用户名: 密码: 验证码:
边坡开挖工程活动对环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重大工程灾害与防治成为21世纪核心科学问题之一,必须从可持续发展的战略高度研究“重大工程灾害与防治”。国家已把铁路和高等级公路等交通干线建设作为实施西部大开发的重要举措,并已列入国家建设的优先领域。西部地区工程建设条件复杂,生态环境脆弱,环境条件对道路建设严重制约,道路工程对环境影响问题严重,其中道路边坡开挖活动问题尤为突出。由此,研究边坡开挖工程对山区环境影响作用具有重要意义。
     我国西部山地环境灾害是地球内外动力耦合作用的产物,边坡开挖对山地环境影响表现为影响了山地动力系统及山地动力系统作用的环境,从而加速山区环境演变和引发山地边坡灾害。
     开挖引起的强扰动区范围是工程活动影响山地环境演化进程和评价工程开挖活动对环境影响的一个重要指标。由于开挖坡体在应力松弛情况下,其变形、损伤均是一个逐渐积累的过程,当变形或损伤达到一定程度后,坡体单元结构会发生明显的破坏或损伤发生突变。边坡土体的变形模量是其抗变形能力的一个综合反映,因此进行了基于边坡土体变形模量的损伤分析,提出把引起边坡单元发生损伤突变的围压作为确定强扰动区边界的判别标准,并给出了确定开挖边坡强扰动区范围的方法。
     施工时序是一个不断变化的过程,不同的开挖、支挡顺序对边坡岩土体变形有很大的影响,进而影响边坡稳定性。应用离心模型试验定量地分析了不同施工时序对边坡稳定性的影响,并直观地比较了边坡的变形破坏程度。数值计算分析了不同施工时序的作用机理:及时支护程度越高,坡体开挖面剪应力集中程度越低,坡面最大剪应力连通程度越差,从而有利于坡体稳定;及时支护,坡体单元应力历史(应力路径)过程为应力由大逐渐减小至平衡,而开挖完成后再支护(滞后支护)应力变化过程为先急剧降低,发生较大程度的应力松弛,随支护的进行应力逐渐增大至平衡,但最后应力值小于及时支护应力值,即滞后支护造成坡体发生较大的不可恢复损伤,坡体强度参数降低,且坡体开挖面剪应力集中程度大,结果对坡体稳定不利。
     坡体开挖及时支护有利于边坡稳定,但对于超高边坡开挖,及时支护由于受下级开挖应力调整影响,上级支护结构受力变大而可能失效。通过数值
Disaster and its prevention of large engineering activity become the core scientific project of 21th century, the study of which must be based on the sustainable development. Now the construction of railway and highway has been taken precedence over other national construction in west China. But the environment condition restricts the road construction because of complex geology and fragile environment. So the engineering construction, especially the slope excavation, has a large influence on environment Thus, it's practicable to study the slope cutting action.The mountain environmental disaster is the results of coupling of earth's endogenic and exogenic geological process in west China. The slope cutting influences the mountain environment through changing the exogenic system or its environment. The results are that the evolution of mountain environment is accumulated or the mountain disasters are caused.The range of strong disturbed zone due to slope cutting is an important criterion to evaluate the influence degree of slope cutting to environment. The deformation and damage of the cut slope is an accumulation process. After the deformation and damage of slope units accumulates to some magnitude due to stress relaxation, distinct damage of slopes structure will be caused. The deformation modulus is a comprehensive parameter to represent the deformation ability of soil slope. Based on the damage analysis of soil slope, the stress which causes damage variable an abrupt increasing, can be as the criteria to analyze the strong disturbed zone. And the method to analyze the strong disturbed zone is discussed.Different excavation and support sequence have a large effect on the deformation and stability of slope. Based on centrifuge model tests and numerical calculation, (he deformation failure and stress field, due to different excavation and support sequence, are analyzed. The results show that promptly supporting after been cut can reduce the deformation magnitude and improve the stability of slope. The mechanism of promptly support with high stability is that the concentration degree and connection of the
