用户名: 密码: 验证码:
西北旱区葡萄园碳通量变化规律分析及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化日益加剧的环境下,陆地生态系统碳循环的研究已成为热点。绿色植物是碳循环过程当中最重要的组成成分,尤其是自然系统较为脆弱的区域,植物的功能更加明显。中国西北早区生态系统脆弱,葡萄作为西北旱区广泛种植的经济果树,对当地的大气碳库起着重要作用,其碳通量有着独特的变化规律和机理,其研究对于认识整个陆地生态系统的碳循环过程有着重要意义。
     本研究利用涡度相关系统,于2008年至2013年在我国西北旱区甘肃武威地区葡萄园进行了6年的CO2通量观测试验,分析了不同时间尺度下葡萄园CO2通量的变化规律,确定其碳源/汇属性及强度;区分出不同时间尺度下影响碳通量变化的主要因子;通过对比实测土壤碳通量数据,得到了适宜模拟西北旱区土壤碳通量的模型;在以上研究基础上,通过对比分析,建立了适宜模拟葡萄园碳通量的理论模型。具体研究结果如下:
     (1)葡萄园生态系统2008年至2011年的净CO2交换量分(NEE)别为-820、-824、-961以及-992gC.m-2·y-1,总体呈明显的碳汇。葡萄园生态系统NEE呈明显的季节变化规律,在萌芽期葡萄园整体表现为弱的碳源,而到新梢生长期以后转变为碳汇,并且固碳量持续增大,至生育末期开始减小。其NEE日变化规律呈双峰型曲线,午间会出现“光合午休”现象,灌溉会减轻“午休”现象的发生,使其峰值持续的时间增长。
     (2)在不同时间尺度上,影响葡萄园生态系统净CO2交换量的主要因子各不相同:小时尺度,冠层导度和净辐射是主要影响因子。在日尺度上,冠层导度、温度以及饱和水汽压差为主要影响因子。月尺度上气温、冠层导度以及大气CO2含量对NEE影响最明显。
     (3)温度模型和Q1o模型由于仅考虑温度对土壤碳通量的影响,因此在模拟时效果并不理想,R2分别为0.10和0.32。本研究通过考虑温度和水分两方面的因素,建立了改进的水分温度综合模型(W-T模型),其模拟效果得到明显提高,R2达到0.78。
     (4)常用的碳通量模型SMPT-SB和Crop-C模型在模拟西北旱区葡萄园碳通量变化时,效果均不理想,模拟值分别高估60%和30%。在考虑葡萄园的特殊性:植被和土壤对碳通量贡献的差异性后,结合SMPT-SB模型与土壤的综合模型,本研究建立了适宜模拟葡萄园碳通量的SMPT-SW模型,其模拟效果有显著提升,模拟值相较实测值高估约8%,R2达到0.85。
     (5)根据IPCC第五次工作报告中提出的两种碳排放情景,利用SMPT-SW模型对西北旱区葡萄园2015至2065年的植被初级生产力(NPP)进行了预测。预测结果表明在低碳排放情景下,2065年葡萄园NPP可达1299gC-m-2·y-1,是2015年的1.25倍。其中2015至2020年间为快速增长阶段。在高碳排放情景下,2015至2030年间为快速增长阶段,该15年间葡萄园NPP增长了24%,2030至2065年间葡萄园NPP却开始下降,到2065年时下降至1213gC-m-2·Y-1。
On the premise of global change, carbon flux cycle of terrestrial ecosystem has become a research focus. Green vegetation is the most important part of carbon cycle; it has important effect on atmospheric carbon pool. Moreover, it is a fragile ecosystem in arid regions of Northwest China, and wind grapes are widely grown there, so the vineyard plays an important role for the local atmospheric, research on it has significance means for understading the whole carbon cycle of terrestrial ecosystem.
     Based on above reasons, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during2008to2013, and analysis the dynamic changes of vineyard's carbon flux under different time scales, and it's carbon source/sink properties; then distinguish the main factor of the carbon flux under different time scales; by comparing the different types of model, getting the proper model for simulation local soil carbon flux; and based on the above, by comparing different types of carbon flux model, establishes a sutable model for simulation the frame vegetation ecosystem carbon variation. The main results are as follows:
     (1) The net ecosystem CO2exchange were-820,-824,-961, and-992gC-m-2-y-1form2008to2011respectively, and showed a significant carbon sink. And vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and low negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day.
     (2) The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The main factors affecting daily NEE were gc, air temperature (Ta) and vapour pressure deficit (VPD). The main factors affecting month NEE were gc, air temperature (Ta) and atmospheric CO2density.
