用户名: 密码: 验证码:
基于椭圆形微裂纹变形与扩展的准脆性岩石细观损伤—渗流耦合本构模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准脆性岩石材料的微缺陷主要有微裂纹和微孔洞,在岩石材料中,微裂纹形核和扩展是材料损伤、失效的主要机制。损伤在影响材料力学特性的同时,会对材料的渗透性产生影响。当压力水(流体)渗透到微裂纹中时,可在微裂纹上产生附加张开应力而加剧微裂纹的扩展,加速材料的损伤演化。在许多岩石工程问题中,渗流-应力耦合作用下材料的损伤及其发展已成为必须考虑的重要因素。基于微缺陷的变形及演化的细观损伤-渗流耦合模型,能够较真实地描述材料的损伤和渗透行为,受到了人们的普遍关注。一般地,材料内部的微裂纹可采用椭圆形微裂纹进行描述,以较真实地反映微裂纹系统的细观特性。本文基于细观损伤力学和统计学方法,考虑材料内部椭圆形微裂纹的变形、扩展、摩擦滑移及偏折扩展对材料变形和渗透性的影响,采用Taylor方法建立了计及微裂纹内水压力的准脆性岩石材料三维细观损伤-渗流耦合模型。
     文中采用深埋椭圆形微裂纹的代表性单元(RVE),在远场应力作用下,根据微裂纹变形和扩展规律的不同,将微裂纹受力状态分为拉剪和压剪,分别研究具有任意空间取向的单个微裂纹在裂隙水压力和远场应力下的附加柔度张量,考虑微裂纹的稳定扩展以及围压对微裂纹偏折扩展的影响,采用Taylor方法并引入概率密度函数,分别建立准脆性岩石在三轴拉应力和三轴压应力下的三维细观损伤本构模型。
     文中假设准脆性岩石的渗透性由岩石基体材料(多孔介质)的渗透率和微裂纹系统的附加渗透率两部分组成。拉-剪应力作用下,微裂纹处于张开状态,认为裂纹系统的附加渗透性变化取决于微裂纹法向开度的变化;压-剪应力作用下,认为裂纹系统的附加渗透性变化取决于偏折裂纹法向开度的变化。引入修正的立方定理,展开微裂纹变形、扩展过程中渗透通道和连通度的讨论,得到准脆性岩石的渗透张量表达式。
     在前面建立的三轴拉应力与三轴压应力下的细观损伤-渗流耦合模型基础上,建立任意载荷下的三维细观损伤-渗流耦合模型,将本文模型与商用有限元软件ABAQUS相结合,编写了用户自定义材料子程序UMAT。以湖北云应盐矿拟建天然气储备库为例,对建腔后腔体在不同内压下的变形特征及其对泥岩夹层渗透性的影响进行了初步研究。
     基于混合物理论和所建的细观损伤本构模型,建立了适合于描述层状盐岩复合体在加载过程中损伤演化特性的细观损伤本构模型,并运用所建模型对湖北云应盐矿纯盐岩和含夹层盐岩在不同围压下的三轴压缩试验进行计算,分析了围压对盐岩所受等效附加侧向应力的影响,计算结果表明所建模型能较好的描述试验现象。
Microcracks and microvoids are the main microdefects in quasi-brittle rocks. Damage develops with the nucleation and growth of microcracks during deformation processes. The permeability of materials may change with the development of damage. When water (fluid) infiltrates into a microcrack, an additional opening stress is applied to the surface of microcracks, which may accelerate the growth of microcracks and the evolution of the damage of materials. In many rock engineering applications, damage and its evolution play a significant role in the constitutive behavior and permeability of materials subjected to coupled stress and seepage. Much effort has been made in constitutive modeling of coupled damage and permeability in quasi-brittle rocks, which is based on the deformation and growth of microdefects and could realistically describe the development of damage and permeability. In order to describe the properties of a microcracks system more exactly, the microcracks in materials should generally be assumed to be elliptic. In this dissertation, based on a micro-mechanics damage model and a statistical method, the influence of the deformation, growth, frictional sliding, and kinked growth of microcracks on the compliance and permeability of quasi-brittle rock materials is studied. These microcracks are assumed to be embedded in infinite isotropic elastic matrix subjected to different states of stress. A unified constitutive model for the damage and permeability of quasi-brittle rock materials is obtained with the Taylor’s scheme, taking into account the hydraulic pressure on the surfaces of microcracks. The compliance and its changes of a representative volume element (RVE) containing an embedded elliptic crack is analyzed, taking into account different patterns of deformation and growth of the crack under different states of stress, for example, the deformation and growth under tensile stress, and the frictional sliding and kinked growth under compressive stress. The steady growth of the mirocrack and the influence of confined pressure on the kinked growth of the microcrack are considered. The additional compliance tensor induced by a randomly oriented embedded elliptic microcrack is then derived.
     The deformation and growth of the elliptic microcrack under general states of stress are considered. The additional compliance induced by a single closed elliptic microcrack is derived. A simplified method to analyze the kinked deformation of the closed elliptic microcrack is suggested.