    maximum shear stress are weak, the stress relaxation are low, and the stress history is better to slope's stability. In contrast, support after the cutting finished cause the cut slope with large stress relaxation and high damage degree.Timely support to cut slope avails to the slope's stability. But to the supper high slopes, the up support measures may fail because of overly stress caused by down stages' excavation. Based on the results of numerical simulation, we suppose temporary support to up stages firstly, and then permanent support after the whole slope been cut. Thus, it can behave the "New Austrian" principle and satisfy the stability with a low cost.Due to fragile environment of mountain area in west China, the slope excavation may not only influence the stability of itself, but also influence the close slope. That is, the close slope may be influenced by the transition of deformation and failure of the cut slope. In the thesis, the transition effect due to part cutting of soil slope is the first time to be studied. The centrifuge model tests of soil slopes with part cutting indicate that three transition types caused because of no support measures taken in time. The first is the whole tensile crack failure under low stability, the second is the arc tensile crack failure under high stability; the third is the shallow collapse failure on the cut face under loose material slope. To engineering practice, we must consider the transition effect for those wreck soil slopes and fragmentary rock slopes, but with little attention to those strong strength soil slopes and integrated rock slopes.The failure of temporary slopes is very common in engineering practice. Rainfall is a key factor to the failure of temporary slopes. The centrifuge model tests indicate that two failure types of soil slope are relevant to different water content, i.e. tensile crack failure occurs under low water content, in contrast, whole failure occurs. There are critical damage variable and the corresponding critical water content, the two failure types of slope can be distinguished by the critical water content.With the increasing of cut degree of slope and support's delay, the evolution of cut slope will behaves self-organization characteristics. That is, the non-linear relation of deformation and slide force acts, and the slope will fail. The forming process of self-organization is the process of reduction of entropy, or the process of deformation's regulary degree from low to high. And the forming process of self-organization is studied trough entropy analysis. Then the disaster prevention measures are presented that timely support measures are taken to prevent the forming of self-organization.
引文