     (3) The effect of temperature and Q10soil carbon models in the simulation are not good, with R2of0.10and0.32respectively, because they only consider the influence of temperature on soil carbon flux. In this study, we established an improved water-temperature integration model (W-T model) by considering both temperature and moisture factors, and the simulation results have been improved obviously, R2reached to0.78.
     (4) When using the mainly ecosystem scale carbon flux model to simulate the vineyard carborn flux variation, such as SMPT-SB and Crop-C model, the results are not as expcted, the simulation are overvalued by60%and30%. This is due to not considering the plant and soil have different carbon flux varation in the frame vegetation ecosystem. After considering this situation,, we establishes a new ecosystem carbon model called SMPT-SW combined with the SMPT-SB model and W-T soil carbon model, to simulate the vineyard's NEE. The simulation result has a significant increase compared with above two models, the simulation is overvalued about8%, and R2is0.85.
     (5) According to the two kinds of carbon emission scenarios proposed by IPCC5th working report, using the SPMT-SW modle to predicte the net primary productivity of vineyard in arid regions of Northwest China from2015to2065. The results showed that in low carbon emission scenario, the vineyard's NPP will be1299gC-m-2-y-1at the year of2065,1.25times that of2015. From 2015to2020among them, the NPP growth is rapid. Meantime, under the high carbon emission scenario, it will be a rapid growth stage for vineyard's NPP from2015to2030, the NPP increased by24%over15years, but after2030, the NPP will begin to decline, untill the year of2065, the NPP will fell to1213gC-m-2·y-1.
引文
[1]孙成权.全球气候变化的新认识-IPCC第三次气候变化评价报告概览.自然杂志,2002,24(2):114-122
    [2]曹凤中.气候变化是科学问题也是经济政治问题,气候公约的二次缔约国会议及我国研究情况.江苏科技,1996,4:1-9
    [3]Cambridge:Cambridge University Press. IPCC Fourth Assessment Report,2007
    [4]丁一汇.地球变暖人类不寒而栗.科学中国人,2002,(10):36-38
    [5]于贵瑞,伏玉林,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路.中国科学D,2006,36(增刊2):1-21
    [6]IPCC. Climate change 2013:the physical scince basisi. Cambridge:Cambridge University Press.2013
    [7]Hulme M.A.1951-80 global land precipitation climatology for the evaluation of general Circulation Models. Climate Dynamics,1992,7:57-72
    [8]王绍武,罗勇,赵宗慈,等.气候变化的归因研究.气候变化研究进展,2012,8(4):308-312
    [9]孙颖,尹红,田沁花,等.全球和中国区域近50年气候比那话检测归因研究进展.气候变化研究进展,2013,9(4):235-245
    [10]秦大河.IPCC第五次评估报告第一工作组报告的亮点总结.气候变化研究进展,2014,10(1):1-6
    [11]Davis M.B. Lags in vegetation response to global warming. Climatic Change,1989,15:75-82
    [12]Urban O., Janous D., Acosta M., et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stands. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology,2007,13(1):157-168
    [13]Dixon R.K., Brown S., Houhgton R.A., et al. Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190
    [14]Falge E., Baldocchi D. D., Olson R., et al. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology,2001,107,71-77
    [15]Swinbank W. C. Measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology,1951,8:135-145
    [16]Desjardins R.L. A technique to measure CO2 exchange under field conditions. International Journal of Biometeorology,1974,18:76-83
    [17]Garratt J.R. Limitations of the eddy correlation technique for the determination of turbulent fluxes near the surface. Boundary Layer Meteorology,1975,8:255-259
    [18]Jones E.P., Ward T.V., Zwick H.H. A fast response atmosphere CO2 sensor for eddy correlation flux measurements. Atmospheric Environment,1978,12(4):845-851
    [19]Brach E.J, Desjardins R.L, St Amour GT. Open path CO2 analyzer. Journal of Physics and Earth Science Instrumentation,1981,14:1415-1419
    [20]Lavigne M.B., Ryan M.G, Anderson D.E., et al. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. Journal of Geophysical Research,1997,102(D24):28977-28985