     The permeability of quasi-brittle rocks may consist of two parts: the permeability of the matrix, and the additional permeability induced by microcracks. Microcracks may open under some states of stress and hydraulic pressure, and form numerous additional seepage channels, which significantly increase the permeability of the rocks. The variation of permeability is closely related to the growth of microcracks. Based on these concepts and making use of the Darcy’s law and the modified cubic law of laminar flow, the additional permeability of a single crack is deduced. The seepage channels and crack connectivity coefficient during the deformation and growth of microcracks are discussed, and the effect of a randomly oriented microcracks system on the permeability of a rock material is then derived.
     A three dimensional unified micro-mechanical constitutive model for coupled damage and permeability is constructed by combining the model obtained under triaxially tensile stress with that under triaxially compressive stress. A user subroutine UMAT for the materials with randomly oriented elliptic microcracks is developed and embedded in commercially available finite element code ABAQUS. Taking the underground gas reservoir Yunying Salt Mine as an example, the deformation at different internal pressures is studied, and its influence on the permeability is predicted.
     A micromechanical damage model is built for laminated salt rocks with a mixture theory. The triaxial compressive testing result of Yunying laminated salt rock is analyzed. The influence of confined pressure on the equivalent additional stress is discussed. The numerical results agree well with experimental results, demonstrating the validity of the developed approach.
引文
[1]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社, 2001.
    [2] J. J. Zhou, J. F. Shao, W. Y. Xu. Coupled modeling of damage growth and permeability variation in brittle rocks[J]. Mechanics Research Communications , 2006 ,33:450-459.
    [3] O. Schulze, T. Popp, H. Kern. Development of damage and permeability in deforming rock salt[J]. Engineering Geology, 2001,61: 163-180.
    [4] J. Rutqvist, J.T. Birkholzer, C. F. Tsang. Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-cap rock systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2008 ,2(45):132-143.
    [5] Hudson, A. John / Harrison, P. John. Engineering rock mechanics[M]. Elsevier Science Ltd Second impression, 2000.
    [6]仵彦卿,张悼元.岩体水力学导论[M].西南交通大学出版社.1995. 12.
    [7]包太.岩体渗流的理论模型及其渗流参数确定[D].重庆:重庆大学,2005.
    [8]江涛.基于细观力学的脆性岩石损伤-渗流耦合本构模型研究[D].河海大学,2006.
    [9]张有天.岩石水力学与工程[M].中国水利水电出版社.2005.
    [10]孙广忠.中国典型滑坡[M].北京:科学出版社,1988.
    [11]卢世宗.我国露天矿山边坡研究概况与展望[J].第四届全国工程地质大会文集,1992.
    [12]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性-理论、模型与应用[M].北京:科学出版,2004.
    [13]盛金昌,速宝玉.裂隙岩体渗流-应力利耦合研究综述[J].岩土力学,1998,19 (2): 92-98.
    [14]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社. 2005.
    [15]任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报(工学版). 2004,37(2):8-12.
    [16] L. R. Jing, X. T. Feng. Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media-international and Chinese experiences. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1704-1715.
    [17]刘仲秋,章青.岩体中饱和渗流应力耦合模型研究进展[J].力学进展,2008,38(5): 585-600.
    [18]朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究[J].河海大学学报(自然科学版), 2003,31(2):156-160.
    [19]叶源新,刘光廷.岩石渗流应力耦合特性研究[J].岩石力学与工程学报, 2005, 24(14): 2518-2525.
    [20] C. LOUIS. Rock Hydraulics in rock mechanics[M]. New York:Springer-Verlag , 1974.
    [21] Nelson. Fracture permeabily in porous reservoirs: experimental and field approach[D]. Texas:Department of Geology, Texas A and M University, 1975.
    [22] F. O. Jones. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J]. Journal of Petrol Technology,1975, 9(2):21-27.
    [23] R. L. Kranz, A. D. Frankel, T. Engelder, et al. The permeability of whole and jointed Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Abstracts, 1979, 16(2): 225-234.
    [24] J. E. GALE. The effects of fracture type (induced versus natural)on the stress, fracture closure, fracture permeability relationship[C]// GOODMAN R E, HUZE R E ed. Proceedings of the 23rd Rock Mechanics Symposium. Berkeley: AIME,1982:290-298.
    [25]王媛.单裂隙面渗流与应力的耦合特性[J].岩石力学与工程学报,2002,21(1):83-87.
    [26]熊祥斌,张楚汉,王恩志.岩石单裂隙稳态渗流研究进展[J].岩石力学与工程学报, 2009,28(9):1839-1847.
    [27]刘光廷,叶源新,胡昱等.单裂隙砂砾岩体变形规律研究[J].水力发电学报,2007,26(5).
    [28]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [29]赵阳升,杨栋,郑少河等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):133-136.
    [30] Z.T. Bieniawski. Mechanism of brittle fracture of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1967, 4 (4): 407-423.
    [31] S. Paterson . Experiment deformation of rock: the brittle field[M]. BerIin: Springer, 1978.
