用户名: 密码: 验证码:
岩石类材料粘弹塑性损伤本构模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流变是岩石材料的重要力学特征,许多工程问题(采矿、石油开采、能源和
    放射性核废料的储存、边坡及地下构筑物的稳定性等)都与岩石的流变特性有密
    切关系。然而,随着各类岩土工程建设规模的扩大,以及对岩石类材料与工程特
    征认识的深入,在描述和处理材料的时间效应及其流变属性方面,尽管取得了重
    要的进展,但仍存在许多亟待解决的问题。
    本文对盐岩和泥岩试件进行了系统的蠕变试验,根据非经典塑性理论建立了
    岩石类材料的粘弹塑性损伤本构模型,发展了相应的数值分析方法。对泥岩和盐
    岩在不同温度常规三轴应力状态下的蠕变损伤特性进行了分析。同时对素混凝土、
    纤维增强混凝土在复杂加载史下的损伤行为和寿命进行了计算。
    在实验方面,为了有效地对岩石进行蠕变试验,自行研制了一套能进行常规
    三轴蠕变试验、并能考虑温度影响的岩石三轴蠕变仪。该装置结构简单、操作方
    便。可提供 60kN 的轴向压力、80MPa 的围压和 150°C 的最大加热温度。
    利用所研制的三轴蠕变仪,对泥岩进行了系统的单轴和三轴蠕变试验,试验
    中考虑了轴压σ1 和围压σ3 对蠕变的影响。结果表明,当围压σ3 一定时,轴向应力
    σ1 增加,蠕变加快,在稳态蠕变阶段的应变率增大,试件的寿命缩短。而当应力
    差?σ =σ1–σ3 保持不变时,围压σ3 增加,蠕变减慢,稳态蠕变阶段的应变率也减小,
    试件的寿命增加。
    通过对盐岩进行的不同温度和应力水平下的三轴蠕变试验表明,在围压σ3 和
    温度 T 不变时, 轴压σ1 对蠕变和蠕变率的影响与泥岩相同。随着温度的增加,蠕
    变应变增大,稳态蠕变应变率也相应增大。
    研究表明岩石的蠕变特性除与应力水平、温度、载荷的加载方式有关外、还
    与岩石结构、湿度、岩石材料本身所具有的粘性性质和赋存条件等因素有关。
    在理论方面,根据连续介质力学基本理论,基于含内变量的不可逆热力学和
    连续介质损伤力学,通过在不可逆应变和牛顿时间所构成的空间中合理的定义广
    义时间、引入四阶各向异性损伤张量,建立了岩石类材料的粘弹塑性损伤本构模
    型。该模型能够考虑复杂应力状态下材料的响应特性,各向异性损伤及其损伤的
    方向特征,静水压力和温度的影响,基于不同机制的不可逆变形间的相互作用,
    劣化规律和失效模式等。能对剩余强度、刚度、剩余寿命等进行分析和预测。重
    要的是,所建立的模型不以屈服面的存在为基本前提,但可获得含屈服面的情形
    作为其特例;在蠕变变形与塑性变形的描述方面,不采用分离型的方法分别对他
    们进行描述,而将两种变形均视为由热激活导致的不可逆变形并在此基础上发展
     I
    
    
    中文摘要
    统一的本构描述,从而更有效地描述两者间的相互作用。
    发展了不含屈服面的粘弹塑性损伤本构模型的数值分析方法,对泥岩和盐岩
    的蠕变过程进行了数值模拟,计算结果与试验结果吻和较好。表明所发展的模型
    能较好反映应力水平和温度对岩石蠕变特性的影响。计算了损伤变量的演化规律,
    得到了与实际相符合的结果。
    弹塑性损伤本构模型是所发展本构模型的特殊情形,用它对素混凝土在单轴
    循环加载下和三轴复杂加载史下的响应进行了描述,计算结果与实际相符,验证
    了模型的正确性。同时对随机分布短纤维增强混凝土在三轴载荷下的响应和在循
    环应力下的响应及寿命进行了计算,理论模型计算结果与试验结果都表明,纤维
    体积分数增加,损伤速度减缓、材料的承载能力增大、寿命提高。因此模型能较
    好反映混凝土在复杂加载条件下的基本特征。
Rheology is one of the most important mechanical characteristics of rock and
    rock-like materials, which is related to mining, oil extraction, storage of resources and
    radioactive wastes, underground and civil engineering, etc. Although great progress has
    been made in the description of the rare-dependent effects and rheological properties in
    the past decades, there are still a lot of problems remained unsolved.
     In this dissertation, the creep of salt rock and claystone is systematically
    investigated with a specially designed testing device. A visco-elastoplastic damage
    constitutive model is proposed for rock and quasi-brittle rock-like materials. The
    corresponding numerical algorithm is developed the creep and damage of the salt rock
    and claystone subjected to longitudinal stress under different confined pressure and
    temperature is simulated. and the nonlinear behavior and damage of concrete subjected
    to complex triaxial loading histories are analyzed.
     In order to make the creep experiment of rock and rock-like materials more
    efficiently, a device is developed, which can provide 60kN of longitudinal load, 80MPa
    of confined pressure and temperature ranged from room temperature to 150°C.
     The uniaxial and triaxial experiments on the creep of claystone are performed, and
    the effects of axial stress σ1 and confined pressure σ3 on the creep are investigated
    systematically. It can be found that for constant confined pressure, creep develops faster,
    the steady-state creep strain rate increases, and the life is reduced, with the increase of
    axial stress. If the stress difference ?σ =σ1–σ3 is constant, creep strain and steady-state
    creep strain rate decrease and the life increases with the increase of confined pressure.
     The triaxial experiments on the creep of salt rock are also performed, and the
    effects of axial stress σ1, confined pressure σ3 and temperature on the creep are
    investigated. It shows that if confined pressure σ3 and temperature T are constant, the
    effect of axial stress σ1 on creep and creep rate is similar to that of clay stone. With the
    increase of temperature, the creep strain increase and the steady state creep strain rate
    increases accordingly. It indicates that the creep properties are related to the state of
    applied stress, temperature, loading history, and the properties of rock and rock-like
    materials.
     Making use of irreversible thermodynamics with internal variables and the concept
    of continuum damage mechanics, a visco-elastoplastic damage constitutive model is
     III
    
