25 Wang L, Cole KD, He HJ, et al. Comparison of ovalbumin quantification using forward-phase protein microarrays and suspension arrays. J Proteome Res JT- Journal of proteome research, 2006,5(7):1770-5.
    26 Chandler DP, Jarrell AE, Roden ER, et al. Suspension array analysis of 16S rRNA from Fe- and SO(4)2- reducing bacteria in uranium-contaminated sediments undergoing bioremediation. Appl Environ Microbiol JT- Applied and environmental microbiology, 2006,72(7):4672-87.
    27 Finnerty CC, Herndon DN, Przkora R, et al. Cytokine expression profile over time in severely burned pediatric patients. Shock JT- Shock (Augusta, Ga.), 2006,26(1):13-9.
    28 Toellner L, Fischlechner M, Ferko B, et al. Virus-coated layer-by-layer colloids as a multiplex suspension array for the detection and quantification of virus-specific antibodies. Clin Chem JT - Clinical chemistry, 2006,52(8):1575-83.
    29 Khan IH, Mendoza S, Rhyne P, et al. Multiplex analysis of intracellular signaling pathways in lymphoid cells by microbead suspension arrays. Mol Cell Proteomics JT - Molecular & cellular proteomics : MCP, 2006,5(4):758-68.
    30 Diaz MR, Fell JW. Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol JT- Journal of clinical microbiology, 2005,43(8):3662-72.
    31 Straub TM, Dockendorff BP, Quinonez-Diaz MD, et al. Automated methods for multiplexed pathogen detection. J Microbiol Methods JT- Journal of microbiological methods, 2005,62(3):303-16.
    32 Wang L, Cole KD, Gaigalas AK, et al. Fluorescent nanometer microspheres as a reporter for sensitive detection of simulants of biological threats using multiplexed suspension arrays. Bioconjug Chem JT - Bioconjugate chemistry, 2005,16(1):194-9.
    33 Chandler DP, Jarrell AE. Automated purification and suspension array detection of 16S rRNA from soil and sediment extracts by using tunable surface microparticles. Appl Environ Microbiol JT- Applied and environmental microbiology, 2004,70 (5): 2621 -31.
    34 Oh Y, Bae SM, Kim YW, et al. Polymerase chain reaction-based fluorescent Luminex assay to detect the presence of human papillomavirus types. Cancer Sci JT- Cancer science, 2007, 98(4):549-54.
    35 Baums IB, Goodwin KD, Kiesling T, et al. Luminex detection of fecal indicators in river samples, marine recreational water, and beach sand. Mar Pollut Bull, 2007.
    36 Schwenk JM, Lindberg J, Sundberg M, et al. Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol Cell Proteomics JT - Molecular & cellular proteomics : MCP, 2007,6(1):125-32.
    37 Jiang HL, Zhu HH, Zhou LF, et al. Genotyping of human papillomavirus in cervical lesions by L1 consensus PCR and the Luminex xMAP system. J Med Microbiol JT- Journal of medical microbiology, 2006,55(Pt 6):715-20.
    38 Schmitt M, Bravo IG, Snijders PJ, et al. Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol JT - Journal of clinical microbiology, 2006,44(2): 504- 12.
    39 Waterboer T, Sehr P, Pawlita M. Suppression of non-specific binding in serological Luminex assays. J Immunol Methods JT- Journal of immunological methods, 2006,309 (1-2):200-4.
    40 Dunbar SA, Jacobson JW. Rapid screening for 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator gene by Lminex xMAP suspension array. Methods Mol Med JT- Methods in molecular medicine, 2005,114: 147- 71.
    1 Reinholz MM, Nibbe A, Jonart LM. Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin Cancer Res, 2005,11(10):3722-32.
    2 Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol, 2004,5(2):79-88.
    3董碧蓉.疾病预后判断的循征.中华医学杂志, 2001,81(12):766-768.
    4郑唯强詹镕洲龚志锦. Cox模型在乳腺癌临床病理学预后分析中的应用.第二军医大学学报, 1995,16(3):231-233.
    5骆福添胡孟璇. Cox模型在肿瘤预后因素分析中的应用.癌症, 1991,10(1):84-87.
    6 Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev, 2001,27(3):137-142.
    7 Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer JT - Endocrine-related cancer, 2006,13(4):1033-67.
    8 Stemke-Hale K, Hennessy B, Mills GB, et al. Molecular screening for breast cancer prevention, early detection, and treatment planning: combining biomarkers from DNA, RNA, and protein. Curr Oncol Rep JT - Current oncology reports, 2006,8(6):484-91.
    9 Muller V, Hayes DF, Pantel K. Recent translational research: circulating tumor cells in breast cancer patients. Breast Cancer Res JT- Breast cancer research : BCR, 2006,8 (5): 110.