    [21]Vesala T., Rannik U., Leclerc M. Flux and concentration footprints. Agricultural and Forest Meteorology,2004,127:111-116
    [22]Gu L. H., Falge E. M., Boden T., et al. Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology,2005,128:179-197
    [23]Fan S.M, Wofsy S.C, Bakwin P.S., et al. Atmosphere biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research,1990,95(16):851-864
    [24]Tans P.P., Fung L.Y., Takahaski T. Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438
    [25]Fang C, Monerieff J.B. The dependence of soil CO2 efflux on temperature. Soil Biology Biochemistry,2001,3:155-165
    [26]Fang J.Y., Chen A.P., Peng C., et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292:2320-2322
    [27]Wofsy S.C., Goulden M.L., Munger J.W., et al. Net exchange of CO2 in a mid latitude forest. Science,1993,260:1314-1317
    [28]Anderson D.E., Verma S.B. Carbon dioxide, water vapor and sensible heat exchanges of a grain sorghum canopy. Boundary Layer Meteorology,1986,34(4):317-331
    [29]Field C.B., Behrenfeld M.J., Randerson J.T., et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science,1998,281(5374):237-240
    [30]Baldocchi D.D., Falge E., Gu L.H., et al. FLUXNET:A new to study the temporal and spatial variability of ecosystem scale carbon dioxide, water vapor and energy flux densities. Bulletin of the American Meteorological Society,2001,82:2415-2434
    [31]Baldocchi D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biology,2003,9(4):479-492
    [32]刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林CO2通进季节变化及其环境因了的影响.中国科学D,2004,34:109-117
    [33]张弥,于贵瑞,张雷明,等.太阳辐射对长白山阔叶红松林净生态系统碳交换量的影响.植物生态学报,2009,33(2):270-282
    [34]李春,何洪林,刘敏,等ChinaFLUX CO2通量数据处理系统与应用.地球信息科学,2008,10(5):557-565
    [35]王春林,周国逸,王旭,等.鼎湖山针阔叶泡交林冠层下方CO2通觉及其环境响应.生态学报,2007,27(3):846-8854
    [36]Piao S.> Fang J., Ciais P., et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009,458(7241):1009-1013
    [37]赵晓松,关德新,吴家兵,等.长白山阔叶林红松林CO2通量与温度的关系.生态学报, 2006,26(4):1088-1095
    [38]吴家兵,关德新,孙晓敏,等.长白山阔叶红松林二氧化碳湍流交换特征.应用生态学报,2007,18(5):951-956
    [39]Zhang G, Kang Y., Han G, et al. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology.2011, 17(1):377-389
    [40]Vickers D., Mahrt L, Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Ocean Technology,1997,14:512-526
    [41]Law B.E, Falge E., Gii L., et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology,2002,113:97-120
    [42]张一平,窦军霞,孙晓敏,等.热带季节雨林林冠碳通量不同校正方法的比较分析.应用生态学报,2005,16(12):2253-2258
    [43]宋清海,张一平,于贵瑞,等.热带季节雨林优势树种叶片和冠层尺度二氧化碳交换特征.应用生态学报,2008,19(4):723-728
    [44]Law B.E., Sun O.J., Campbell J., et al. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology,2003,9:510-524
    [45]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征.2008.北京:科学出版社
    [46]Fange E., Baladocchi D., Olson R. et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology,2001,107 (1):43-69
    [47]Naor A., Gal Y., Bravdo B. Crop load affects assimilation rate, stomatal conductance, stem water potential and water relations of field grown Sauvignon grapevines. Journal of Experimental Botany,1997,48(9):1675-1680
    [48]Chaumont M., Morot-Gaudry J.F., Foyer C.H. Seasonal and diurnal changes in photosynthesis and carbon partitioning in Vitis vinifera leaves in vines withand without fruit. Journal of Experimental Botany,1994,45(9):1235-1243
    [49]Kang S., Doh S., Lee D.S. et al. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology,2003,9:1427-1437
    [50]Williams L.E., Phene C.J., Grimes D.W., et al. Water use of mature thompson seedless grapevines in California. Irrigation Science,2003,22(1):11-18
    [51]Heilman J.L., McInnes K.J., Gesch R.W., et al. Effects of trellising on the energy balance of a vineyard. Agricultural and Forest Meteorology,1996,81(1-2):79-93