    
    英文摘要
    proposed by introducing generalized time defined in the space of irreversible strain and
    Newtonian time, taking into account the anisotropic nature of the micro-defects in rock
    and rock-like materials. The anisotropic evolution and unilateral effect of damage as
    well as the effect of hydrostatic pressure and temperature can be taken into account in
    the proposed model. The interaction between irreversible deviatoric and volumetric
    deformation, for instance, the shear compaction and shear dilatation at different
    confined pressure and different phase of deformation, can also be considered. The
    proposed model does not use the concept of yield surface and the corresponding
    loading/unloading rule, and describe unitedly the elastic, inelastic and viscous behavior
    of materials, which may bring convenience to the corresponding numerical analysis.
    The proposed model is also a united description for the coupled viscous and plastic
    deformation of materials, i.e., it regards both viscous and plastic deformation as
    irreversible deformation induced by thermal activation.
     The corresponding numerical analysis is developed, and the creep, inelastic and
    damage behavior of some rock and rock-like materials are analyzed. It shows that the
    calculated results agree well with the experimental observation. The influence of stress
    leveland temperature act on the creep can be well described withthe model.
     The elastoplasticit
引文
[1] Fujii Y Kiyama T. Cricumferential strain behavior during creep tests of brittle rocks[J]. Int. J.
     Rock Mech. Mine Sci. 1999,(36): 323-337
    [2] 陈宗基,岩石力学的发展方向,岩石力学与工程学报,1990,9(3):175-183
    [3] Franklin J. A.& Dusseault M.B.,Rock Engineering,McGraw-Hill Publishing Co.,1989
    [4] 袁龙蔚,流变力学,北京,科学出版社,1986,3-33
    [5] Chan KS. A damage mechanics treatment of creep failure in rock salt. International Journal of
     Damage Mechanics 1997, 6:122-152
    [6] Papamichos E, Ringstad C, Brignoli M, Santarelli FJ. Modelling of partially saturated
     collapsible rocks. In Proc. Eurock '96. Rotterdam, Balkema, 1996,221-229
    [7] Horsrund P, Holt RM, Sonstebo EF, Time dependent borehole stability: laboratory studies and
     numerical simulation of different mechanism in shale, Proc. Eurock '94, Rotterdam: Balkema,
     1994: 259-266
    [8] Zaman MM, Abdulraheem A, Roegiers JC, Reservoir compaction and surface subsidence in the
     North Sea Eko?sk Field, In mainly using the multi-step loading procedure, which Chilingarian
     GV, Donaldson EC, editors, Subsidence due to Fluid Withdrawal, Amsterdam: Elsevier,
     1995;373-423
    [9] Brignoli M, Sartori L. Incremental constitutive relations for the study of wellbore failure. Int. J.
     Rock Mech. Min. Sci. Geomech. Abstr. 1993;7:1319-22.
    [10] 李四光,地质力学方法,科学出版社,1976
    [11] Malan DF. Time-dependent behavior of deep level tabular excavations in hard rock, Rock
     Mechanics and Rock Engineering, 1999, 32(2):123-155
    [12] Silberschmidt VG, Silberschmidt VV. Analysis of cracking in rock salt, Rock Mechanics and
     Rock Engineering, 2000, 33(1):53-70
    [13] Yamaguchi U. & Sbimotani T.,A case study of slope failure in limestone quarry. Int. J. Rock
     Mech. Min. Sci. & Geomech. Abstr.,1985,23(1)
    [14] Minh D. N. & Habib P., Time dependent behaviour of a pilot tunnel driven in har
     marls,Design and Performance of Underground Excavations (E. T. Brown & Hodson J. A.
     Edited),1884
    [15] Trow W. A. & Lo K. Y.,Horizontal displacements induced by rock excavation,Scotia Plaza,
     Toronto, Ontario. Can. Geotech. J.,1989,26
    [16] Zhang Zhongchun & Wang Shengzu,Long-time monitoring of subgrade stability of the
     99
    