[1] 段飚.我国西部路网规划研究[J].铁道工程学报,1995,(3):22-28
    [2] 陈章明,张小强.西南地区铁路网发展规划的研究[J].铁道工程学报,2000,(4):9-11
    [3] 蒋忠信,陈光曦,吴宗俭等.中国山区道路灾害防治[M].重庆:重庆大学出版社,1996
    [4] William W. hay, Mgt. E., M. S., Ph. D., Railroad Engineering John Wiley & Sons, New York, 1982
    [5] 国家自然科学基金委员会.国家自然科学基金委员会“重大工程灾害与防治”论坛[C].国家自然科学基金委员会,(1999)科金发政字第009号.
    [6] 李景尧.铁路建设项目施工期的环境影响与防治[J].铁道劳动安全卫生与环保,1997,24(4):229-231
    [7] 钟正君,王崇绪.施工对环境的影响和污染[J].工程科技,2003,(1):111-114
    [8] 王海春.浅谈公路工程施工对环境的破坏及防治[J].青海环境,2002,12(2):82-83.
    [9] 于彬,张凤程.公路建设施工期环境保护[J].公路与汽运,2004,(2):68-69
    [10] 李治平.公路施工期间的环境影响分析[J].东北公路,2001,24(2):84-87
    [11] 陈建东,王美芝,许兆义,杨成永.道路工程施工期水土流失预测方法探讨[J].铁道工程学报,2003,(2):82-85
    [12] 姜建军.要处理好人与地质环境的关系[J].国土经济,2001,(4):18
    [13] 吴光,吴瑞秋,蒋爵光,张剑标.宝成铁路岩石边坡工程与地质环境相互作用研究[J].铁道学报,1999,21(sup):65-69
    [14] 刘瑞华,冯炎基,祝功武.广东公路地质灾害的特点及防治对策[J].热带地理,1999,19(3):193-197
    [15] 刘汝明.云南公路的环境地质灾害及工程对策[J].中国地质灾害与防治学报,2002,13(1):57-60
    [16] 陈宏荣,夏卫平.公路建设可能产生的水土流失及防治对策忉.福建水土保持,2001,13(3):34-36
    [17] 郑余近.水土流失严重地区路堤边坡的防护[J].山西建筑,2002,28(12):150-151
    [18] 杨茂顺.渝怀线34标段环保工程对策[J].铁道劳动安全卫生与环保,2004,31(1):18-19
    [19] 黄家愉.重庆市边坡环境保护与防灾减灾对策[J].地质灾害与环境保护,1991,2(2):41-43
    [20] 罗国煜.地质灾害研究现状与展望[J].水文地质与工程地质,1997,(2):29-31
    [21] 宋志敏,崔树军.西部开发中边坡地质环境变异态势分析[J].河南地质,2001,19(3):232-235
    [22] 王美芝,许兆义,杨成永等.青藏铁路工程对高原生态环境的影响[J].交通环保,2002,23(3):2-4
    [23] 李京荣,王家骥,娄安如等.浅析铁路建设对生态环境的影响[J].环境科学研究,2002,15(5):58-61
    [24] 王思敬.论人类工程活动与地质环境的相互作用及其环境效应[J].地质灾害与环境保护,1997,8(1):19-26
    [25] 王思敬,戴福初.环境工程地质评价、预测与对策分析[J].地质灾害与环境保护,1997,8(1):27-34
    [26] 赵天石.人类工程活动对地质环境的影响和岩土工程问题[J].辽宁地质,2000,17(1):57-61
    [27] 王元勋,姚令侃,崔鹏.脆弱西部山区环境下道路工程建设的可持续发展[J].路基工程,2004,(3):1-4
    [28] 周健,吴世明,徐建平.环境岩土工程[M].北京:中国建筑工业出版社,2001
    [29] Shen, B.; Barton, N. Disturbed zone around tunnels in jointed rock masses. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1997,34(1): 117-125
    [30] Luke, B. A.; Stokoe, K. H. H; Bay, J. A.; etc. Seismic measurements to investigate disturbed rock zones. In: Geo-institute of the ASCE. Proceedings of the 1999 3nd National Conference on Geo-Engineering for underground Facilities. Urbana, IL, USA: Geo-technical Special Publication, (90): 303-314
    [31] Attio, J.; Siitari-Kauppo,M. Determination of the porosity, permeability and diffusivity of rock in the excavation-disturbed zone around full-scale deposition holes using the ~(**)1~(**)4C-PMMA and He-gas methods. In proceedings of the 1997 6th international conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere. Sendai, Jpn: Journal of contaminant Hydrology, 1998,35(1-3):19-29
    [32] Sato, T.; Kikuchi,T.; Sugihara, K. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock an Tono mine, central Japan. Engineering Geology,2000,56(1):97-108
    [33] 邓建辉,王浩,姜清辉等.利用滑动变形计监测岩石边坡松动区[J].岩石力学与工程学报,2002,21(2):180-184
    [34] 夏熙伦,周火明,盛谦等.三峡工程船闸高边坡岩体松动区及其性状[J].长江科学院院报,1999,16(4):1-5
    [35] 邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,20(2):171-174