    [52]Ham J.M., Heilman J.L. Aerodynamic and surface resistances affecting energy transport in a sparse crop. Agricultural and Forest Meteorology,1991,53(4):267-284
    [53]Oliver H.R., Sene K.J. Energy and water balances of developing vines. Agricultural and Forest Meteorology,1992,61(2):167-185
    [54]Rana G., Katerji N. Direct and indirect methods to simulate the actual evapotranspiration of an irrigated overhead table forest under mediterranean conditions. Hydrological Processes,2008,22(2): 181-188
    [55]Yunusa I., Walker R.R., Guy J.R. Partitioning of seasonal evapotranspiration from a commercial furrow-irrigated Sultana Forest. Irrigation Science,1997,18(1):45-54
    [56]Ortega-Farias S., Carrasco M., Olioso A., et al. Latent heat flux over forest using the Shuttleworth and Wallace model. Irrigation Science,2007,25(2):161-170
    [57]Rana G., Katerji N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:a review. European Journal of Agronomy,2000,13(2-3):125-153
    [58]Ball J.T., Woodrow I.E., Berry J.A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In:Biggins I, eds. Progress in Photosynthesis Research. Netherlands:Martinus Nijhoff Publishers,1987.221-224
    [59]Brooks A., Farquhar GD. Effect of temperature on the CO2/O2 specificity of rubulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta,1985,165: 397-406
    [60]Brutsaert W. Evaporation into the atmosphere. D. Reidel Publishing Company,1982
    [61]Vukicevic T., Braswell B.H., Schimel D.S. A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus,2001,53:150-170
    [62]Cao W.X., Luo W.H. Simulation and Intelligent Management of Crop System. Beijing:Huawen Press,2000
    [63]Collate G.J., Ball J.T., Griver C., et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration:a model that includes a laminar boundary layer. Agricultural and Forest Meteorology,1991,54:107-136
    [64]Katul G.G., Leuning R., Kim J., et al. Estimating CO2 source/sink distributions within a forest canopy using higher-order closure model. Boundary Layer Meteorol,2001,98:103-125
    [65]Janssens I.A., Lankreijer H., Matteucci G., et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology,2001, 7:269-278
    [66]Leuning R. Modeling stomatal behavior and photosynthesis of Eucalyptus grandis. Australian Journal of Plant Physiology,1990.17:159-175
    [67]Leuning R.A. Critical-appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell and Environment,1995,18:339-355
    [68]Lloyd J. Modeling stomatal responses to environment in Macadamia integrifolia. Australian Journal of Plant Physiology,1991,18:649-660
    [69]Zhang L.M., Yu G.R., Sun X.M. Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Science in China,2006,49:47-62
    [70]Waring R.H., Schlesinger W.H. Forest ecosystems:concepts and management. San Diego: Academic Press.1985
    [71]Houghton R.A., Hackler J.L., Lawrence K.T. The U.S. carbon budget:contributions from land use change. Science,1999,285:574-578
    [72]Houghton R.A. Balancing the global carbon budget. Annual Review of Earth Planet Science, 2007,35:313-347
    [73]Giorio P., Giovanni G. Sap flow of several olive trees estimated with the heat pulse technique by continuous monitoring of a single gauge. Environmental and Experimental Botany,2003,49:9-20
    [74]Todd R.W., Evett S.R., Howell T.A. The Bowen ratio energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi arid, adjective environment. Agricultural and Forest Meteorology,2000,103:335-348
    [75]方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算.中国科学D:地球科学,2001,37(1-2):804-812
    [76]查同刚,张志强,朱金兆,等.森林生态系统碳蓄积与碳循环.中国水土保持科学,2008,6(6):112-119
    [77]Streets D.G, Bond T.C., Carmichael GR., et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research-Atmospheres,2003,108: 30-53
    [78]于贵瑞,温学发,李庆康,等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征.中国科学D,2004,34(增刊11):84-94
    [79]杜睿,王庚辰,吕达仁,等.静态箱法原位观测草原CO2通量探讨.生态学报,2002,22(12):2167-2174.