    
    重庆大学博士学位论文
     Qinghai-Tibet Railway in the Charhan Playa Region, Engineering in Complex Rock
     Formation, 1986
    [17] Griggs D.,Creep of rocks, J. Geol.,1939,47:225-251
    [18] Lama R D, & Vulukuri V S, Handbook on Mechanical Properties of Rocks, Testing
     Techniques and Results, Volume III[M], Clausthal,Germany: trans. Tech. publications, 1978
    [19] Robertson E. C.,Viscoelasticity of rocks, in State of Stress in the Earth’s Crust(W. R. Judd
     Ed.),New York,Elsevier,1964
    [20] Kemeny J. M. & Cook N. G. W.,Time-dependent borehole stability under mechanical and
     thermal stresses,application to underground nuclear waste storage, Rock Mechanics as A
     Multi-Disciplinary Science, Proc. 32nd US Symposium. The University of Oklahoma,
     Norman,1991
    [21] Ito H.,Sasajima S.,A ten year creep experiment on small rock specimens[J],Int. J. Rock Mech.
     Mine Sci. and Geomech Abstr.,1987,24(2):113-121
    [22] Maranini E., Brignoli M., Creep behaviour of a week rock:experimental characterization[J].
     Int. J. Rock Mech. Mine Sci.,1999,36(1):127-138
    [23] Li Yongsheng,Xia Caichu, Time-dependent tests on intact rocks in uniaxial compression[J],
     Int. J. Rock Mech. Mine Sci. and Geomech Abstr.,2000,37:467-475
    [24] Xu Ping, Yang Tingqing,A study of the creep of granite[A], In. Proc. of IMMM’95[C],Beijing,
     International Academic Publishers,1995, 245-249
    [25] Cristescu N, Hunche U, Time Effects in Rock Mechanics, Wiley, New york, 1998
    [26] Hunsche U. Uniaxial and Triaxial Creep and Failure Test on Rock, Experiment Technique
     and Interpretation, Viscoplastic Behavior of Geomaterial, Ed. by Cristecu, Springer-Verlag,
     1994:1-53
    [27] Chen K S. A damage treatment of creep failure in rock salt[J], International Journal of
     Damage Mechanics,1997,6(1):122-152
    [28] Munson D. Constitutive modeling of salt behavior-state of the technology [A]. In: Wittke W
     ed. Proceedings of 7th International Congress on Rock Mechanics[C]. Rotterdam: A. A.
     Balkema,1993,3:127-134
    [29] Chunhe Yang,Daemen J K,Yin Jinha, Experimental investigation of creep behavior of salt
     rock[J],International Journal of Rock Mechanics and Mining Sciences,1999,36: 233-242
    [30] Szczepanik S D, Time-dependent acoustic emission studies on potash[A],In: Roegies D ed.
     Rock Mechanics as a Multidisciplinary Science[C], Rotterdam: A. A. Balkema, 1991,471-479
    [31] Haupt M, A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests, Rock
     Mechanics and Rock Engineering, 1991,24:179-206
     100
    
    
    参 考 文 献
    [32] Chunhe Yang, Shiwei Bai, Analysis of Stress Relaxation Behavior of Salt Rock, Proceedings
     of the 37th U.S, Rock Mechanics Symposium, Vail/Colorado/USA/6-9/June, 1999,935-938
    [33] Koji Masuda,Effects of water on rock strength in a brittle regime, Journal of Structural
     Geology 2001,23:1653-1657
    [34] Chester F M, Rheologic model of crustal faults-influence of fluids on strength and
     stability[R], Open-File Report U.S. Geological Survey In Proceedings of Workshop, LXIII ,
     1994, 487- 500
    [35] Zhu Changqi, Guo Jianyang, The further study for the rheological behavior of clay soil and
     the new determination method of long-term strength[J], Journal of Rock and Soil Mechanics,
     1990, 11(2): 15-22
    [36] Hidebumi I, On rheological behavior of in situ rock based on long-term creep experiments[A],
     In Proceedings of Seventh Congrees of International Society for Rock Mechanics[C],Aachen,
     Federal Republic of Germany, International Society for Rock Mechanics 1991, 7, 265- 268
    [37] Boukharov G N,Chanda M W, The three processes of brittle Crystalline rock creep, Int. J.
     Rock Mech. Min. Sci.& Geomech.. Abstr.,1995,32(4):325-335
    [38] A.. Kozusnikova, K. Mareckova, Analysis of rock failure after triaxial testing, International
     Journal of Rock Mechanics and Mining Sciences 1999, 36: 243-251
    [39] Richard H. Sibson, Brittle failure mode plots compressional and extensional tectonic regimes,
     Journal of Structural Geology 1998,30(5):655-660
    [40] R.P. Wintsch, Keewook Yi, Replacement creep:a significant deformation mechanism in
     mid-crustal rocks, Journal of Structural Geology 2002,24:1179-1193
    [41] Adachi T, Takase A. Prediction of long term strength of soft sedimentary rock[A], In:Proc. of
     Int. Symp. On Weak Rock[C], [s.1]:[s.n], 1981,1:93-98
    [42] Hayano K,Matsmoto M, Study of triaxial creep testing method and model for creep
     deformation on sedimentary soft rock[A], In:Proc. of the 29th Symp. Of rock Mech.[C],
     [s.1]:[s.n], 1999,8-14
    [43] M. Langer,Principles of geomechanical safety assessment for radioactive waste disposal in
     salt structures,Engineering Geology, 1999 (52):257–269
    [44] Langer M., Rheological behavior of rock masses[A]. In: Proc. of 4th Cong. of
     ISRM[C]. [s. l]: [s. n.], 1979
    [45] Remvik F. Shale-fluid interaction and its effect on creep[A]. In Proc. of 8th Int. Cong. on B.T.
     Rock Mechanics[C]. Japan: [s. n.], 1995, 1: 307-309
    [46] B.T.Ngwenya, S.C. Elphick, I.G. Main, G.B. Shimmield, Experimental constraints on the
     diagenetic self-sealing capacity of faults in high porosity rocks, Earth and Planetary Science
     101
    