    [32] S. P. Li, D. X. Wu , W. H. Wu, et al. Effect of confining pressure, pore pressure and specimen dimension on permeability of Yinzhuang sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34 (3/4): 435-441.
    [33]褚卫江.低孔隙度岩石细观本构模型及损伤-渗流耦合研究[D].河海大学,2007
    [34] M. Souley, F. Homand, D. Hoxha, M. Chibout. Damage around a keyed URL excavation: change in permeability induced by microcracks growth. In: Detournay C, Hart R, editors. Proceedings of the Int. FLAC Symposium. on Numerical Modeling in Geomech. Rotterdam: Balkema, 1999. p. 205-13.
    [35]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-18.
    [36]姜振泉,季梁军,左如松等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩石力学与工程学报, 2002,21(10):1442-1446.
    [37]朱珍德,张爱军,徐卫亚.脆性岩石全应力-应变过程渗流特性试验研究[J].岩土力学, 2002, 23(5):555-560.
    [38]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报, 2003,22 (5):742-746.
    [39]王环玲,徐卫亚,杨圣奇.岩石变形破坏过程中渗透率演化规律的试验研究[J].岩土力学, 2006,27(10):1703-1709.
    [40]周青春,李海波,杨春和.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究[J].岩石力学与工程学报. 24(20):3640-3645.
    [41] N. Barton, S. Bandis. K. Bakhtar. Strength deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts . 1985, 22(3):121-140.
    [42]刘继山.结构面力学参数与水力参数耦合关系及其应用[[J].水文地质工程地质,1988,15(2): 7-12.
    [43]周创兵,熊文林.岩体节理的渗流广义立方定律[J].岩土力学, 1996,17(4) : 1-7.
    [44]郑少河.裂隙岩体渗流场-损伤场耦合理论研究及工程应用[D].中国科学院武汉岩土力学研究所,2000.
    [45] C.F. Tsang, L. Jing, O. Stephansson, F. Kaulsky . The DECOVALEXⅢProjeet: a summary of activities and lesson learned[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(5):710-730.
    [46] A. Millarda., A. Rejebb., M. Chijimatsue, et al. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEXⅢProject. Part 2: Effects of THM coupling in continues and homogeneous rocks[J]. International Journal of Rock Mechanics & Mining Sciences,2004, 2(5):731-744.
    [47] R. S. Read. 20 years of excavation response studies at AECL’s Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 1251-1275.
    [48] J. B. Martino., N. A. Chandler. Excavation-induced damage studies at the Underground Research Laboratory[J]. International Journal of Rock Mechanics & Mining Sciences ,2004, 41:1413-1426.
    [49] J. Rutqvist, C. F. Tsang. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 38(7):649-657.
    [50] S. R. Sobolik, R. E. Finley, S. Ballard. Post-test comparison of thermal mechanical measurements vs. Analyses for the in-situ single Heater Test, Yucca Mountain, Nevada [J].International Journal of Rock Mechanics and Mining Sciences, 1998, 35(4):694-712.
    [51] A. F. Gangi. Variation of Whole and Fractured Porous Rock Permeability with Confining, Pressure. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Abstracts, 1978, 15(4):249-257.
    [52] J. B. Walsh. A New Model for Analyzing the Effect of Fracture on Compressibility. Journal of Geophysical Research. 1979, 84(B7):3 532-3 536.
    [53] Y. W. Tsang, P. A. Witherspoon. Hydromechanical behavior of a deformable rock fracture subject to normal stress. Journal of Geophysical Research. 1981, 86(B10):9 287-9 298.
    [54]仵彦卿.岩体结构类型与水力学模型[J].岩石力学与工程学报. 2000, 19(6):687-691.
    [55] D. T. Snow. Fracture Defomation and Changes of Permeability and Storage Upon Changes of Fluid Pressure:Quart[J].Colorado School of Mines, 1968, 63(1):201- 244.
    [56]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学. 2008, 29(6):1675-1681.
    [57] R. D. Lama, V. S. Vutukuri. Handbook on properties of rocks[M]. Berlin: Borntraeger, 1978.
    [58] J. A. Hudson. Engineering rock mechanics[M]. London: Redwood Publishing Company, 1997.
    [59] M. Oda . Method for evaluating the representative elementary volume based on joint survey of rock masses [J]. Canadian Geotechnical Journal, 1988, 25(3):440-447.
    [60]卢波,陈剑平,葛修润,等.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1 361.
    [61]朱冬林.节理岩体的REV及变形与强度数值估算[D].武汉:中国科学院武汉岩土力学研究所,2003.
    [62] K. B. Min. Fractured Rock Masses as Equivalent Continua-A Numerical Study [D]. Sweden: Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), 2004.
    [63] M. Oda. An equivalent model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986,22(13): 155-164.
    [64] A. Kobayashi, T. Fhjita, M. Chijimatsu. Continuous approach for coupled mechanical and hydraulic behavior of a fractured rock mass during hypothetical shaft sinking at Sellafield, UK. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(1):45-57.
    [65]陶振宇,沈小莹.库区应力场的耦合分析.武汉水利电力学院报,1988, 21(1): 8-13.