    [80]董云社,章申,齐玉春,等.内蒙古典型草地CO2,N20,CH4通量的同时观测.科学通报,2000,45(3):318-322
    [81]赵亮,徐世晓,李英年,等.青藏高原矮蒿草草甸和金露梅灌丛草甸CO2通量变化与环境因子的关系.西北植物学报,2006,26(1):133-142
    [82]Frank A.B., Dugas W.A. Carbon dioxide fluxes over a northern, semiarid, mixed grass prairie. Agricultural and Forest Meteorology,2001,108:317-326
    [83]Novick K.A., Stoy P.C., Katul G.G Carbon dioxide and water vapor exchange in warm temperate grassland. Oecologia,2004,138:259-274
    [84]Shaw M.R., Zavaleta E.S., Chiariello N.R., et al. Grassland responses to global environmental changes suppressed by elevated CO2. Science,2002,298(5600):1987-1990
    [85]Zha T., Barr A.G., Kamp G., et al. Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agricultural and Forest Meteorology, 2010,150(11):1476-1484
    [86]Seastedt T.R. Canopy interception of nitrogen in bulk precipitation by annually burned and burned tallgrass prairie. Oecologia,1985,66:88-92
    [87]Lawrence B.F., Linda A.W., Peter J.C. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology,2002,8: 599-615
    [88]Brown R.A., Rosenberg N.J., Hays.C.J., et al. Potential production and environmental effects of switchgrass and traditional crop under current and greenhouse altered climate in the central United States:a simulation study. Agriculture, Ecosystems and Environment,2000,78:31-47
    [89]Jorge A.F., Mark E., Keith P. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agriculture, Ecosystems and Environment,2012,155:87-94
    [90]柴仲平,王雪梅,贾宏涛,等.干旱区绿洲冬小麦生态系统CO2源/汇关系研究.新疆农业科学,2008,45:986-989
    [91]张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO2通量的测定.地理学报,2002,57:333-342
    [92]李琳,张海林,陈阜,等.不同耕作措施下冬小麦生长季农田-氧化碳排放通量及其与土壤温度的关系.应用生态学报,2007,18:2765-2770
    [93]何洪林,于贵瑞,张雷明,等.基于人工神经网络的Chinaflux观测站二氧化碳的模拟研究通量.中国科学D,2006,36(增刊I):234-243
    [94]张仁华,孙晓敏,朱治林,等.遥感区域地表植被二氧化碳通量的机理及其应用.中国科学D,2000,2:215-224
    [95]Raich J.W., Potter C.S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles,1995,9:23-36
    [96]Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44(B):81-99
    [97]Emanual W.R., Shugart H.H., Stevenson M.P. Climatic change and the broad scale distribution of terrestrial ecosystem complexes. Climatic Change,1985,7:29-43
    [98]Ciais P., Reichstein M., Viovy N., et al. Europe wide reduction in primary productivity caused by the heat and drought in 2003. Nature,2005,437(7058):529-533
    [99]Rannik U., Aubinet M., Kurbanmuradov O., et al. Footprint analysis for measurements over a heterogeneous forest. Boundary Layer Meteorology,2000,97:137-166
    [100]Savage K., Davidson E.A., Richardson A.D. A conceptual and practical approach to data quality and analysis procedures for high frequency soil respiration measurements. Functional Ecology,2008,22:1000-1007
    [101]Schimel D.S. Drylands in the earth system. Science,2009,327:418-419
    [102]Friedlingstein P., Dufresne J.L., Cox P.M, et al. How positive is the feedback between climate change and the carbon cycle? Tellus,2003,55B:692-700
    [103]周正朝,上官周平.黄土高原人工刺槐林土壤呼吸及其与土壤因子的关系.生态环境学报,2009,18(1):280-285
    [104]Adachi M., Ishida A., Bunyavejchewin S., et al. Spatial and temporal variation in soil respiration in a seasonally dry tropical forest, Thailand. Journal of Tropical Ecology,2009,25(5): 531-539
    [105]袁渭阳,李贤伟.不同年龄巨桉林土壤呼吸及其与土壤温度和细根生物量的关系.林业科学,2009,45(11):1-8
    [106]Yan M. Temporal and spatial variation in soil respiration of poplar plantations at different developmental stages in Xinjiang China. Journal of Arid Environments,2011,5(1):51-57
    [107]韩广轩,周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望.植物生态学报,2009,33(1):197-205
    [108]Markus R., Ana R., Annette F., et al. Modeling temporal and large scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles,2003,17:15-115
    [109]Pen M.S., Rakhimbaev M., Steinberger Y. Spatio temporal effect on soil respiration in fine scale patches in a desert ecosystem. Pedosphere,2006,16(1):1-9
    [110]Reichstein M., Freibauer R.A., Tenhunen A., et al. Modeling temporal and large scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles,2003,17(4):doi:10.1029/2003GB002035
    [111]Bentson G.M., Bazzaz F.A. Below ground positive and negative feedbacks on CO2 growth enrichment. Plant and Soil,1996,187:119-131