    10 Marches R, Scheuermann R, Uhr J. Cancer dormancy: from mice to man. Cell Cycle JT- Cell cycle (Georgetown, Tex.), 2006,5(16):1772-8.
    11 Cristofanilli M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin Oncol JT - Seminars in oncology, 2006,33(3 Suppl 9):S9-14.
    12 Taube SE, Jacobson JW, Lively TG. Cancer diagnostics: decision criteria for marker utilization in the clinic. Am J Pharmacogenomics JT- American journal of pharmacogenomics: genomics-related research in drug development and clinical practice, 2005, 5(6):357-64.
    13 Smerage JB, Hayes DF. The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br J Cancer JT - British journal of cancer, 2006,94 (1):8-12.
    14 Muller V, Pantel K. BM micrometastases and circulating tumor cells in breast cancer patients: where have we been, where are we now and where does the future lie. Cytotherapy JT- Cytotherapy, 2005,7(6):478-82.
    15 Dirix L, Van Dam P, Vermeulen P. Genomics and circulating tumor cells: promising tools for choosing and monitoring adjuvant therapy in patients with early breast cancer?. Curr Opin Oncol JT - Current opinion in oncology, 2005,17(6):551-8.
    16 Zieglschmid V, Hollmann C, Bocher O. Detection of disseminated tumor cells in peripheral blood. Crit Rev Clin Lab Sci JT - Critical reviews in clinical laboratory sciences, 2005,42(2):155-96.
    17 Braun S, Naume B. Circulating and disseminated tumor cells. J Clin Oncol JT - Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2005,23(8):1623-6.
    18 Wieder R. Insurgent micrometastases: sleeper cells and harboring the enemy. J Surg Oncol JT - Journal of surgical oncology, 2005,89(4):207-10.
    19 Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2005,328(3):679-87.
    20 Gilbey AM, Burnett D, Coleman RE. The detection of circulating breast cancer cells in blood. J Clin Pathol, 2004,57(9):903-11.
    21 Jiang WG, Martin TA, Mansel RE. Molecular detection of micro-metastasis in breast cancer. Crit Rev Oncol Hematol, 2002,43(1):13-31.
    22 Zieglschmid V, Hollmann C, Bocher O. DETECTION OF DISSEMINATED TUMOR CELLS IN PERIPHERAL BLOOD. Crit Rev Clin Lab Sci, 2005,42(2): 155 -96.
    23 Ariazi EA, Ariazi JL, Cordera F. Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem, 2006,6(3):181-202.
    24 Hayashi SI, Eguchi H, Tanimoto K. The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application. Endocr Relat Cancer, 2003, 10(2):193-202.
    25 Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: occurrence andsignificance. J Mammary Gland Biol Neoplasia, 2000,5(3):271-81.
    26 Gimbergues P, Dauplat MM, Cayre A, et al. Correlation between molecular metastases in sentinel lymph nodes of breast cancer patients and St Gallen risk category. Eur J Surg Oncol JT- European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 2007,33(1): 16-22.
    27 Ntoulia M, Stathopoulou A, Ignatiadis M, et al. Detection of Mammaglobin A-mRNA-positive circulating tumor cells in peripheral blood of patients with operable breast cancer with nested RT-PCR. Clin Biochem JT - Clinical biochemistry, 2006,39(9):879-87.
    28 Benoy IH, Elst H, Philips M, et al. Prognostic significance of disseminated tumor cells as detected by quantitative real-time reverse-transcriptase polymerase chain reaction in patients with breast cancer. Clin Breast Cancer JT- Clinical breast cancer, 2006,7(2): 146-52.
    29 Zach O, Wagner H. Statistical validation of the mammaglobin-nested RT-PCR assay for tumor cell detection in blood of breast cancer patients. Biotechniques, 2001,31(6): 1358 -62.
    30 Nunez-Villar MJ, Martinez-Arribas F, Pollan M. Elevated mammaglobin (h-MAM) expression in breast cancer is associated with clinical and biological features defining a less aggressive tumour phenotype. Breast Cancer Res, 2003,5(3):R65-70.
    31 Roncella S, Ferro P, Bacigalupo B. Human mammaglobin mRNA is a reliable molecular marker for detecting occult breast cancer cells in peripheral blood. J Exp Clin Cancer Res, 2005,24(2):265-71.
    32 Ntoulia M, Stathopoulou A, Ignatiadis M. Detection of Mammaglobin A-mRNA -positive circulating tumor cells in peripheral blood of patients with operable breast cancer with nested RT-PCR. Clin Biochem, 2006,39(9):879-87.
    33 Miksicek RJ et al. Identification of a novel breast- and salivary gland-specific, mucin-like gene strongly expressed in normal and tumor human mammary epithelium. Cancer Res, 2002,62(10):2736-40.