    
    重庆大学博士学位论文
     Letters 2000, 183: 187-199
    [47] Yamasshita S,Fukui K, Changes of micro-structures of a soft rock on the creep loading
     process(part-1)[J], Journal of the mining and Materials, 1997,113(11): 19-26
    [48] Sun Jun、Hu Y Y,Time-dependent effects on the tensile strength of saturated granite at Three
     Gorges Project in China[J],Int. J. Rock Mech.. Mine Sci. 1997,34:381-381
    [49] Okubo S , Nishimatsu Y, Fukui K.,Complete creep curves under uniaxial compression[J], Int.
     J. Rock Mech. Min. Sci. Geomech. Abstr., 1991, 28(1) :77-82.
    [50] 许宏发, 软岩强度和弹模的时间效应研究[J], 岩石力学与工程学报,1997,16(3):
     246-251
    [51] 孙钧, 岩土材料流变及其工程应用[M],北京,中国建筑工业出版社,1999
    [52] 朱合华、叶斌,饱水状态下隧道围岩蠕变力学性质的试验研究,石力学与工程学报,2002,
     21(12):1791- 1796
    [53] 陈沅江、潘长良、王文星,软岩流变的一种新的试验研究方法,力学与实践,2002,24
     (4):42-44
    [54] 陈渠、西田和范、岩本健等,沉积软岩的三轴蠕变实验研究及分析评价,岩石力学与工
     程学报,2003,22(6):905-912
    [55] 刘绘新、张鹏、盖峰,四川地区盐岩蠕变规律研究,石力学与工程学报,2002,21(9):
     1290-1294
    [56] 肖洪天、强天弛、周维垣,三峡船闸高边坡损伤流变研究及实测分析,石力学与工程学
     报,1999,18(4):447-450
    [57] 徐平、夏熙伦, 三峡工程花岗岩蠕变特性试验研究[J]. 岩土工程学报,1996, 18(4):
     63-67
    [58] 李建林, 岩石拉剪流变特性的试验研究[J],岩土工程学报,2000,22(3): 299-303
    [59] 任建喜,单轴压缩岩石蠕变损伤扩展细观机理CT实时试验,水利学报,2002,1:10-15
    [60] 夏熙伦、徐平,丁秀丽. 岩石流变特性及高边坡稳定性流变分析,岩石力学与工程学报,
     1996,15(4):312~322
    [61] 夏熙伦、周火明,岩石力学试验及参数研究报告,长江科学院,1994
    [62] 丁秀丽、刘建、刘雄贞,三峡船闸区硬性结构面蠕变特性试验研究,长江科学院院报,
     2000,17(4):30-33
    [63] 徐平、夏熙伦,三峡工程船闸区花岗岩蠕变特性试验研究,长江科学院院报,1995,12
     (2):23-29
    [64] 朱子龙、李建林、王康平,三峡工程岩石拉剪蠕变断裂试验研究,武汉水利电力大学学
     报,1998,20(3):16-19
    [65] 杨建辉,砂岩单轴受压蠕变试验现象研究,石家庄铁道学院学报,1995,8(2):77-80
     102
    
    
    参 考 文 献
    [66] 韩世莲,周虎鑫、陈荣生,土和碎石混合料的蠕变试验研究,岩土工程学报,1999,21(2):
     196-199
    [67] 邓清禄、王学平,斜坡深层岩石蠕变与黄土坡滑坡,长春科技大学学报,1999,29(1):
     60-73
    [68] 曹树刚、鲜学福,煤岩蠕变损伤特性的实验研究,岩石力学与工程学报,2001,20(6):
     817-821
    [69] 吴立新、王金庄,煤岩流变特性及其微观影响特征初探,岩石力学与工程学报,1996,
     15(4):328~332
    [70] 王贵君、孙文若,硅藻岩蠕变特性研究,岩土工程学报,1996,18(6):55-60
    [71] 李永胜,单轴压缩条件下四种岩石的蠕变和松弛试验,岩石力学与工程学报,1995,14(1):
     39~47
    [72] 周火明. 三峡船闸边坡卸荷带岩体力学性质试验研究[A],工程岩石力学[C], 武汉,武汉工
     业大学出版社,1998, 157-160
    [73] 雷承弟,二滩水电站枢纽区岩体蠕变试验[J]. 水电工程研究1989,1-11
    [74] 蔡美峰、何满潮、刘东燕,岩石力学与工程,北京,科学出版社,2002,198-216
    [75] 周维垣,高等岩石力学,北京,水利电力出版社,1990
    [76] 焦俊虎、张永波,岩石力学本构模型的研究现状及其进展,太原理工大学学报,2002,33
     (6):653-656
    [77] 袁静、 龚晓南、 益德清,岩土流变模型的比较研究,岩石力学与工程学报,2001,20(6):
     772-779
    [78] 曹树刚、边金、李鹏,岩石蠕变本构关系及改进的西原正夫模型,岩石力学与工程学报,
     2002,21(5):632-634
    [79] 张学忠、王龙、张代钧等,攀钢朱矿东山头边坡辉长岩流变特性试验研究,重庆大学学
     报,1999,22(5):99-103
    [80] 周火明,丁秀丽,盛谦,三峡工程地下电站开挖的粘弹性数值模拟及稳定性评价,长江
     科学院院报,2002,19(1):31-34
    [81] 孙钧,岩石非线性流变特性及其在地下结构工程中的应用研究 [R] ,上海,同济大学,
     1990
    [82] 邓荣贵、周德培、张倬元、付小敏,一种新的岩石流变模型,岩石力学与工程学报,2001,
     20(6):780-784
    [83] Yamatom J, 岩石粘塑性性态流变模型,计算机方法在岩石力学及工程的应用国际学术
     讨论会论文集,西安,1993,85-95
    [84] 陈沅江、潘长良、曹平、王文星,一种软岩流变模型,中南工业大学学报,2003,34(1):
     16-20
     103
    