    [112]Chambers J.Q., Schimel J.P., Nobre A.D. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry,2001,52(1):115-131
    [113]陈光水,杨玉盛,吕萍萍.中国森林土壤呼吸模式.生态学报,2008,28(4):1748-1761
    [114]国庆喜,张海燕.东北典型森林土壤呼吸的模拟—IBIS模型的局域化应用.生态学报,2010,30(9):2295-2303
    [115]王军邦.中国陆地净生态系统生产力遥感模型研究.[博士论文].浙江:浙江大学,2004
    [116]Quere C.L., Eacute R., Raupach M.R., et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience,2009,2:831-836
    [117]Rey A., Emillano P., Vanessa J., et al. Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology,2002,8:851-866
    [118]Luo Y.Q., Wan S.Q., Hui D.F., et al. Acclimatization of soil respiration to wanning in a tall grass prairie. Nature,2001,413:622-625
    [119]Luyssaert S., Inglima I., Jung M. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology,2007,13:2509-2537
    [120]Trumbore S. Age of soil organic matter and soil respiration:radiocarbon constraints on belowground C dynamics. Journal of Applied Ecology,2000,10:399-411
    [121]Jia B., Zhou G, Wang Y., et al. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 2006,26(1):60-67
    [122]Davidson E.A., Savage K., Verchot L.V., et al. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology,2002,113: 21-37
    [123]王娓,汪涛,彭书时,等.冬季土壤呼吸:不可忽视的地气CO2交换过程.植物生态学报,2007,31(3):394-402
    [124]曹明奎,李克让.陆地生态系统与气候相互作用的研究进展.地球科学进展,2000,15(4):446-452
    [125]曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学D,2004,34:1-14
    [126]Verhoef A., Allen S.J. A SVAT scheme describing energy and CO2 fluxes for multi component vegetation:calibration and test for a Sahelian savannah. Ecological Modeling,2001,127:245-267
    [127]Sellers P.J., Dickinson R.E., Randall D.A., et al. Modeling the exchanges of energy, water and carbon between continents and the atmosphere. Science,1997,275:502-509
    [128]White A., Cannell M.G, Friend A.D. The high latitude terrestrial carbon sink:a model analysis. Global Change Biology,2000,6:227-245
    [129]Williams M., Malhi Y., Nobre A.D., et al. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest:a modeling analysis. Plant, Cell and Environment,1998, 21:953-968
    [130]康梦德,张孟威,陈利顶.中国环境中碳、氮元素变化与大气温室效应的系统分析.中国的全球变化预研究第二部分报告.北京:地震出版社,1992,221-269
    [131]Ji J. A climate vegetation interaction model:simulating physical and biological processes at the surface. Journal of Biogeography,1995,22:445-451
    [132]Cao M.K., Woodward F.I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998,393:249-252
    [133]张娜,于贵瑞,于振良,等.基于3S的自然植被光能利用率的时空分布特征的模拟.植物生态学报,2003,27(3):325-336
    [134]张娜,于贵瑞,于振良,等.基于景观尺度过程模型的长白山地表径流量时空变化特征的模拟.应用生态学报,2003,14(5):653-658
    [135]张娜,于贵瑞,于振良,等.基于景观尺度过程模型的长白山净初级生产力空间分布影响因素分析.应用生态学报,2003,14(5):659-664
    [136]庄亚辉.全球生物地球化学循环研究的进展.地学前缘,1997,4:163-168
    [137]Wang Q.F., Niu D., Yu G.R., et al. Simulation Study of the Changbai Mountain forest ecosystem CO2 and water and heat fluxes. Science in China,2004,34 (2):131-140
    [138]Moss R.H., Edmonds J. A., Hibbard K.A., et al. The next generation of scenarios for climate change research and assessment. Nature,2010,463:747-756
    [139]Hammerle A., Haslwanter A., Schmitt M., et al. Eddy covariance measurement of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary Layer Meteorology,2007,122(2):397-416
    [140]Paw T., Baldocchi D.D., Meyers T.P., et al. Correction of eddy covariance measurements incorporating both adjective effects and density fluxes. Boundary Layer Meteorology,2000,97: 487-511
    [141]Wilczak J.M., Oncley S.P., Stage S.A. Sonic anemometers tilt correction algorithms. Boundary Layer Meteorology,2001,99:127-150
    [142]Moore C.J. Frequency response corrections for eddy correlation systems. Boundary Layer Meteorology,1986,37:17-35
    [143]Leuning R., Judd M. The relative merits of open and closed path analyzers for measurement of eddy fluxes. Global Change Biology,1996,2:241-253
    [144]Sun X.M, Zhu Z.L, Wen X.F, et al The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agricultural and Forest Meteorology,2006,137:188-193
    [145]Wolf A., Saliendra N., Akshalov K., et al. Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system. Agricultural and Forest Meteorology,2008,148:942-952