    34 Hube F, Chooniedass-Kothari S, Hamedani MK, et al. Identification of an octamer- binding site controlling the activity of the small breast epithelial mucin gene promoter.Front Biosci JT - Frontiers in bioscience : a journal and virtual library, 2006,11: 2483-95.
    35 Hube F, Mutawe M, Leygue E, et al. Human small breast epithelial mucin: the promise of a new breast tumor biomarker. DNA Cell Biol JT - DNA and cell biology, 2004,23(12):842-9.
    36杨华伟,曹骥,杨南武.乳腺癌患者外周血SBEM mRNA的检测及其临床意义.癌症, 2005,24(7):842-845.
    37 Weigelt B, Verduijn P, Bosma AJ. Detection of metastases in sentinel lymph nodes of breast cancer patients by multiple mRNA marker. Br J Cancer, 2004,90(8):1531-7.
    38 Lumachi F,Basso SM. Serum tumor markers in patients with breast cancer. Expert Rev Anticancer Ther, 2004,11(4):921-929.
    39 Ferretti G, Felici A, Papaldo P, et al. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol JT - Current opinion in obstetrics & gynecology, 2007,19(1):56-62.
    40 Oakley GJ 3rd, Tubbs RR, Crowe J, et al. HER-2 amplification in tubular carcinoma of the breast. Am J Clin Pathol JT - American journal of clinical pathology, 2006,126(1):55-8.
    41 Pinzani P, Salvadori B, Simi L, et al. Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum Pathol JT - Human pathology, 2006,37(6):711-8.
    42 Prati R, Apple SK, He J, et al. Histopathologic characteristics predicting HER-2/neu amplification in breast cancer. Breast J JT - The breast journal, 2005,11(6):433-9.
    43 Lopez-Guerrero JA, Llombart-Cussac A, Noguera R, et al. HER2 amplification in recurrent breast cancer following breast-conserving therapy correlates with distant metastasis and poor survival. Int J Cancer JT - International journal of cancer. Journal international du cancer, 2006,118(7):1743-9.
    44 Dybdal N, Leiberman G, Anderson S, et al. Determination of HER2 gene amplification by fluorescence in situ hybridization and concordance with the clinical trials immunohistochemical assay in women with metastatic breast cancer evaluated for treatment with trastuzumab. Breast Cancer Res Treat JT - Breast cancer researchand treatment, 2005,93(1):3-11.
    45 Tse C, Brault D, Gligorov J, et al. Evaluation of the quantitative analytical methods real-time PCR for HER-2 gene quantification and ELISA of serum HER-2 protein and comparison with fluorescence in situ hybridization and immunohistochemistry for determining HER-2 status in breast cancer patients. Clin Chem JT - Clinical chemistry, 2005,51(7):1093-101.
    46 Lottner C, Schwarz S, Diermeier S, et al. Simultaneous detection of HER2/neu gene amplification and protein overexpression in paraffin-embedded breast cancer. J Pathol JT - The Journal of pathology, 2005,205(5):577-84.
    47 Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med JT - The New England journal of medicine, 2004,351(27):2817-26.
    48 Erdokan S, Ergin M, Tuncer I. Comparison of differential PCR and immunohistochemistry for the evaluation of c-erbB-2 in breast carcinoma and relationship to other prognostic factors. Neoplasma JT- Neoplasma, 2003,50(5): 326 -30.
    49 Shak S. Overview of the trastuzumab(Herceptin) anti-HER2 rcanoclonal antibody clinical program in HER2-overex-pressing metastatic breast cancer. herceptin multinational investigator study group. Semin Oncol, 1999,26(5):71.
    50 Meenakshi A .Suresh K R .Cranesh V. Immunohisto-chemical assay (IHC) to study C erbB-2 status of breast cancer using monoclonal antibody CIBCgp185. Hum Antibodies, 2003,12(5):123.
    51液相芯片技术在小分子RNA检测分析中的应用.中华医学杂志, 2006, 86(20): 1437 -1439.
    52 Dunbar SA. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta, 2005,363(1):71-82.
    53 Nolan JP, Mandy FF. Suspension array technology: new tools for gene and protein analysis. Cell Mol Biol, 2001,47(7):1241-56.
    54鞠少卿,王旭东,王跃国.悬浮阵列技术在研究与临床中的应用.中华检验医学杂志, 2006,29(5):393-396.