    [36] 肖世国.岩石高边坡开挖松弛区及加固支挡结构研究[博士学位论文].成都:西南交通大学,2003
    [37] 李兆平,张弥,王连俊.考虑开挖扰动和基质吸力影响的基坑边坡安全性研究[J].中国安全科学学报,2000(5):13-17
    [38] 缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水量的关系[J].岩土力学,1999(2):71-75
    [39] 胡再强,沈珠江,谢定义.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779
    [40] 张季如,曹星.山区公路开挖边坡的稳定性研究及其工程治理—以大甘坪路堑边坡为例[J].工程地质学报,2003(1):64-69
    [41] 陈健,盛谦,高锋.构皮滩工程高边坡开挖数值模拟分析及稳定性评价[J].长江科学院院报,1996(增刊):31-34
    [42] 廖红建,韩波,殷建华,赤石胜.人工开挖边坡的长期稳定性分析与土的强度参数确定[J].岩土工程学报,2002(5):560-564
    [43] 张季如,彭少民.大甘坪软粘土不同应力路径的三轴试验特性[J].武汉工业大学学报,1999(2):46-49
    [44] 张季如,彭波,尹光辉.不同条件下土坡稳定性分析方法的选择[J].武汉工业大学学报,2000(4):75-77
    [45] 张季如.边坡开挖的有限元模拟和稳定性评价[J].岩石力学与工程学报,2002(6):843-847
    [46] 缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水量的关系[J].岩土力学,1999(2):71-75
    [47] 李兆平,张弥,赵慧丽.含水量变化对非饱和土强度影响试验研究[J].西部探矿,2001(4):1-3
    [48] 赵慧丽,张弥,李兆平.含水量对北京地区非饱和土抗剪强度影响试验研究[J].石家庄铁道学院学报,2001(4):30-33
    [49] 刘晓敏,王连俊.非饱和土施工开挖后强度参数的变化[J].岩土工程技术,2001(4):190-192
    [50] 姚海林,郑少河,李少斌,陈家义.降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J].岩石力学与工程学报,2002(7):1034-1039
    [51] 李兆平,张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究[J].土木工程学报,2001(5):57-61
    [52] Anderson M G. The prediction of soil suction for slopes in Hong Kong[R]. Hong Kong: Geotechnical Control Office, Public Works Department, 1984
    [53] Kranln J, Fredlund D G, Klassen M J. Effect of soil suction on slope stability an Notch Hill[J]. Can Geotech J,1989,26(2):269-278
    [54] Lim T T, Rahardjo H, Chang M F, et al. Effect of rainfall on matric suctions in residual soil slope[J]. Can Geotech J, 1996,33(4):618-628
    [55] Zhang J, Jiao J J,Yang J. In situ rainfall infiltration studies at a hillside in Hubei Province, China[J]. Engineering G-eology,2000,57(1):31-38
    [56] Gasmo J M, Hritzuk K J, Rahardjo,et al. Instrumentation of an unsaturated residual soil slope[J]. Geotechnical Testing Journal,2000m22(2): 128-137
    [57] 詹良通,吴宏伟,包承纲,龚壁卫.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003(2):151-158
    [58] 李爱国,岳中琦,谭国焕,李焯芬.土体含水率和吸力量测及其对边坡稳定性的影响[J].岩土工程学报,2003(3):278-282
    [59] 介玉新,李广信,陈轮.纤维加筋土和素土边坡的离心模型试验研究[J].岩土工程学报,1998,20(4):12-15
    [60] 杨锡武,欧阳仲春.加筋高路堤边坡离心模型的研究[J].土木工程学报,2000,33(5):88-91
    [61] 杨锡武,易志坚.基于离心模型试验和断裂理论的加筋边坡合理布筋方式研究[J].土木工程学报,2002,35(4):59-63
    [62] 张志勇,傅德明,杨国祥.软土地区大型干坞边坡变形规律离心模型试验及实测研究[J].岩土工程学报,2003,25(1):36-40
    [63] 潘亨永,胡小明,胡定.小湾左岸坝前高边坡稳定性离心模型试验研究[J].红水河,2000,19(3):29-33
    [64] 刘镇庭.边坡破坏机理的离心模型试验研究[J].公路交通技术,2002(2):67-70
    [65] 包承纲,饶锡保.土工离心模型的试验原理.长江科学院院报,1998
    [66] 徐光明,章为民.离心模型中的粒径效应和边界效应研究.岩土工程学报,1996,18(3):80~86
    [67] 朱维新.用离心模型研究土石坝心墙裂缝.岩土工程学报,1994,16
    [68] 白冰,周建.土工离心模型试验技术的一些进展.大坝观测与土工测试,2001,25(1):36~39
    [69] 刘守华,蔡正银.土工离心模型填料装置研究.岩土工程学报,1996,18
    [70] 张利民等.用离心模型研究桩基承载特性.岩土工程学报,1991,13
    [71] Craig W. H. Edouard Phillips and the idea of centrifuge modeling. Geotechnique. 1989, 39: 679~700
    [72] 卞富宗,朱思哲,刘宏梅.土工离心模型试验的发展与应用.第二届全国土工离心模拟技术论文集.上海铁道学院,1991