    
    重庆大学博士学位论文
    [85] 韦立德、徐卫亚、 朱珍德、邵建富,岩石粘弹塑性模型的研究,岩土力学,2002,23
     (5): 583-586
    [86] 李青麒,软岩蠕变参数的曲线拟合计算方法[J],岩石力学与工程学报,1998,17(5):
     559-564
    [87] 刘保国、孙钧,岩体粘弹性本构模型辨识的一种方法[J],工程力学,1999,16(1):18- 25
    [88] 刘世君,徐卫亚、邵建富,岩石粘弹性模型辩识及参数反演,水利学报,2002,6:101-105
    [89] 夏才初、孙均,蠕变试验中流变模型辨识及参数确定,同济大学学报,1996,24(5):
     498-503
    [90] 朱珍德、徐卫亚,岩体粘弹性本构模型辩识及其工程应用,岩石力学与工程学报,2002,
     21(11): 1605-1609
    [91] Perzyna P,Fundamental problems in visco-plasticity[A],In Recent Advances in Applied
     Mechanics[C],New York Academic Press,1966
    [92] 吴文,盐岩的静、动力学特性实验研究与理论分析,中国科学院博士论文,2003,66-114
    [93] 杨春和、陈锋、曾义金,盐岩蠕变损伤关系研究,岩石力学与工程学报,2002,21(11):
     1602~1604
    [94] 谢和平,岩石混凝土损伤力学[M],徐州,中国矿业大学出版社,1998
    [95] Mariana Nicolae, Non-associated elasto-viscoplastic models for rock salt, International
     Journal of Engineering Science , 1999, 37: 269-297
    [96] 陈沅江、潘长良、曹平、王文星,基于内时理论的软岩流变本构模型,中国有色金属学
     报,2003,13(3):735-742
    [97] Aubertin M,Gill D E,Ladayi B, An internal variable model for the creep of rocksalt[J],
     Rock Mech. and Rock Engng., 1991,24: 81-97
    [98] Aubertin M.,Gill D.E.and Ladanyi B.,Constitutive equations with internal state variables
     for the inelastic behavior of soft rocks, Appl. Mech. Reviews, ASME, 1994, 47(6-2): 97-101
    [99] Aubertin M, Sgaoula J,Gill D E, A viscoplastic-damage model for soft rocks with low
     porosity[A], In: Proc. of 8th Int. Cong. on Rock Mechanics[C]. Japan: [s. n.], 1995, 1:
     283-289
    [100] Yahya O M L.Aubertin M. Julien M R, A unified representation of plasticity creep and
     relaxation behavior of rock salt [J], Int. J. Rock Mech. Mine Sci. and Geomech. Abstr.,
     2000 ,37: 787-800
    [101] Wunson D.Wawersik W.,Constitutive modeling of salt behavior-state of the technology,
     Proc 7th Int. Conger. on Rock Mechanics, Ed. W. Wittke,Balkema,Rotterdam,1993(3):
     1797-1810
    [102] Cristescu N D. A general constitutive equation for transient and stationary creep of rock salt.
     104
    
    
    参 考 文 献
     Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30 (2): 125-140
    [103] Shao J F,Bederiat M,Schroeder Ch, Elasto-viscoplostic modeling of a porous chaik,
     Mechanics Research Communications,1994, 23(1): 63-75
    [104] Sanda Cleja-Tigou, Elasto-viscoplastic Constitutive Equations for Rock-type Material(Finite
     Deformation), Int. J. Engng. Sci. 1991, 29(12):1531-1544
    [105] Enrico Maranini, Tsutomu Yamaguchi, A non-associated viscoplastic model for the
     behaviour of granite in triaxial compression[J], Mechanics 0f Materials, 2001, 33: 283-293
    [106] Loureiro P J. A rheological model of the behaviour of rocks and rock mass[A]. In
     Proceedings of Sixth Congress of International Society for Rock Mechanics[C]. Montreal
     Ganada International Society for Rock Mechanics 1987,1085-1088
    [107] Sagawa Y. Yamatomi J., Mogi G. A rheology model for non-linear and time-dependent
     behaviors of rocks[A], In: Proceedings of Eighth Congress of International Society for Rock
     Mechanics[C],Chiba, Japan, International Society for Rock Mechanics, 1995, 311- 314
    [108] Patton T L, Fletcher R C, A rheologcal model for fractured rock[J], Journal of Structural
     Geology, 1998, 20(5): 491- 502
    [109] Aragi T, Application of rheological models to nonlinear creep properties of rock[A], In:
     Proceedings of Fifth International Conference on Numerical Methods in Geomechanics[C],
     Rotterdam Netherlands A A Balkema, 1985, 3: 415- 420
    [110] He Xueqiu, Zhou Shining, The rheological mechanism of coal and methane outburst[A], In:
     Proceeding of the Mine Ventilation Symposium[C], Ann Arbor, Mi, United States:
     Cushing-Mally, 1991, 129-136
    [111] Bruhn D, Olgaard D L, Dell Angelo L N, et al, Rheology of finegrained rocks containing
     two phases of similar strengths[A], In:Abstract Supplement of Seventh Meeting of European
     Unin. Of Geosciences[C]. Oxford, England, Blackwell Scientific Publications, 1993, 287
    [112] Blanpied M L, marone C J, Lockner D A, et al. Quantitative measure of the variation in fault
     rheology due to fluid-rock interactions[J]. Journal of Geophysical Research, 1998,
     103(B5) :9 691- 9721
    [113] Yamashita S,Sugimoto F,Otsuta K, On the fracture mechanism and creep behavior of rock
     under compressive load, in Innovative Mine Design for The 21st Century, Bawden &
     Archibald (eds), Balkema,Rotterdam, 1993:959-968
    [114] Zhao X.L.,J.C.Roegiers, Creep Growth in Shale,Rock Mechanics, Daemen & Schultz(eds)
     Balkema, Rotterdam, 1995, 135-140
    [115] Stamm H,Walz G, Analytical investigation of tip fields in viscoplastic materials, International
     Journal of Fracture,1993, 64:135-155
     105
    