    1. Parker SL, Tong T, Bolden S, et al. Cancer Statistics 1996[J]. CA Cancer J Clin,1996,46(1): 5-27
    2.李玲,王启俊,祝伟星,等.北京城区主要肿瘤发病率时间趋势分析及预测[J] .中国肿瘤,2002,11(10):576-578
    3.罗晋卿,苏辉民,蒙晞,等. 1981~1996年梧州市女性乳腺癌发病率分析[J].广西预防医学,1999,5(3):142-143
    4. Rosen PP, Saigo PE, Braun DW, et al. Predictors of recurrence in stage I (T1N0M0) breast carcinoma[J], 1981, 193(1): 15-25
    5. Pantel K, Otte M. Occult micrometastasis: enrichment, identification and characterization of single disseminated tumor cells[J]. Semin Cancer Biol, 2001, 11(5):327-37
    6. Simmons R, Hoda S, Osborne M. Bone marrow micrometastasises in breast cancer patients[J]. AM J Surg, 2004, 180: 309-312
    7. Salsbury AJ. The significance of the circulating cancer cell[J]. Cancer Treat Rev, 1975,2 (1): 55-72
    8. Schindlbeck C, Janni W, Schaffer P, et al. Tumor biology of primary breast cancer and minimal residual disease[J]. Acta-Med-Austriaca, 2002, 29 (59): 27-31
    9. Engel H, Kleespies C, Friedrich M, et al. Detection of circulating tumor cells in patients with breast or ovarian cancer by molecular cytogenetics[J]. British Journal of Cancer,1999, 81(7): 1165-1173
    10. Weihrauch MR, Skibowski E, Draube A, et al. Immunomagnetic enrichment and detection of isolated tumor cells in bone marrow of patients with epithelial malignancies[J]. Clin Exp Metastasis, 2002, 19(7): 617-21
    11. Pecking AP, Mechelany CC, Bertrand KF, et al. Detection of occult disease in breast cancer using fluorodeoxyglucose camera-based positron emission tomography[J]. Clin Breast Cancer, 2001, 2(3): 229-34
    12. Zehentner BK. Detection of disseminated tumor cells: strategies and diagnostic implications[J]. Expert Rev Mol Diagn, 2002, 2(1): 41-8
    13. Carcoforo P, Bergossi L, Basaglia E, et al. Prognostic and therapeutic impact of sentinel node micrometastasis in patients with invasive breast cancer[J]. Tumori, 2002, 88(3): S4-5
    14. Huvos AG, Hutter RV, Berg JW. Significance of axillary macrometastases and micrometastases in mammary cancer[J]. Ann Surg, 173(1): 44-6
    15. Mascarel I, Bonichon F, Coindre J, et al. Prognostic significance of breast cance axillary lymph node micrometastases assessed by two special techniques: reevaluation with longer follow-up[J]. Br J Cancer, 1992, 66(3): 523-7
    16. Noguchi M, Tsugawa K, Bando E, et al. Sentinel lymphadenectomy in breast cancer: identification of sentinel lymph node and detection of metastases[J]. Breast Cancer Res Treat, 1999, 53(2): 97-104
    17. Liang WC, Sickle BJ, Nims TA, et al. Is a completion axillary dissection indicated for micrometastases in the sentinel lymph node[J]? Am J Surg, 2001, 182(4): 365-8
    18. Isozaki H, Okajima K, Fujii K. Histological evaluation of lymph node metastasis on serial sectioning in gastric cancer with radical lymphadenectomy[J]. Hepatogastroenterology, 1997, 44(16): 1133-6
    19. Shiver SA, Greager AJ, Geisinger K, et al. Intraoperative analysis of sentinel lymphnodes by imprint cytology for cancer of the breast[J]. Am J Surg, 2002, 184(5): 424-7
    20. Kvalheim G. Detection of occult tumor cells in bone marrow and blood in breast cancer patients--methods and clinical significance[J]. Acta Oncol, 1996, 35 (Suppl 8): 13-8
    21. Mignotte H, Treilleux I, Faure C, et al. Axillary lymph-node dissection for positive sentinel nodes in breast cancer patients[J]. Eur J Surg Oncol, 2002, 28(6): 623-6
    22. Schoenfeld A, Luqmani Y, Smith D, et al. Detection of breast cancer micrometastases in axillary lymph nodes by using polymerase chain reaction[J]. Cancer Res, 1994, 54(11): 2986-90
    23. Leers M, Schoffelen R, Hoop J, et al. Multiparameter flow cytometry as a tool for the detection of micrometastatic tumor cells in the sentinel lymph node procedure of patients with breast cancer[J]. J Clin Pathol, 2002, 55(5): 359-66
    24. Graaf D, Maelandsmo G, Ruud P, et al. Ectopic expression of target genes may represent an inherent limitation of RT-PCR assays used for micrometastasis detection: studies on the epithelial glycoprotein gene EGP-2[J]. Int J Cancer, 1997, 72(1): 191-6
    25. Berois N, Varangot M, Osinaga E, et al. Detection of rare human breast cancer cells. Comparison of an immunomagnetic separation method with immunocytochemistry and RT-PCR[J]. Anticancer Res, 1997, 17(4A): 2639-46