    [146]温学发.中亚热带红壤丘陵人工林生态系统CO2通量观测及其季节动态特征:[博士学位论文].北京:中国科学院研究生院,2006
    [147]宋霞.中亚热带人工针叶林生态系统水分利用效率的季节动态及其环境控制机制研究:[博士学位论文].北京:中国科学院研究生院,2007
    [148]Priestley C.H.B, Taylor R.J. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review,1972,100:81-92
    [149]Samuel O., Oliosob A., Fuentesc S., et al. Latent heat flux over a furrow irrigated tomato crop using Penman-Monteith equation with a variable surface canopy resistance. Agricultural Water Management,2006,82:421-432
    [150]Mladen T. Single layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering,1999,125:235-245
    [151]Jarvis P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society,1976,273:593-610
    [152]于贵瑞.不同冠层类型的陆地植被蒸发散模型研究进展.资源科学,2001,23:72-84
    [153]Widen B. Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest. Agricultural and Forest Meteorology,2002,111 (4):283-297
    [154]Ohashi M., Gyokusen K. Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biology and Biochemistry,2007,39(5): 1130-1138
    [155]Yan X.D, Zhao J.F. Establishing and validation individual based carbon budget model FORCCHN of forest ecosystems in China. Acta Ecologica Sinica,2007,27(7):2684-2694
    [156]Brown S.L., Schroeder P.E. Spatial patterns of above ground production and mortality of woody biomass for eastern US forests. Ecological Applications,1999,9:968-980
    [157]吴仲民,曾庆波,李意德,等.尖峰岭热带森林土壤碳储量和CO2排放量的初步研究.植物生态学报,1997,21(5):16-23
    [158]Ohashi M., Finer L., Domisch T., et al. CO2 flux from a red wood ant mound in a boreal forest. Agricultural and Forest Meteorology,2005,130:131-136
    [159]Goulden M.L., Munger J.W., Fan S.M., et al. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science,1996,271:1576-1578
    [160]Goulden M.L., Wofsy S.C, Harden J.W., et al. Sensitivity of boreal forest carbon balance to soil thaw. Science,1998.279:214-217
    [161]Hartmann D., Klein A., Rusticucci M., et al. Observations:atmosphere and surface//IPCC, Climate change 2013:the physical science basis. Cambridge:Cambridge University Press
    [162]Heilman J.L., McInnes K.J., Savage M.J., et al. Soil and canopy energy balances in a west Texas vineyard. Agricultural and Forest Meteorology,1994,71(1):99-114
    [163]Wilson K.B, Hanson P.J.Mulholland P. J, et al. A comparison of methods for determining forest evapotranspiration and its components:sap flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology,2001,106(2):153-168
    [164]Camillo P.J., Gurney R.J. A resistance parameter for bare-soil evaporation models. Soil Science,1986,141(2):95-105
    [165]Harris P.P., Huntingford C., Cox P.M., et al. Effect of soil moisture on canopy conductance of Amazonian rainforest. Agricultural and Forest Meteorology,2004,122(4):215-227
    [166]康慧宁,马钦彦,袁嘉祖.中国森林C汇功能基本估算.应用生态学报,1996,7(3):230-234
    [167]Potter C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska. Ecological Modeling,2004,75:1224
    [168]Yan J.H., Wang Y.P., Zhou G.Y. et al. Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology,2006,12: 810-821
    [169]Yan M., Zhang X., Zhou G, et al. Temporal and spatial variation in soil respiration of poplar plantations at different developmental stages in Xinjiang, China. Journal of Arid Environments,2011, 75:51-57
    [170]Norman J.N, Garcia R., Venna S.B. Soil CO2 flux and carbon budget of a grassland. Journal Geophysical Research,1992,97:845-853
    [171]Jonathan G. Variation of soil respiration at three spatial scales:components within measurements, intra-site variation and patterns on the landscape. Soil Biology & Biochemistry,2008, 41(2009):530-543
    [172]Wullschleger S.D., Hanson P.J., Sensitivity of canopy transpiration to altered precipitation in upland oak forest evidence from a long-term field manipulation study. Global Change Biology,2006, 12(1):97-109
    [173]Monteith J.L. Unsworth M.H. Principles o environmental physics.2n edition. London:Edward Arnold.1990
    [174]Anadranistakis M., Liakatas A., Kerkides P., et al. Crop water requirements model tested for crops grown in Greece. Agricultural Water Management,2000,45(3):297-316
    [175]Szeicz G., Endrodi G., Tajchman S. Aerodynamic and surface factors in evaporation. Water Resources Research,1969,5:380-394