    [66]陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报,1994, 13(4): 299-308.
    [67] R. Mahnken, M. Kohlmeier. Finite element simulation for rock salt with dilatancy boundary coupled to fluid permaetion. Computer Methods in Applied Mechanics and Engineering, 2001, 190:4259-4278.
    [68]切尔内绍夫.水在裂隙网络中的运动[M].北京:北京地质出版社,1987.
    [69]王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [70]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质,1992. 19(1):12-14.
    [71]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量.岩石力学与工程学报.1996(12): 338-344.
    [72]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质边坡的稳定性.水文地质与工程地质.2000(2): 30-33.
    [73] G. I. Barenblatt , I. P. Zheltov, I. N. Kochina. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics,1960, 24(5):1286-1303.
    [74] T. E. Warren, P. J. Root. The behaviour of naturally fractured reservoirs. Society of Petroleum Engineers Journal. 1963, (3): 234-255.
    [75]宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究.岩土力学,2004, 25(2): 226-232.
    [76]仵彦卿.岩体水力学基础(六)-岩体渗流场与应力场耦合的双重介质模型.水文地质工程地质,1998, (1):43-46.
    [77]赵瑜,李晓红,卢义玉.块裂结构岩质边坡水力学模型及数值模拟.岩土力学,2005, 26(6): 995-999.
    [78] E. C. Aifantis. On the problem of diffusion in solids. Acta Mechanic, 1980,37: 265-296.
    [79]忤彦卿,张倬元.岩体系统渗流场与应力场耦合的广义双重介质模型得应用研究[J].工程地质学报, 1996, 4(3): 40-46.
    [80] Y. Zhao, M. Chen. Fully coupled dual-porosity model for anisotropic formation. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1128-1133.
    [81]同登科,杨河山,柳毓松.油气流-固耦合渗流研究进展.岩石力学与工程学报,2005, 24(24): 4594-4602.
    [82]田开铭.论裂隙岩石的水文地质模型-以国外学者的模型为例[J].勘察科学技术. 1984, 4:27-34.
    [83]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析.岩石力学与工程学报. 2000(9):573-576.
    [84]朱珍德,胡定.裂隙水压力对岩体强度的影响.岩土力学.2000, 21(1): 64-67.
    [85]张敦福,朱维申,李术才.围压和裂隙水压力对岩石中椭圆裂纹初始开裂的影响[J].岩石力学与工程学报. 2004, 23(增2):4721-4725.
    [86] M. K. Hubbert, D. G. Willis. Mechanics of hydraulic fracturing. Trans. AIME 210, 1957: 153-166.
    [87] M. S. Bruno, F. M. Nakagawa. Pore pressure influence on tensile fracture propagation in sedimentary rock. International Journal of Rock Mechanics and Mining Sciences. 1991, 28(4): 261-273.
    [88] M. Vandamme , J. C. Roegiers. Poroelasticity in hydraulic fracturing simulators. Journal of Petroleum Technology. 1990: 1199-1203.
    [89] L. Weijers, C. J. de Pater , J. hagoort. A new mechanism for hydraulic fracture initiation. Rock Mechanics. Aubertin, Hassani & Mitri(eds). Balkema, Rotterdam, 1996: 1253-1260.
    [90] K. Noghabai. Discrete versus smeared versus element embedded crack models on ring problem. Journal of engineering mechanics, 1999, 125(6): 307-314.
    [91] R. G. Jeffrey, K. W. Mills. Hydraulic fracturing applied to inducing long wall coal mine goal falls. Paciffic Rock 2000, Girard, Liebman, Breeds & Doe, Balkema, Rotterdam: 423-430.
    [92]连志龙,张劲,吴恒安,等.水力压裂扩展的流固耦合数值模拟研究[J].岩土力学, 2008, 29(11): 3021-3026.
    [93] S. C. Yuan, J. P. Harrison. A review of the state of the art in modeling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(38): 105-127.
    [94] L. M. Kachanov. Time of the rupture process under creep conditions[J]. Izv Akad Nauk SSR Otd Tekh Nauk,1958, 8(1):26-31.
    [95] L. Jing. A review of techniques, advances and outstanding issues in numerical modelling for rock mechnicas and rock engineering [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3):283-353.
    [96] L. M. Kachanov. Introduction to continuum damage mechanics [M]. Boston: Martinus Nijhoff Publishers, 1986.
    [97]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [98]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [99]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社, 1997.
    [100] D. Krajcinovic. Damage mechanics [J]. Mechanics of Materials, 1989, 8: 117-197.
    [101] K. S. Chan., S. R. Bodner , D. E. Munson. Permeability of WIPP Salt during Damage Evolution and Healing[J]. International Journal of Damage Mechanics, 2001, 10: 347-375.
    [102] P. Valko, M. J. Economides. Propagation of hydraulically induced fractures-A continuum damage mechanics approach [J]. International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, 1994, 31(3):221-229.
    [103] M. Oda, T. Takemura, T. Aoki. Damage growth and permeability change in triaxial compression tests of Inada granite. Mechanics of Materials. 2002, 34: 313-331.