    26. Lockett M, Baron P, Brien P, et al. Detection of occult breast cancer micrometastases in axillary lymph nodes using a multimarker reverse transcriptase-polymerase chain reaction panel[J]. J Am Coll Surg, 1998, 187(1): 9-16
    27. Mitas M, Mikhitarian K, Walters C, et al. Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel[J]. Int J Cancer, 2001,93(2): 162-71
    28. Osborne M, Wong G, Asina S, et al. Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow[J]. Cancer Res, 1991, 51(10): 2706-9
    29. Molino A, Colombatti M, Bonetti F, et al. A comparative analysis of three different techniques for the detection of breast cancer cells in bone marrow[J]. Cancer, 1991, 67 (4): 1033-6
    30. Bakker MA, Weeszenberg A, Kanter AY, et al. Non-sentinel lymph node involvement in patients with breast cancer and sentinel node micrometastasis; too early to abandonaxillary clearance[J]. J Chin Pathol, 2005, 55(12): 932-5
    31. Sandra L, Wong M, Celia C, et al. The use of cytokeratin staining in sentinel lymph node biopsy for breast cancer[J]. AM J Surg, 2001, 182(330-334)
    32. Schlimok G, Funke I, Holzmann B, et al. Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies[J]. Proc Natl Acad Sci USA, 1987, 84(23): 8672-6
    33. Borgen E, Beiske K, Trachsel S, et al. Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase[J]. J Pathol, 1998, 185(4): 427-34
    34. Murray K, Lambah P, Anderson T, et al. Occult lymph node metastases in patients with‘node negative’breast carcinoma treated with conservation surgery and axillary node sample and who subsequently developed axillary recurrence[J]. The Breast, 2005, 11:249-251
    35. Braun S, Pantel K. Prognostic significance of micrometastatic bone marrow involvement[J]. Breast Cancer Res Treat, 1998, 52(1-3): 201-16
    36. Schoenfeld A, Kruger K, Gomm J, et al. The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19 [J]. Eur J Cancer, 1997, 33(6): 854-61
    37. Ishida M, Kitamura Kaoru, Kinoshita J, et al. Detection of micrometastasis in the sentinel lymph nodes in breast cancer[J]. Surgery, 2005, 131(1 Suppl): S211-6
    38. Noguchi S, Aihara T, Nakamori S, et al. The detection of breast carcinoma micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction[J]. Cancer, 1994, 74(5): 1595-600.
    39. Wang X, Heller R, Vanvoorhis N, et al. Detection of submicroscopic lymph node metastases with polymerase chain reaction in patients with malignant melanoma[J]. Ann Surg, 1994, 220(6): 768-74
    40. Mattano L, Moss T, Emerson S, et al. Sensitive detection of rare circulating neuroblastoma cells by the reverse transcriptase-polymerase chain reaction[J]. Cancer Res, 1992, 52(17): 4701-5
    41. Blaheta H, Paul T, Sotlar K, et al. Detection of melanoma cells in sentinel lymph nodes, bone marrow and peripheral blood by a reverse transcription-polymerase chain reaction assay in patients with primary cutaneous melanoma: association with Breslow's tumor thickness[J]. Br J Dermatol, 2005, 145(2): 195-202
    42. Szenajch J, Jasinski B, Kozak A, et al. Multiple RT-PCR tyrosinase testing reveals that melanoma cells circulate in the blood of melanoma patients at the frequency more than 10 times below the detection threshold[J]. Melanoma Res, 2002, 12(4): 399-401
    43. Lockett MA, Baron P, Brein P, et al. Detection of occult breast cancer micrometastases in axillary lymph nodes using a multimarker reverse transcriptase-polymerase chain reaction panel[J]. J Am Coll Surg, 1998, 187(1): 9-16
    44. Vannucchi A, Glinz S, Bosi A, et al. Detection of contaminating tumor cells by RT-PCR in breast cancer patients[J]. Bone Marrow Transplant, 1999, 24(2): 228-9
    45. Brown D, Purushotham A, Birnie G, et al. Detection of intraoperative tumor cell dissemination in patients with breast cancer by use of reverse transcription and polymerase chain reaction[J]. Surgery, 1995, 117(1): 95-101
    46. Datta Y, Adams P, Drobyski W, et al. Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction[J]. J Clin Oncol, 1994, 12(3): 475-82
    47. Kruger W, Krzizanowski C, Holweg M, et al. Reverse transcriptase/polymerase chain reaction detection of cytokeratin-19 mRNA in bone marrow and blood of breast cancer patients[J]. J Cancer Res Chin Oncol, 1996, 122(11): 679-86