    [73] 李玫.离心模型试验在三峡围堰工程中的应用.岩土力学与工程.大连:大连理工大学出版社,1995,210~217
    [74] 李玫.离心模型试验在三峡围堰工程中的应用.岩土力学与工程.大连:大连理工大学出版社,1995,210~217
    [75] 包承刚.我国离心模型试验技术的现状和展望.岩土工程学报,1991,13(6),92~97
    [76] 杜延龄.土工离心模型试验基本原理及其若干基本模拟技术研究.水利学报,1993,8,19~27
    [77] 汪小刚等.用离心模型研究岩石边坡的倾倒破坏.岩土工程学报,1996,18(5),14~21
    [78] 饶锡保.土石坝的离心模型试验研究.长江科学院研究生论文,1989
    [79] 濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报,1996,18f5),92~94
    [80] Craig, W. H. Edouard Phillips and the idea of centrifuge modeling [J]. Geotechnique, 1989, 39, 679-700
    [81] Buck, P. B. Use of models for the study of mining problems [J]. Am. Inst. Met. Eng. Tech. Pub, 1931, 425, 28-30
    [82] William H. Centrifuge modeling for site-specific prototypes[C]. Centrifuge'88,1988,485-494
    [83] Rowe, P. W Embankments on soft alluvial ground[J]. Quart.J. Engineering Geology,1972,5,256-263
    [84] Mark. C. Geperline & Hon Yim Ko, Centrifugal model tests for ultimate bearing capacity of footings on step slopes in cohesionless soils[C]. Cebtrufyge'88,1988,203-221
    [85] Myong Mo Kim and Yim Ko, Centrifugal testing of soil slope models[J]. Tran. Rec. 872,7-14
    [86] S.Frydam & E. Weisberg, A study o f centrifuge modeling of swelling soil[C]. Centrifuge'91, 113-120
    [22] R. J. Mitechell, Matrix, Suction and diffusive transport in centrifuge models[J]. Can. Geotech. J. 1994,31,357-363
    [87] A. Ohshima & N. Takada M. Mikasa, Strength anisotropy of clay in slope stability[C]. Centrifuge'91, 591-598
    [88] James A. Cheney and Ali Moharnad Oskoorouchi, Physiscal modeling of clay slopes in the drum centrifuge[J]. Tran. Res. Rec.872,1-7
    [89] Deborah J.Goodings & David R. Gillette, Grain and model size effects in centrifuge models[C], centrifuge'91,1991, 583-590
    [90] T.Kimura etal. Failure of fills due to rain fall[C]. Centrifuge'91,509-518
    [91] The instability of slope induced by d6am reservoir filling and the mechanism of produced[C], centrifuge'94
    [92] Limin, Zhang and Ting, Hu, Centrifugal modeling of the pubugou high-rise rockfill dam[C]. Centrifuge'91,45-50
    [93] Limin, Zhang and Ting, Hu, Development of a water control facility for centrifuge model tests[C]. Centrifuge'91,527-530
    [94] Itasca Consulting Group inc. FLAC-3D,version 2.00, users manual[R]. USA: Itasca consulting group inc, 1997
    [95] Coetzee M. J. etc. FLAC basis, Itasca consulting group inc. 1993.
    [96] 寇晓东,周维垣,杨若琼.FLAC-3D进行三峡船闸高边坡稳定性分析[J].岩石力学与工程学报,2001,20(1):6-10
    [97] 陈祥军,汤劲松.用FLAC-3D进行马崖高边坡稳定性分析[J].石家庄铁道学院学报,2002,15(3):76-79
    [98] 张东日,陶连金等.拉格朗日元法及其应用软件FLAC[J].矿山压力与顶板管理,1997,3(4):224-226
    [99] 刘春玲,祁生文等.利用FLAC~(3D)分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733
    [100] 梅松华,李文秀,盛谦.FLAC在岩土工程参数反演中的应用[J].矿冶工程,2000,20(4):23-26
    [101] 常来山,王家臣,李慧茹,陈亚军.节理岩体边坡损伤力学与FLAC-3D耦合分析[J].金属矿山,2004,(9):16-27
    [102] 李霞.FLAC程序及其在膨胀土边坡方案比较中的应用[J].中国公路.建设市场专刊,2004,(6)
    [103] 丁秀美,黄润秋,刘光士.FLAC-3D前处理程序开发及其工程应用[J].地质灾害与环境保护,2004,15(2):68-73.