    [104]杨延毅,周围垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水力学报, 1991, 5: 19-27.
    [105]郑少河,姚海林,葛修润.裂隙岩体渗流场与损伤场的耦合分析[J].岩石力学与工程学报,2004, 23(9): 1413-1418.
    [106] J. F. Shao, H. Zhou, K. T. Chau. Coupling between anisotropic damage and permeability variation in brittle rocks. International Journal of Numerical and Analytical Methods in Geomechanics, 2005, 29:1231-1247.
    [107] M. Souly, F. Homand, S. Pepa, et al. Damage-induced permeability changes in granite: a case example at the URL in Canada. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2):297-310.
    [108] J. F. Shao, D. Hoxha, M. Bart, et al. Continuous modeling of induced anisotropic damage in granite. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1001-1012.
    [109]褚卫江.低孔隙度岩石细观本构模型及损伤-渗流耦合研究[D].南京:河海大学,2007.
    [110]谢兴华,郑颖人,张茂峰.岩石变形与渗透性变化关系研究[J].岩石力学与工程学报, 2009, 25(增1):2657-2661.
    [111]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗流系数张量研究(I):各向异性损伤本构模型[J].岩土力学, 2005,26(5): 779-783.
    [112]韦立德,杨春和,徐卫亚,拉应力条件下岩石细观力学本构模型和渗流系数张量研究(Ⅱ):各向异性渗透系数张量及算例[J].岩土力学, 2005, 26(12): 1996-2000.
    [113]任中俊.基于椭圆形微裂纹变形及扩展的岩石混凝土三维细观损伤模型[D].重庆大学, 2008.
    [114] L. M. Kachanov. On the time to failure under creep condition [J]. Izv. Akad. Nauk. USSR. Otd. Tekhn. Nauk., 1958, 8:23-31.
    [115] R. Hill. The essential structure of constitutive laws for metal composites and polycrystals [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(2): 79-95.
    [116] R. M. Christensen, K. H. Lo. Solutions for effective shear properties in three phase sphere and cylinder models [J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315-330.
    [117] T. Mori, K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgica , 1973, 21: 571-574.
    [118] R. Roscoe. The viscosity of suspensions of rigid spheres [J]. British Journal of Applied Physics, 1952, 3: 267-269.
    [119] R. Mclaughlin. A study of the differential scheme for composite materials [J]. International Journal of Engineering Science, 1977, 15: 237-244.
    [120] D. Gross. Stress intensity factors of systems of cracks [J]. Ingenieur Archiv, 1982, 51: 301-310.
    [121] M. Kachanov, J. P. Laures. Three dimensional problems of strongly interacting arbitrarily located penny-shaped cracks [J]. International Journal of Fracture, 1989, 41: 289-313.
    [122] M. Kachanov. Effective elastic properties of cracked solids, critical review of some basic concepts [J]. Applied Mechanics Review, 1992, 45: 304-335.
    [123] S. N. Nasser, M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials [M]. North Holland: Elsevier, 1993.
    [124] D. Krajcinovic, D. Fenella. A micromechanical damage model for concrete [J]. Engineering Fracture Mechanics, 1986, 25(5): 585-596.
    [125] J. W. Ju. A micromechanical damage model for uniaxially reinforced composites weakened by interfacial arc microcracks [J]. Journal of applied mechanics, 1991, 58: 923-930.
    [126] B. Budiansky, R. J. O’Connell. Elastic moduli of a cracked solid [J]. International Journal of Solids and Structures, 1976, 12(1): 81-95.
    [127] D. Sumarac, D. Krajcinovic. A self-consistent model for microcrack weakened solids [J]. Mechanics of Materials, 1987, 6: 39-52.
    [128] J. Aboudi, Y. Benvensite. The effective moduli of cracked bodies in phase deformations [J]. Engineering Fracture Mechanics, 1987, 26: 171-184.
    [129] Y. Huang, K. Hu, A. Chandra. A generalized self-consistent mechanics method for microcracked solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 1273-1291.
    [130] Y. Benvensite. On the Mori-Tanaka’s method in cracked bodies [J]. Mechanics Research Communications, 1986, 13(4): 193-201.
    [131] Z. Hashin. The differential scheme and its application to cracked materials [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(6): 719-734.
    [132] D. Fanella, D. Krajcinovic. A micromechanical model for concrete in compression [J]. Engineering Fracture Mechanics, 1988, 29: 49-66.
    [133] Y. Budiansky. On the elastic moduli of some heterogeneous materials [J]. Journal of the Mechanics and Physics of Solids, 1965, 13: 223-227.
    [134] A. Hoenig. The behavior of a flat elliptical crack in an anisotropic elastic body [J]. International Journal of Solids and Structures, 1978, 14(11): 925-934.
    [135] A. Hoenig. Elastic moduli of a non-randomly cracked body [J]. International Journal of Solids and Structures, 1979, 15(2): 137-154.