    48. Eaton M, Hardingham J, Kotasek D, et al. Immunobead RT-PCR: a sensitive method for detection of circulating tumor cells[J]. Biotechniques, 1997, 22(1): 100-5
    49. Kao, Ruey H, Huang L. High false-positive rate of cytokeratin-19 in detecting circulating tumor cells for nasopharyngeal carcinoma[J]. Chang Gung Med J, 2005, 25(4): 238-44
    50.黄进肃,董强刚,周允中,等.围手术期血循环中肺癌细胞与预后的关系[J].肿瘤学杂志,2002,8(1):31-34
    51. Engel H, Friedrich J, Kleespies C, et al. Detection of chromosomal aberrations in tumor cells and tumor infiltrating lymphocytes by molecular cytogenetics in patients with gynecological cancer[J]. Cancer Genet Cytogenet, 1998, 106(2): 159-65
    52.孙青,丁彦青,张进华,等.应用流式细胞术检测大肠癌淋巴结微转移的研究[J].中华医学杂志,2001,81(2):102-104
    53. Zoli W, Barzanti F, DalSusino M, et al. Flow-cytometric determination of tumor cells in lymph nodes[J]. Oncology, 2002, 62(2): 128-35
    54. Simmons R, Hoda S, Osborne M, et al. Bone marrow micrometastases in breast cancer patients[J]. Am J Surg, 2005, 180: 309-312
    55. Zhong XY, Kaul S, Lin Y, et al. Sensitive detection of micrometastases in bone marrow from patients with breast cancer using immunomagnetic isolation of tumor cells in combination with reverse transcriptase/polymerase chain reaction for cytokeratin-19[J]. J Cancer Res Chin Oncol, 2000, 126(4): 212-8
    56. Naume B, Borgen E, Nesland JM, et al. Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast- cancer patients by negative immunomagnetic separation[J]. Int J Cancer, 1998, 78 (5): 556 -60
    57. Panis Y, Ribeiro J, Chretien Y, et al. Dormant liver metastases: an experimental study[J]. Br J Surg, 1992, 79(3): 221-3
    58. An XY, Egami H, Hayashi N, et al. Clinical significance of circulating cancer cells in peripheral blood detected by reverse transcriptase-polymerase chain reaction in patients with breast cancer[J]. Tohoku J Exp Med, 2001, 193(2): 153-62
    59. Mattioli S, Dovidio F, Tazzari P, et al. Iliac crest biopsy versus rib segment resection for the detection of bone marrow isolated tumor cells from lung and esophageal cancer[J]. Eur J Cardiothorac Surg, 2001, 19(5): 576-9
    60. Relihan N, McGreal G, Kelly J, et al. Combined sentinel lymph-node mapping and bone-marrow micrometastatic analysis for improved staging in breast cancer[J]. Lancet, 1999, 354(9173): 129-30
    61. Maguire D, Osullivan GC, Collins JK, et al. Bone marrow micrometastases and gastrointestinal cancer detection and significance[J]. Am J Gastroenterol, 2000, 95 (7): 1644-51
    62.周生余,石远凯.乳腺癌患者骨髓和外周血潜伏肿瘤细胞的检测与临床意义[J].国外医学肿瘤学分册,2001,28(6):213-216
    63. Hermanek P, Hutter RV, Sobin LH, et al. International Union Against Cancer. Classification of isolated tumor cells and micrometastasis[J]. Cancer, 1999, 86(12): 2668-73
    64. Ikeda N, Miyoshi Y, Motomura K, et al. Prognostic significance of occult bone marrow micrometastases of breast cancer detected by quantitative polymerase chain reaction for cytokeratin 19 mRNA[J]. Jpn J Cancer Res, 2005, 91(9): 918-24
    65. Diel IJ, Kaufmann M, Costa SD, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status[J]. J Natl Cancer Inst, 1996, 20; 88(22): 1652-8
    66. Mansi JL, Gogas H, Bliss JM, et al. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study[J]. Lancet, 1999, 354(9174): 197-202
    67. Braun S, Pantel. Micrometastatic bone marrow involvement: detection and prognostic significance[J]. Med Oncol, 1999, 16(3): 154-65
    68. Fields KK, Elfenbein GJ, Trudeau WL, et al. Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation [J]. J Clin Oncol, 1996, 14(6): 1868-76
    69. Mascarel I, MacGrogan G,Picot V,et al. Prognostic significance of immunohistochemically detected breast cancer node metastases in 218 patients[J]. Br J Cancer, 2005, 87(1): 70-4
    70. Cote RJ, Rosen PP, Lesser ML, et al. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases[J]. J Clin Oncol, 1991, 9(10): 1749-56
    71. Janni W, Gastroph S, Hepp F, et al. Prognostic significance of an increased number of micrometastatic tumor cells in the bone marrow of patients with first recurrence of breast carcinoma. Cancer, 2000, 88(10): 2252-9
    72. O’sullivan GC, Collins JK, Kelly J, et al. Micrometastases: marker of metastatic potential or evidence of residual disease[J]? Gut, 1997, 40(4): 512-5.