    [104] 龚纪文,崔建军,席先武,林何.FIAC数值模拟软件及其在地学中的应用[J].1994,24(3):321-324
    [105] 马俊,扬和平,苟勇勤.耒宜高速公路滑坡治理中的FIJAC分析[J].公路与汽运,2002,(6):23-24
    [106] 龚纪文,席先武,王岳军,林何.应力与变形的数值模型方法.数值模拟软件FLAC介绍[J],矿冶工程,2002,25(3):220-227
    [107] 杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报,1996,17(4):39-44
    [108] 王思敬.地球内外动力锅台作用与重大地质灾害的成因初探[J].工程地质学报,2002,10(2):115-117
    [109] 王思敬,黄鼎成主编.攀西地区环境工程地质.北京:海洋出版社,1990
    [110] 张倬元主编.典型人类工程活动与地质环境相互作用研究(一).成都:成都科技大学出版社,1994
    [111] 黄润秋,张倬元,王士天.当前环境工程地质领域的几个主要问题及研究对策工程地质学报,1996,4(3):10~16
    [112] wang Sijing, Li Xiangtang and C. F. Ije. Gcomcchanical Evaluation of Crustal Stability[A], Pmceedings of 7th International Congress on Rock Mechnics[C], Aachen, 1991, 1785-1790.
    [113] Wang Sijing. Engineering Geology and Geoenvironmental Study for western China Development Program[A]. Proceedings of 9th International Congress on Engineering Geology(IAEG)[C], Durban. 2002(in Pr5nting).
    [114] 中国科学院.水利部成都山地灾害与环境研究所.山地学概论与中国山地研究[M].成都:四川科学技术出版社,2000
    [115] 刘传正.1994.环境工程地质学导论.北京:地质出版社
    [116] 刘广润.关于环境工程地质学的概念、范畴和今后研究方向.湖北地质科技情报,1983,2、3期合刊
    [117] 孙广忠,孙玉科,许兵.灾害地质学—地质科学的一个重要领域.湖北地质科技情报,1983,2、3期合刊
    [118] 孙广忠.地质工程的理论实践.北京:地震出版社,1996
    [119] 张咸恭等.人类活动与诱发灾害[M].湖北科学技术出版社,1996
    [120] 中国科学院成都地理研究所.滑坡分析与防治.重庆:科学技术文献出版社重庆分社,1984
    [121] 黄润秋,张倬元,王士天.当前环境工程地质领域的几个主要问题及研究对策工程地质学报,1996,4(3):10~16
    [122] 王思敬(主编),戴福初.人类工程活动与地质环境的依存关系与相互作用.典型人类工程活动与地质环境相互作用研究(二).北京:地震出版社,1995:1~9
    [123] 王思敬,黄鼎成主编.攀西地区环境工程地质.北京:海洋出版社,1990
    [124] 李小泉.栗子坪水电站厂基昔格达土的工程特性[J].广西水利水电,1996,1,16~20.
    [125] 周云金,曾联明.红格提水工程二级泵站昔格达地层特性及坡体变形成因分析[J].水电站设计,2000,16(2),61~65.
    [126] 蒋复初,吴锡浩,肖华国.泸定昔格达组时代与川西高原隆升[J].第四纪研究,1992,2,190.
    [127] 罗运利,刘东生.昔格达组沉积环境演化与旋回地层学研究[J].第四纪研究,1998,4,373.
    [128] 张永治.攀西地区昔格达综述[J].攀枝花大学学报,1995,12(2),75~78.
    [129] 蒋复初,吴锡浩,肖华国,赵志中.四川泸定昔格达组时代及其新构造意义[J].地质学报,1999,73(1),1~6.
    [130] 许述礼.昔格达层变形特征及其原因[J].四川地震,1990,3,63~64.
    [131] 高家美,顿志林.楔形体应力理论及其在工程中的应用口[M].北京:煤炭工业出版社,2001.
    [132] 周维垣.高等岩石力学[M].北京:中国水利出版社,1991
    [133] 张学言.岩土塑性力学[M].北京:人民交通出版社,1993.
    [134] 杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995
    [135] 李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [136] 王军.损伤力学的理论与应用[M].北京:科学出版社,1997.4
    [137] 李兆平.非饱和土体在开挖和降雨入渗影响下的稳定性理论与应用[博士学位论文].北京:北方交通大学,2002.
    [138] 张全胜 杨更社等.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003,22(1):30-34
    [139] 韩贝传,曲永新,张永双.裂隙型硬粘土的力学模型及其在边坡工程中的应用[J].工程地质学报,2001,9(2):204-208
    [140] Zhu W S,Li S C. Optimizing the construction sequence of a series of underground opening suing dynamic construction mechanics and a rock mass fracture damage model[J]. Int. J. Rock Mech. Min. Sci.,2000,(37):517-523
    [141] 朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996.