    [136] Y. Huang, K. C. Hwang. A unified energy approach to a class of micromechanics models for microcracked solids [J]. Acta Mechanica Solida Sinica, 1995, 8(2): 110-120.
    [137] Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials [J]. Mechanics of Materials, 1987, 6(2): 147-157.
    [138] J. W. Ju, T. M. Chen. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks, part I: basic formulations [J]. Journal of Applied Mechanics, 1994, 61: 349-357.
    [139] J. W. Ju, T. M. Chen. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks, part II: evolutionary damage models [J]. Journal of Applied Mechanics, 1994, 61: 358-366.
    [140] H. Horii, S. Nemat-Nasser. Elastic fields of interacting inhomogeneities [J]. International Journal of Solids and Structures, 1985, 21: 731-745.
    [141] M. Kachanov. Elastic solids with many cracks: a simple method of analysis [J]. International Journal of Solids and Structures, 1987, 23: 23-43.
    [142] M. Kachanov. A microcrack model of rock inelasticity, part I: fractional sliding on microcracks [J]. Mechanics of Materials, 1982, 1: 19-27.
    [143] M. Kachanov. A microcrack model of rock inelasticity, part II: propagation of microcracks [J]. Mechanics of Materials, 1982, 1: 29-41.
    [144] H. Horii, S. Nemat-Nasser. Overall moduli of solids with microcracks: load-induced anisotropy [J]. Journal of the Mechanics and Physics of Solids, 1983, 31(2): 155-171.
    [145] H. Horii, S. Nemat-Nasser. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure [J]. Journal of Geophysical Research, 1985, 90: 3105-3125.
    [146] H. Horii, S. Nemat-Nasser. Brittle failure in compression: splitting, faulting, and brittle-ductile transition [J]. Philosophical Transactions of the Royal Society of London [M], 1986, 319: 337-374.
    [147] H. B. Li, J. Zhao, T. J. Li. Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 923-935.
    [148] L. Gambarotta, I. Monetto. Uniaxial compressive failure of brittle materials as instability of damaging microcracked solids [J]. European Journal of Mechanics A/Solids, 2002, 21: 121-132.
    [149] D. Krajcinovic. Micromechanical basis of phenomenological models [A]. In: D. Krajcinovic, J. Lemaitre. Continuum damage mechanics: theory and applications [M]. New York: Springer-Verlage, 1987, 195-211.
    [150] J. W. Ju. On two-dimensional self-consistent micromechanical damage models for brittle solids [J]. International Journal of Solids and Structures, 1991, 27(2): 227-258.
    [151] X. Lee, J. W. Ju. On three-dimensional self-consistent micromechanical damage models for brittle solids, part II: compressive loadings [J]. Journal of Engineering Mechanics, 1991, 117(7): 1515-1536.
    [152] C. L. Li, E. Nordlund. Deformation of brittle rocks under compression-with particular reference to microcracks [J]. Mechanics of Materials, 1993, 15: 223-239.
    [153] X. Q. Feng, S. W. Yu. A new damage model for microcrack-weakened brittle solids [J]. Acta Mechanica Sinica, 1993, 9: 251-260.
    [154] S. W. Yu, X. Q. Feng. A micromechanical-based damage model for microcrack-weakened brittle solids [J]. Mechanics of Materials, 1995. 20: 59-76.
    [155] X. Q. Feng, S. W. Yu. Micromechanical modeling of tensile response of elastic-brittle materials [J]. International Journal of Solids and Structures, 1995, 32(22): 3359-3374.
    [156] X. Q. Feng, S. W. Yu. Quasi- micromechanical constitutive theory for brittle damage materials under tension [J]. Acta Mechanica Solida Sinica, 2001, 14(3): 200-207.
    [157] Z. J. Ren , X. H. Peng, N. Hu, et al. A micromechanical damage model for rocks and concretes under triaxial compression[J] . Applied Mathematics and Mechanics, 2009, 30(3): 323-333.
    [158] Z. P. Bazant. Microplane model for brittle-plastic material: I. Theory. Journal Engineering Mechanics, 1988, 114 (10), 1672-1686.
    [159] D. Krajcinovic. Damage mechanics. Mechanics of Materials. 1989, 8 (2):117-197.
    [160] D. Hoxha, F. Homand. Microstructural approach in damage modeling. Mechanics of Materials, 2000, 32(6), 377-387.
    [161] A. Golshani, Y. Okui, M. Oda , T. Takemura. A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mechanics of Materials, 2006 (38) :287-303.
    [162] Z. J. Ren, X. H. Peng, C. H. Yang. Micromechanical damage model for rocks and concretes subjected to coupled tensile and shear stress. Acta Mechanica Solida Sinica, 2008, 21(3): 232-240.
    [163] S. C. Yuan, J. P. Harrison. Development of a hydromechanical local degradation approach and its application to modeling fliud flow during progressive fracturing of heterogeneous rocks. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(7-8): 961-984.
    [164] B. Bary, G. Ranc, S. Durand, O. Carpentier. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures. International Journal of Heat and Mass Transfer . 2008(51) :2847-2862.