    
    重庆大学博士学位论文
    [116] Yoshida H,Horii H.A.,Micromechanics-based model for creep behavior of rock, Appl.Mech.
     Rev., 1992,45(8):294-303
    [117] Sgaoula J, Aubertin M, Gill D. E., Using internal state variables for modeling the
     viscoplastic behavior of rocksalt in the semi-brittle regime, Rock Mechanics, Daemen &
     Schultz(eds)Balkema, Rotterdam, 1995, 749-754
    [118] Dahou A., Shao J.F.,Bederiat M., Experimental and numerical investigations on transient
     creep of porous chalk,Mech. Mater., 1995, 21: 147-158
    [119] Sakurai S,Takeuchi K,Back analysis of measured displacement of tunnel[J],Rock Mech
     Rock Engng. 1983,16(3):173-180
    [120] Schmidtke R H, Lajtai E Z, The long term strength of Lac du Bonnet Granite[J], Int.J.Rock
     Mech. Min. Sci. Geomech. Abstr., 1985, 22(6):461-465.
    [121] Iuliana Paraschiv-Munteanu,N.D.Cristescu, Stress relaxation during creep of rocks around
     deep boreholes, International Journal of Engineering Science, 2001, 39:737-754
    [122] M.H.H. Hettema, D.V. Niepce, K.-H.A.A. Wolf ,A microstructural analysis of the
     compaction of claystone aggregates at high temperatures, International Journal of Rock
     Mechanics and Mining Sciences,1999,36:57-68
    [123] Udo Hunsche, Andreas Hampel, Rock salt — the mechanical properties of the host rock
     material for a radioactive waste repository, Engineering Geology , 1999, 52: 271–291
    [124] Cristescu N D, Time-effects on the unaxial compaction of powers[A], In: Proc. 6th Int. Symp.
     on Plasticity and Its Current Application[C], Alaska: Neat Press Fulton, 1997, 303-304
    [125] Drozdov A D, Kolmanovskii V B. Stability in viscoelasticity, North-Holland Series in
     Applied Mathematics and Mechanics, North-Holland, 1994
    [126] Okubo S, Fukui K, Long-term creep test and constitutive equation of tage tuff[J], Journal of
     the Mining and Materials, 2002, 118(1): 36-42
    [127] Haput M, A constitutive law for rock salt based on creep and relaxation test[J], Rock
     Mechanics and Rock Engineering, 1991, 24(2):179-206.
    [128] Yang Chunh, Daemen J J K, Yin Jianhua, Experimental investigation of creep behavior of
     salt rock [J], Rock Mechanics and Rock Engineering,1998,36(2):233 242
    [129] Ito T,Hashimoto K, Akagi T, Methods to predict the time of creep failure[A],In: Proc. of 30th
     Symp. of Rock Mech..[C],[s.1.]: [s. n.], 2000,368-372
    [130] Sasaki T, Morikawa S, et al, Prediction of long term stability for geological disposal of
     radioactive waste[J],Tsuchi-to-kiso, The Japanese Geotechnical Society, 1998, 46(10): 35-38
    [131] Matsumoto M,Tatsuoka F, Study of rheological modeling of creep behavior for sedimentary
     soft rock[A],In: proc. of the 51th Annual Conference of the Japan Society of Civil
     106
    
    
    参 考 文 献
     Engineers[C],[s.1.] : [s. n.], 1996,660-661
    [132] dachi T,Oka F,Soraoka H, Time dependent behavior of rock and its essential interpretation[J],
     Journal of Geotechnical Engineering, 1998, (596): 1-10
    [133] Okubo S, Analytical consideration of constitutive equation of variable compliance type[J],
     Journal of the Mining and Materials, 1992, 108(8): 35-40
    [134] Okubo S, Fukui K, Brief note on a set of constants in a variable-compliance type constitutive
     equation[J], Journal of the Mining and Materials, 1997, 113(7): 37-40
    [135] 韦立德、徐卫亚、杨松林、李建,考虑裂纹内水压的节理岩体蠕变柔量分析,河海大
     学学报,2003,31(5):565-568
    [136] 赵锡宏、孙红、罗冠威,损伤土力学,上海,同济大学出版社,1999,1-5
    [137] 陈有亮、孙均,岩石的蠕变断裂特性分析,同济大学学报,1996,24(5):504-508
    [138] 缪协兴、陈至达,岩石材料的一种蠕变损伤方程,固体力学学报,1995,16(4):344-346
    [139] 陈有亮、孙钧,岩石的流变断裂特性,岩石力学与工程学报,1996,15(4):323-327
    [140] 何开平、张万良、张正禄等,盐膏层蠕变粘弹性流体模型及有限元分析,石油学报,
     2002,23(3):102-106
    [141] 张盛东,混凝土本构理论研究进展与评述,南京建筑工程学院学报,2002,(3):44-53
    [142] 朱万成、赵启林等,混凝土断裂工程的力学模型与数值模拟,力学进展,2002,32(4):
     579-598
    [143] 周德培、毛坚强,隧道流变特性的模型试验与分析计算,见:计算机方法在岩石力学
     及工程的应用国际学术讨论会论文集,西安,1993,541-549
    [144] 朱素平、周楚良,地下圆形隧道围岩稳定性的粘弹性力学分析,同济大学学报,1994,
     22(3):329-333
    [145] Sulem J,Panet M,Guenot A, An Analytical Solution for time-dependent Displacement in A
     Circular Tunnel,Int.J. Rock Mcch.Sci.& Geomech.Abstr.1987,24(3):155-164
    [146] Zhang xiaochun,Yang Tingqing, A time— dependent study for rockburst in coal mines,In:
     The 1st International Conference on Advance Structural Engineering & Mechanics
     (ASEM’99), Seoul,Korea August, 1999,lO-13
    [147] 张晓春,杨挺青,岩石板梁结构时间相关变形的稳定性分析,武汉交通大学学报,1999,
     (2)
    [148] 张晓春,煤矿岩爆发生机制研究,华中理工大学[博士论文],武汉,1998
    [149] 缪协兴,翟明华,张晓春,杨挺青,岩(煤)壁中滑移裂纹扩展的冲击矿压模型,中国矿
     业大学学报,1999(2)
    [150] 何学秋,含瓦斯煤岩流变动力学,徐州,中国矿业大学出版社,1995
     107
    