    [176]Thompson N., Barrie I,A., Ayles M. The meteorological office rainfall and evaporation calculation system:MORECS. Hydrological Memorandum No.45.1981
    [177]Webb E.K., Pearman G.I, Leuning R. Correction of flux measurements for density effects due to heat and water vapor quarterly. Journal of the Royal Meteorological Society,1980,106:85-100
    [178]任传有,于贵瑞,王秋凤,等.冠层尺度的生态系统光合-蒸腾耦合模型研究.中国科学D,2000,34:141-151
    [179]Horvath H. Experimental investigation on the validity of the Lambert-Beer law at high particle concentrations. Journal of Aerosol Science,1988,19(7):837-840
    [180]周允华,项月琴,栾禄凯.光合有效量子通量密度的气候学计算.气象学报,1996,54(4):447-455
    [181]Garratt J.R. Transfer characteristics for a heterogeneous surface of large aerodynamic roughness. Quarterly Journal of the Royal Meteorological Society,1978,104:491-502
    [182]Dickinson R.E. Modeling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity,1984,12:58-72
    [183]Ramon M. Climate change associated effects on grape and wine quality and production. Food Research International,2010,43:1844-1855
    [184]Huang Y., Gao L.Z., Jin Z.Q., et al. Simulating the optimal growing season of rice in the Yangze river valley and its adjacent area. Agricultural and Forest Meteorology,1998,91:251-262
    [185]黄耀,杨兆芳,于永强,等.稻麦作物净初级生产力模型研究:模型的建立.环境科学,2005,26(2):11-15
    [186]Penning W.T., Jansen D.M., Berge H.F., et al. Simulation of ecophysiological processes of growth in several annual crops. Pudoc, Wageningen:International Rice Research Institute Press,1989
    [187]Kroff M.J., Van Laar H.H. Modeling crop-weed interactions. Philippines:IRRI,1993,74-87
    [188]郭建平,高素华,白月明,等.CO2浓度倍增对大豆叶片和总生物量的影响研究.应用气象学报,1995,6:62-68
    [189]Adams J.M., Faure H., Faure-Denard L., et al. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature,1990,348:711-714
    [190]Gower S.T., Richards J.H. Larches:deciduous conifers in an evergreen world. Bioscience, 1990,40:818-826
    [191]Ojima D.S., Dirks B.O.M., Glenn E.P., et al. Assessment of C budget for grasslands and drylands of world. Water, Air and Soil Pollution,1993,70:95-109
    [192]李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应Ⅰ.碳循环的分室模型、碳输入与贮量.草地学通报,1998,2:14-22
    [193]Rohde R., Muller R., Jaconbsen R., et al., Berkeley earth temperature averaging process. Geoinformatics & Geostatistics:An Overview,2013,1:2
    [194]丁仲礼,段晓男,葛全胜,等.2050年大气CO2浓度控制:各国排放权计算.中国科学D,2009,39(8):1009-1027
    [195]任国玉,徐影,罗勇.世界各国CO2排放历史和现状.气象科技,2002,30(3):129-134
    [196]Canadell J.G., Le Quere C., Raupach M.R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sink. Proceedings of the National Academy of Sciences of the United States of America,2007,104:18866-18870
    [197]Trenberth K.E. Seasonal variations in global sea level pressure and the total mass of the atmosphere. Journal of Geophysical Research,1981,86:5238-5246
    [198]Robinson A.B., Robinson N.E., Soon W. Environmental effects of increased atmospheric carbon dioxide. Journal of American Physicians and Surgeons,2007,12:79-90
    [199]Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers-Emission Scenarios, Special Report of IPCC Working Group III. Cambridge:Cambridge University Press,2000. 20
    [200]张志强,曲建升,曾静静.温室气体排放科学评价与减排政策.北京:科学出版社,2009,180
    [201]Petit J.R., Jouzel J., Raynaud D., et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature,1999,399:429-436
    [202]Luthi D., Le Floch M., Bereiter B., et al. High-resolution carbon dioxide concentration record 650000-800000 years before present. Nature,2008,453:379-382
    [203]International Energy Agency (IEA). CO2 Emissions from Fuel Combustion 2008. Paris:OECD Publishing,2008,528
    [204]Organization for Economic Cooperation and Development (OECD). Environmental Outlook to 2030. Paris:OECD Publishing,2008,517
    [205]Stern N. Key elements of a Global deal on climate change. London:The London School of Economics and Political Science,2008,56
    [206]周广新,张新时.自然植被的净第一性生产力模型研究.植物生态学报,1995,19(3):193-200
    [207]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响.I.中国森林净第一生产力的模拟.林业科学研究,1994,7(4):425430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700