    [165] A. Giraud, D. Hoxha, D.P. Do, V. Magnenet. Effect of pore shape on effective porothermoelastic properties of isotropic rocks. International Journal of Solids and Structures.2008 (45): 1-23.
    [166] K. B. Min, J. Rutqvist, C. F. Tsang, L. Jing. Thermally induced mechanical and permeability changes around a nuclear waste repository—a far-field study based on equivalent properties determined by a discrete approach. International Journal of Rock Mechanics & Mining Sciences. 2005 (42):765-780.
    [167]尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社, 1992.
    [168] J. F. Barthelemy, L. Dormieux, D. Kondo. Détermination du comportement macro- scopique d’un milieuàfissures frottantes. Comptes Rendus Mecanique, 2003, 331(1): 77-84.
    [169] Q. Z. Zhu, D. Kondo, J. F. Shao. Micromechanical modelling of anisotropic damage in brittle rocks and application[J]. International Journal of Rock Mechanics & Mining Sciences , 2008,45:467-477.
    [170] H. Yoshida, H. Horii. Micromechanics-based continiuum model for a jointed rock mass and excavation analyses of a large-scale cavern[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41:119-145.
    [171] L. Dormieux, A. Molinari, D. Kondo. Micromechanical approach to the behavior of poroelastic materials[J]. Journal of the Mechanics and Physics of Solids, 2002), 50: 2203-2231.
    [172] M. A. Biot. Gernaral theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 14: 155-164.
    [173] S.W. Yu, X. Q. Feng. A micromechanics-based damage model for microcrack-weakened brittle solids[J]. Mechanics of Materials, 1995, 20: 59-76.
    [174] M. Kachanov. Effective elastic properties of crack solids, critical review of some basic concepts[J]. Applied Mechanics Review, 1992, 45: 304-335.
    [175] A. E. Green, I. N. Sneddon. The distribut ion of stress in the neighborhood of a flat elliptic crack in an elastic solid [J]. Proceedings of the Cambridge Philosophical Society, 1950, 46(2): 159-164.
    [176] M. K. Kassir, G. C. Sih. Three dimensional stress distribution around an elliptical crack under arbitrary loading [J]. Journal of Applied Mechanics, 1966, 33: 601-611.
    [177] M. K. Kassir, G. C. Sih. Three dimensional crack problems [A]. In: G. C. Sih. Mechanics of fracture [M]. Leyden: Noordhoff International Publishing, 1975, 382-409.
    [178] B. Budiansky, R. J. O’Connell. Elastic moduli of a cracked solid. International Journal of Solids and Structures, 1976, 12(1): 81-95.
    [179] G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal Applied Mechanics, 1957, 24: 361-364.
    [180]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社, 1997.
    [181] P. Segll. Formation and growth of extensional fracture sets[J]. Geological society of America bulletion, 1984,95:154-158.
    [182] Z. J. Ren, X. H. Peng, N. Hu, C. H. Yang. A micromechanical damage model for rocks and concretes under triaxial compression . Applied Mathematics and Mechanics, 2009, 30(3), 323-333.
    [183] H. L. Ewalds, R. J. H. Wanhill. Fracture mechanics [M]. London: Edward Arnold Publication, 1984.
    [184]任中俊,彭向和,胡宁.深埋椭圆形片状裂纹的偏折扩展[J].力学学报, 2009, 41(2): 200-206.
    [185] M. F. Ashby, S. D. Hallam. The failure of brittle solids containing small cracks under compressive stress state[J]. Acta Metall Materials, 1986, 34(3):497-510.
    [186] M. L. Kachanov. Microcrack Model of Rock Inelasticity Part I:Fractional Sliding on Microcracks[J]. Mechanics of Materials, 1982, 1(1):19-27.
    [187] H. Horii, N. S. Nemat. Brittle failure in compression:splitting,faulting,and brittle-ductile transition[J]. Philosophical Transactions of the Royal Society of London, 1986, 319(1 549): 337-374.
    [188] H. B. Li, J. Zhao, T. J. Li. Micromechanical modeling of the mechanical properties of a granite under dynamic uniaxial compressive loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6):923-935.
    [189] C. H. Scholz. Microfracturing and the inelastic deformation of rock in compression[J]. Journal of Geophysical Research, 1968, 73:1417-1432.
    [190] P. Besuelle, J. Desrues, S. Raynaud. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37:1223-1237.
    [191] S. C. Yuan, J. P. Harrison. An empirical dilatancy index for the dilatant deformation of rock. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 679-686.
    [192]周维垣.高等岩石力学[M].北京:水利电力出版社. 1990.
    [193]金丰年.岩石的非线性流变[R].南京:工程兵工程学院博士后研究工作报告,1997.
    [194]蔡美峰.岩石力学与工程[M].科学出版社,2002.
    [195]周小平,张永兴,哈秋舲.单轴拉伸条件下细观非均匀性岩石变形局部化分析及其应力-应变全过程研究[J].岩石力学与工程学报, 23(1):1-6.