    
    重庆大学博士学位论文
    [151] 孙钧、章旭昌.软弱断层流变对地下洞室围岩力学效应的粘弹塑性分析,岩土工程学
     报,1987,9(6):16-26
    [152] 徐志英、周健,考虑岩石非线性和粘弹性的洞室围岩稳定和变形分析,岩石力学与工
     程学报,1987,6(3):185-196
    [153] 邓广哲、朱维申,岩体裂隙非线性蠕变过程特性与应用研究[J],岩石力学与工程学报,
     1998,17(4) :358-365
    [154] 朱维申,裂隙岩体的损伤断裂理论与应用,岩石力学与工程学报,1995,14(3):236-245
    [155] 徐平、杨挺青等,山峡船闸高边坡岩体时效特性及长期稳定性分析,岩石力学与工程
     学报,2002,v.21,n.2
    [156] Chaboche J L,Lesne PM, Maire J F., Continuum damage mechanics,A nisotropy and damage
     deactivation for brittle materials like concrete and ceramic composites[J ], Int. J. Damage
     Mechanics, 1995,(4) : 5-22
    [157] 张晓春、缪协兴,岩石蠕变及结构失效的研究进展,流变学进展,华中理工大学出版
     社,1999,388-393
    [158] 徐平、杨挺青,岩石流变试验与本构模型辨识,岩石力学与工程学报,2001,20(增):
     1739-1744
    [159] Chaboche J L., Development of continuum damage mechanics for elastic solids sustaining a
     nisotropic and unilateral damage[J ], Int. J. Damage Mechanics, 1993, (2) : 311-329.
    [160] Robinson D N. A unified creep-plasticity model for structure metals at high temperatures,
     ORNL TM-5969, 1978
    [161] Chaboche J L, and Rousselier G. On the plastic and viscoplastic constitutive equations, J.
     Engng. Mat. Tech., 1983, 105: 153-164
    [162] Kreml E. Models of viscoplasticity, some comments on equilibrium (back) stress and drug
     stress, Acta Mechanica, 1987, 69: 25-42
    [163] Phillips A and Wu H C. A theory of viscoplasticity, Int. J. Solids and Structures, 1973, 9:
     15-30
    [164] Hart E W. Constitutive relations for the nonelastic deformation of metals, J. Engng. Mat.
     Tech., 1976, 98: 193-202
    [165] Miller A K. An inelastic constitutive model for monotonic,cyclic and creep deformation, J.
     Engng. Mat. Tech., 1976, 98: 97-113
    [166] Ponter A R S and Lekie F A. Constitutive relations for the time dependent deformation of
     metals, J. Engng. Mat. Tech., 1976, 98: 47-51
    [167] Freed A D and Walker P. Viscoplasticity with creep and plasticity bounds, Int. J. Plasticity,
     1993, 9: 213-242
     108
    
    
    参 考 文 献
    [168] Valanis K C. Fundamental consequences on new intrinsic time measure as a limit of the
     endochronic theory, Arch. Mech., 1980, 32: 171-190
    [169] Watanabe O and Atluri S N. Internal time, general internal variable, and multi-yield-surface
     theories of plasticity and creep: a unification of concept, Int. J. Plasticity, 1986, 2: 37-57
    [170] Murakami S and Ohno N. A constitutive equation of creep based on the concept of a
     creep-hardening surface, Int. J. Solids and Structures, 1982, 18: 597-609
    [171] Wu H C, and Yip M C., Strain rate and strain rate history effect on the dynamic behavior of
     metallic materials, Int. J. Solids and Struct., 1980, 16: 515-536.
    [172] Wu H C, and Ho, C C. An investigation of transient creep by means of endochronic
     viscoplasticity and experiment, J. Engng. Mat. , Tech., 1995, 117: 260-268
    [173] Chaboche J L. Time-independent constitutivetheories for cyclic plasticity, Int. J. Plasticity,
     1986, 2: 149-188
    [174] Fan J, and Peng X. A physically based constitutive description for nonproportional cyclic
     plasticity, J. Engng. Mat. Tech., 1991, 113: 254-262
    [175] Peng X and Fan J., A new numerical approach for nonclassical plasticity, Computers and
     Structures, 1993, 47: 313-320
    [176] Peng X, and Ponter, A R C. A constitutive law for a class of two-phase materials with
     experimental verification, Int. J. Solids Struct., 1994, 31: 1099-1111
    [177] Doong S, and Socie, D F. Constitutive modeling of metals under nonproportional cyclic
     loading, J. Engng. Mat. Tech., 1991, 113: 23-30
    [178] Suaris, J. and Ouyang, C., Damage model for cyclic loading of concrete, J. Engng Mech.,
     ASCE, 1990,116:1020-1035
    [179] Mazars J., A model of unilateral elastic damagible material and its application to concrete,
     Proc. RILEM int. Conf. Fracture Mechanics of Concrete, Lausanne, Switzerland, 1985,
     345-365
    [180] Ortiz, M., A constitutive theory for the inelastic behavior of concrete, Mechanics of materials,
     1985, 4: 67-93
    [181] Simo, J. C. and Ju, J. W., Stress and strain based continuum damage models, Int. J. Solids
     Struct., 1987, 23: 821-869
    [182] Collombet, F., Modelization de l'endommagement anisotrope, Application au comportment
     du beton sous sollicitations multiaxiales, These de 3eme cycle, L.M.T., University Paris,
     France, 1985
    [183] Ju, J.W., On energy-based coupled elastoplastic damage theories: constitutive modelling and
     computational aspects." Int. J. Solids Struct., 1989, 25: 803-833
     109
    