    [142] 于学馥.信息时代岩土力学与采矿计算初步[M].北京:科学出版社,1991
    [143] 赵尚毅,郑颖人,唐树名.路堑边坡施工顺序对边坡稳定性影响数值模拟分析[J].地下空间,2003,23(4):370-374.
    [144] 程国明,王思敬.开挖顺序对三峡永久船闸首中隔墩变形机制影响研究[J].岩石力学与工程学报,2004,23(7):1061-1065
    [145] 孙钧.脆弹粘性岩体高边坡稳定的损伤断裂力学机制研究[J].汕头大学学报,1994,9(2):1-9
    [146] 赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社,2003.
    [147] 夏熙伦,周火明,盛谦,肖国强.三峡工程船闸高边坡松动区及其性状[J].长江科学院院报,1999,16(4):1-5
    [148] 刘成宇.土力学[M].北京:中国铁道出版社,2000
    [149] 李小强,白世伟,李铀.最小势能方法在二维边坡稳定分析中的应用[J].岩土力学,2004,25(6):909-912
    [150] 迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46
    [151] 邓建辉,魏进兵,闵弘.基于强度折减概念的滑坡稳定性三维分析方法[J].岩土力学,2003,24(6):896-900
    [152] 连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411
    [153] 孙伟,龚晓南.土坡稳定分析强度折减有限元法[J].科技通报,2003,19(4):319-322.
    [154] 郑颖人,赵尚毅.用有限元强度折减法进行边坡稳定性分析[J].中国工程科学,2002,4(10):57-61
    [155] 张鲁渝,郑颖人,赵尚毅,时卫民.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,21(7):21-27
    [156] 徐光明,章为民.离心模型中的粒径效应和边界效应研究.岩土工程学报,1996,18(3):80-86
    [157] 姚裕春,姚令侃等.水入渗条件下边坡破坏离心模型试验研究[J].自然灾害学报,2004,13(2):149~154
    [158] 唐树名.山区高等级公路路堑边坡破坏机理[D].重庆:重庆交通学院硕士学位论文,1998
    [159] 曾国元.工程断裂力学基础[M].西安:陕西科学出版社,1994
    [160] Fredlund, Rahardjo. Soilmechanics for unsaturated soils[M]. John wiley&sons,INC,1983
    [161] 李爱国,岳中琦,谭国焕,李焯芬.土体含水率和吸力量测及其对边坡稳定性的影响[J].岩土工程学报,2003(3):278-282
    [162] 谢宁,孙钧.土体非线性流变的有限元解析及工程应用[J].岩土工程学报,1995,17(4):95-99
    [163] 沈珠江.理论土力学[J].北京:中国水利水电出版社,2000.
    [164] 孙钧.岩土材料流变及其工程应用[M].北京:中国建材工业出版社,1999.
    [165] 沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28
    [166] 胡再强,沈珠江,谢定义.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779
    [167] 黄润秋,许强.开挖过程的非线性理论分析[J].工程地质学报,1999,7(1):9-14
    [168] 黄润秋 许强著.工程地质广义系统科学分析原理及应用[M]北京:地质出版社,1997.9
    [169] 黄润秋,许强.非线性理论在工程地质中的应用[J].中国科学基金,1996,7(1):79-84
    [170] 许强,黄润秋.斜坡演化的自组织初探[J].中国地质灾害与防治学报,1997,8(1):7-11
    [171] 许强,黄润秋.非线性科学理论在地质灾害评价预测中的应用—地质灾害分析原理[J].山地学报,2000,18(3):272-277
    [172] 许强,黄润秋.重庆市建筑边坡开挖稳定性评价及支护措施探讨[J].成都理工学院学报,1996,23(1):32-38
    [173] 周硕愚.系统科学导引[M].北京:地震出版社,1988
    [174] 姚令侃.非线性科学探索推移质运动复杂性的研究[D].成都:四川大学博士后论文,1996
    [175] 李仕雄.沙堆演化特性及自组织临界现象研究[D].成都:西南交通大学博士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700