    73. Molino A, Pelosi G, Turazza M, et al. Bone marrow micrometastases in 109 breast cancer patients: correlations with clinical and pathological features and prognosis[J].Breast Cancer Res Treat, 1997, 42(1): 23-30
    74. Kim SJ, Ikeda N, Shiba E, et al. Detection of breast cancer micrometastases in peripheral blood using immunomagnetic separation and immunocytochemistry[J]. Breast Cancer, 2001, 8(1): 63-9
    75. Aerts J, Wynendaele W, Paridaen R, et al. A real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to detect breast carcinoma cells in peripheral blood[J]. Ann Oncol, 2001, 12(1): 39-46
    76. Slade MJ, Smith BM, Sinnett HD, et al. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer[J]. J Clin Oncol, 1999, 17(3): 870-9
    77. Luppi M, Morselli M, Federico M, et al. Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene[J]. Ann Oncol,1996, 7(6): 619-24
    78.骆成玉,李世拥.大肠癌患者门静脉血癌细胞的检测及临床意义[J].中华外科杂志,1999,37(4):214-215
    79.骆成玉,李世拥.大肠癌骨髓微转移的检测及其对治疗的反应[J].中国肿瘤临床与康复,2001,8(3):28-29
    80. Waston MA ,Fleming TP ,Mammaglobin a mammaary-specific member of the uteroglobin gene family is over-expressed in human breast cancer .Cancer Res .1996, 56: 860-865.
    81. Waston MA ,Darrow C ,Zimonnjic DB ,et al .Structure and transcriptional regulation of the human mammaglobin gene family locatized to chromosome 11q13 . Oncogene , 1998, 16: 817-824.
    82. Ooka M ,Sakita I ,Fujiwara Y ,et al .Selection of mRNA markers for detection of lymph node micrometastastase in breast cancer patiants .Oncol Rep .2000 ,7: 561-566.
    83. Zach O ,Kaspam H ,Krieger O,et al .Blood of breast cancer patients via a nest reverse transcriptase-ploymeras chain reaction assay for mammaglobin mRNA .J Clin Oncol ,1999 , 17 :2015-2019.
    84. Grunewald K ,Haun M ,Urbanek M,et al .Mammaglobin gene expression:a superior marker of breast cancer cells in peripheral blood in comparison to epidermal- growth-factor receptor and cytokeratin 19.Lab Invest 2000 Jul;80(7):1071-7.
    85.刘宁,张伟,邵永孚,等. Hmam mRNA在检测乳腺癌外周血微小转移的应用.中华肿瘤杂志,2001 .23(4):317-319.
    86.李世拥,李矩,骆成玉,等.乳腺癌乳腺珠蛋白mRNA表达及临床意义研究.中华外科杂志2002,40(3):168-170.
    87. Lin YC ,Wu Chou YH ,Liao IC,et al .Expression of mammaglobin mRNA in peripheral blood of metastatic breast cancer patients as an adjunet to serum tumor markers ,Cancer Lett ,2003,Feb 20;19(1):93-99.
    88.万文徽,李吉友.肿瘤标志物的临床应用[J] .中华检验杂志1997,20(1):49-51.
    89. Moll R ,Frank WW .Markii H,et al .The catalog of human cytokeratin: Pathins of expression in normal eithilia tumor and cultured cell [J].Cell .1982,32:11-14
    90. Kwspen FHL ,Smedts FMM,Broos A,et al .Reproducible and highly sensitive detection of the broad spectum epithelial marker keratin 19 in routin cancer diagnosis . Histopathology , 1997;31:503-516.
    91. Burchill SA ,Bradbury MF ,Pittman R,et al .Detection of epithelial cells in peripheral blood by reverse transcription ploymerase chain reaction [J] .Br J Cancer 1995,71: 278 -281.
    92. Gunn J ,Mccall JT ,Groce CM,et al. Detection of micrometas-tasis in colorectal cancer patients by ck19 and ck20 rever-se transcription ploymerase chain reaction [J] Labaratory Investigation 1996,75(4):611-616.
    93. Fonseca FL ,Soares HP,Manhani AR,et al.Peripheral blood c-erBb-2 expression by reverse transcriptase ploymerase chain reaction in breast cancer patients receiving chemotheraphy. Clin Breast Cancer .2002 33(3):201-205.