    
    重庆大学博士学位论文
    [184] Lemaitre, J., "How to use damage mechanics." Nucl. Engng Des, 80, 233-245,1984.
    [185] Kachanov, L.M., "Continuum model of medium with cracks." J. Engng Mech. Div., ASCE,
     1039-1051, 1987.
    [186] Chaboche, J. L., "Damage induced anisotropy: On the difficulties associated with the
     active/passive unilateral condition." Int. J. Damage Mech., 1, 148-171, 1992
    [187] KawaKata H, Cho A, Yanagidani T, et al. The observations of faultin g in Westerly granite
     under triaxial compression by X-ray CT scan. Int. J. Rock Mech. & Min. Sci., 1997, 34(3/4):
     151-162
    [188] Krajcinovic,D.,Creep of structures-a continuous damage mevhanics approach,J.of Structure
     Mechanics,1981,11(1):1-11
    [189] Sinha, B P, et al, Stress-strain relations for concrete under cyclic loading. ACI Journal,
     Proceedings, 1964,61(2): 195-211
    [190] Scavuzzo, R., et al., "Stress-strain curves for concrete under multiaxial load histories."
     Report to National Science Foundation, Department of Civil, Environmental, and
     Architectural Engineering, University of Colorado, Boulder, 1983
    [191] Chern, J.C., Yang, H.J. and Chen, H.W., Behavior of steel fiber reinforced concrete in
     multiaxial loading, ACI Material Journal, 89, 32-40, 1992.
    [192] 徐平、甘军、丁秀丽. 三峡工程船闸高边坡岩体长期变形及稳 定性有限元分析[J]. 长
     江科学院院报 1999,16(2):31-34
    [193] 徐平、周火明,高边坡岩体开挖卸荷效应流变数值分析[J],岩石力学与工程学报,2000,
     19(4) :481-485
    [194] X. Peng, X. Zeng, J. Fan, A physically based description for coupled plasticity and creep
     deformation, Int. J. Solids Struct., 1998, (35):2733–2747
    [195] 张有天、周维垣,岩石高边坡的变形与稳定[M],北京,中国水利水电出版社,1999
    [196] 彭向和、万玲,基于微结构机理的准脆性材料损伤本构模型及其应用,固体力学学报,
     2003,24:16-26
    [197] krajcinovic,D.Fonseka G.U.,The continuous damage theory of brittle materials, Part I、II,
     J.Applied Mechanics Trans.of ASME, 1981(48):809-824
    [198] 葛修润、任建喜、蒲毅彬、马巍,煤岩三轴细观损伤演化规律的 CT 动态试验,岩石力
     学与工程学报,1999,18(5):497-502
    [199] 张忠亭、王宏、陶振宇,岩石蠕变特性研究进展概况,长江科学院院报,1996,13:
     1-5
    [200] 杨春和、白世伟、J.J.K.Daemen,应力水平及加载路径对盐岩时效的影响,流变学进展,
     武汉,华中理工大学出版社,1999,416-422
     110
    
    
    参 考 文 献
    [201] Lecomte P., Creep in rock salt, J.Geol.1965, 73(3)
    [202] Ito. H et al: A ten - year creep experiment on small rock specimens, Int. J. Rockmech, Min.
     Soi. & Geomech. Abstr. ,1987, 24 (2)
    [203] Krajcinovic D., Damage mechanics[J ]. Mechanics of Materials, 1989, (8) : 117-197
    [204] Murakami S., Notion of continuum damage mechanics and its application to anisotropic
     creep damage theory[J ], Journal of Engineering Materials and Technology, 1983, (105) :
     99-105
    [205] Dougill J W., Stable progressively fracturing solids. Zeitschrift Fur Angewandte Mathematik
     Und Physik, 1976,27(4):423-437
    [206] Mazars J , Pijaudier-Cabot G., Continuum damage theory-application to concrete[J ], Journal
     of Engineering Mechanics, 1989, 115 (2) : 345-365.
    [207] Resende L, A Damage Mechanics Constitutive Theory for the Inelastic Behaviour of
     Concrete[J ],Computer Methods in Applied Mechanics and Engineering, 1987, (60) : 57-93.
    [208] 秦跃平,张金峰,王林,岩石损伤力学理论模型初探,岩石力学与工程学报,2003,
     22(4):646-650
    [209] Bazant Z P ,Oh B H, MicroplaneModel for Progressive Fracture of Concrete and Rock [J ].
     Journal of Engineering Mechanics,ASCE, 1985, 111 (4):559-582.
    [210] Valanis K C. A Theory of Viscoplasticity without A Yield Surface [J ], Archives of
     Mechanics, 1971, 23: 517-551
    [211] 范镜泓、高芝晖,非线性连续介质力学基础,重庆,重庆大学出版社,1987
    [212] 彭向和、曾祥国,一种非经典滑移模型及其应用,固体力学学报,2000,21(2):131-137
    [213] 彭向和、杨春和,复杂加载史下混凝土的损伤及其描述,岩石力学与工程学报,2000,
     19(2):157-164
    [214] X. Peng, R. Balendra,Application of a physically based constitutive model to metal forming
     analysis,Journal of Materials Processing Technology,2004,145:180–188
    [215] Bazant Z P, Bhat P D, Endochronic theory of inelasticity and failure of concrete[J ],Journal
     of Engineering Mechanics, 1976, 102 (4) : 701-721
    [216] 王子潮等,地壳岩石半脆性非均匀蠕变本构模型,岩石力学与工程学报,1990,9(2)
    [217] Peng, X., Fan, J., and Zeng, X., A physically based description for coupled plasticity and
     creep deformation, Int. J. Solids and Structures, 1998, 35(21): 2733-2747

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700