    94. Taylor-Papadimitriou J ,Burchell J,Miles DW,et al. Muc1 and cancer Biochim Biophy ,Acta 1999,1455(2-3):301
    95.张力新,李春梅,陆雅芬,等. Muc1粘蛋白的免疫生物学作用及其在肿瘤生物学治疗中应用.中国生物治疗杂志2000,7(3):165
    96. Ciborowski P .Fimm OJ.Nonglycosylated tandem repeats of Muc1 faciliate attachment of breast tumor cells to normal human lung tissue and immobilized extracelluarproteins (EMC)in vitro:potential role in metastasis [J] .Clin Exp Metastasis 2002,19 (4): 339 -345
    97. Zotter S ,lossntteer A ,Kunee KD ,et al. Epithelial markers for paraffinem bedded human tissues [J] .Cancer Res 1985,406:237.
    98. Richard J.Miksicek,Yvonne Myal,Peter H,et al. Identification of a noval breast-an salivary gland specific,Mucin-like gene stong expressed in normal and tumor human mammar epitheliam .Cancer Res,2002,5(62):2736-2740.
    99. Yang HW,Cao J,Yang NW,et al. Expression of small breast epithelial mucin mRNA in peripheral blood of breast cancer patients and its clinical significance. Ai Zheng, 2005, 24 (7): 842-845.
    100. Adida C ,Crotty PL,McGrath J,et al.Developmentally regulated expression of the novel cancer anti-apoptosis gene surviving in human and mouse differentiation. Am J Patho 1998,152(1):43-49.
    101. Ambrosini G ,Adida C,Altieri DC,et al.A novel anti-apoptosis gene surviving expressed in cancer and lymphoma. Nat Med 1997,3(8):917-921.
    102. Tanaka K ,Iwamoto S,Gon G,et al .Expression of survivin and its relationship to loss apoptosis in breast carcinomas [J] .Clin Cancer Res 2000,6(1)127.
    103. Elias AD, Ibrahim J, Richardson P, et al. The impact of induction duration and the number of high-dose cycles on the long-term survival of women with metastatic breast cancer treated with high-dose chemotherapy with stem cell rescue: an analysis of sequential phase I/II trials from the Dana-Farber/Beth Israel STAMP program[J]. Biol Blood Marrow Transplant, 2002, 8(4): 198-205
    104. Rosti G, Ferrante P, Ledermann J, et al. High-dose chemotherapy for solid tumors: results of the EBMT[J]. Crit Rev Oncol Hematol, 2002, 41(2): 129-40
    105. Banfi A, Podesta M, Fazzuoli L, et al. High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia[J]. Cancer, 2001, 92(9): 2419-28
    106.郝希山,邵莹,佟仲生,等.外周血干细胞移植联合大剂量化疗治疗21例乳腺癌的初步观察[J].中国肿瘤临床,2002,27(2):85-89
    107. Brener MK, Rill DR, Moen RC, et al. Gene marking and autologous bone marrowtransplantation[J]. Ann N Y Acad Sci, 1994, 716: 204-14; discussion 214-5, 225-7
    108. Heiss MM, Simon EH, Beyer BCM, et al. Minimal residual disease in gastric cancer: evidence of an independent prognostic relevance of urokinase receptor expression by disseminated tumor cells in the bone marrow[J]. J Clin Oncol, 2002, 20(8): 2005-16
    109. Braun S, Schlimok G, Heumos I, et al. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients[J]. Cancer Res, 2005, 61(5): 1890-5
    110. Pantel K, Schlimok G, Braun S, et al. Differential expression of proliferation -associatedmolecules in individual micrometastatic carcinoma cells[J]. J Natl Cancer Inst, 1993, 85(17): 1419-24
    111. Schlimork G, Pantel K, Loibner H, et al. Reduction of metastatic carcinoma cells in bone marrow by intravenously administered monoclonal antibody: towards a novel surrogate test to monitor adjuvant therapies of solid tumors[J]. Eur J Cancer, 1995, 31A(11): 1799-803
    112. Dillman RO. Perceptions of Herceptin: a monoclonal antibody for the treatment of breast cancer. Cancer Biother Radiopharm[J], 1999, 14(1) 5-10.
    113. Maletz K, Kufer P, Mack M, et al. Bispecific single-chain antibodies as effective tools for eliminating epithelial cancer cells from human stem cell preparations by redirected cell cytotoxicity[J]. Int J Cancer, 2001, 93(3): 409-16
    114.赵增顺,王少文,焦喜林,等.胃癌根治术对单细胞入血转移的影响[J].华人消化杂志,1998,6(7):610-611
    115.陈静,周金陵,马红兰.恶性肿瘤患者手术使用物品脱落细胞阳性率的观察及管理[J].解放军护理杂志,2000,17(5):9-10
    116. Carter BA, Jensen RA, Simpson JF, et al. Benign transport of breast epithelium into axillary lymph nodes after biopsy[J]. Am J Clin Pathol, 2000, 113(2): 259-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700