    [196]杨永杰,宋扬,陈绍杰,等.煤岩全应力应变过程渗透性特征试验研究[J].岩土力学, 2007, 28(2):381-385.
    [197]常宗旭,郤保平,赵阳升,等.煤岩体水射流破碎机制[J].煤炭学报, 2008,33(9):983-987.
    [198]李前贵,康毅力,徐兴华,等.煤岩孔隙结构特征及其对储层损害的影响[J].西南石油学院学报, 2002,24(3):1-4.
    [199]邢福东,朱珍德,刘汉龙等.高围压高水压作用下脆性岩石强度变形特性试验研究[J].河海大学学报(自然科学版), 2004,32(2):184-187.
    [200] M. Souley, F. Homand, S. Pepa. Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. International Journal of Rock Mechanics & Mining Sciences. 2001,38: 297-310.
    [201]彭向和,杨春和,万玲.一种简化的混凝土损伤本构模型及其应用[J].岩石力学与工程学报, 2004, 13(19): 3232-3239.
    [202]杨春和,梁卫国,魏东吼等.中国盐岩能源地下储存可行性研究[J].岩石力学与工程学报, 2005, 24(24):4409-4417.
    [203]尹雪英.泥岩夹层对层状盐岩构造中油(气)储库稳定性影响研究[D].中国科学院武汉岩土力学研究所,2008
    [204]杨春和,李银平,尹雪英等.云应盐矿地质可储性关键技术研究报告, 2006.
    [205]王贵君.盐岩层中天然气存储洞室围岩长期变形特征.岩土土程学报, 2003, 25(4):431-435.
    [206]王贵君.天然气盐岩洞室群长期存储能力.岩土土程学报, 2004, 26(1):62-66.
    [207]刘新荣,姜德义,许江等.盐岩溶腔围岩应力分布规律的有限元分析.重庆大学学报, 2003, 26(2):39-41.
    [208]陈卫忠,伍国军,戴永浩等.废弃盐穴地下储气库稳定性研究.岩石力学与土程学报, 2006, 25(4):848-854.
    [209]李银平,刘江,杨春和.泥岩夹层对盐岩变形和破损特征的影响分析[J].岩石力学与工程学报, 2006, 25(12):2461-2466.
    [210]陈卫忠,谭贤君,伍国军等.含夹层盐岩储气库气体渗透规律研究[J].岩石力学与工程学报, 2009, 28(7):1297-1304.
    [211]梁卫国,杨春和,赵阳升.层状盐岩储气库物理力学特性与极限运行压力[J].岩石力学与工程学报. 2008, 27(1):22-27.
    [212]尹雪英,杨春和,陈剑文.金坛盐矿老腔储气库长期稳定性分析数值模拟[J].岩土力学, 27(6):869-874.
    [213]王景春,徐日庆,黄斌.施工扰动作用下基坑抗隆起稳定性分析[J].岩石力学与工程学报, 2005, 24 (增): 5405-5409.
    [214]李银平,杨春和.层状盐岩体的三维Cosserat介质扩展本构模型[J].岩土力学, 2006, 27(4): 509-513.
    [215] M. D. G. Salamon. Elastic moduli of a stratified rock mass[J]. International Journal of RockMechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(6):519-527.
    [216] C. M. Gerrard. Elastic models of rock masses having one, two and three sets of joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1982, 19 (1):15-23.
    [217] L. J. Wardle , C.M. Gerrard. The“Equivalent”anisotropic properties of layered rock and soil masses. Rock Mechanics ,1972, 4(1):155-175.
    [218] C. M. Gerrard. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1982, 19 (1):9-14.
    [219]刘俊,陈胜宏.节理岩体三维偶应力弹性理论[J].岩土力学, 1995, 16(4):20-29.
    [220]刘俊,黄铭,葛修润,等.层状岩体开挖的空间弹性偶应力理论分析[J].岩石力学与工程学报, 2000,19(3):276-280.
    [221]杨春和,李银平.互层盐岩体的Cosserat介质扩展本构模型[J].岩石力学与工程学报, 2005, 24(23): 4226-4232.
    [222]杨春和,李银平,屈丹安,等.层状盐岩力学特性研究进展[J].力学进展, 2008, 38 (4) :484-494.
    [223] X. Peng, J. Fan, J. Zeng. Microstructure-based description for the mechanical behavior of single pearlitic colony[J]. International Journal of Solids and Structures , 2002, 39(2): 435- 448.
    [224] X.S. Long, X.H. Peng, W.L. Pi. A microstructure-based analysis of cyclic plasticity of pearlitic steels with Hill’s self-consistent scheme incorporating general anisotropic Eshelby tensor[J]. Acta Mechanica Solida Sinica, 2008, 24(1): 91-99.
    [225]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社, 2002: 9-10.
    [226]刘江,杨春和,吴文,等.盐岩短期强度和变形特性试验研究[J].岩石力学与工程学报, 2006, 25(增1): 3104-3109.
    [227] K. S. Chan, D.E. Munson, S. R. Bodner, et al. Cleavage and creep fracture of rock salt [J]. Acta Materialia, 1996, 9(44): 3553-3565.
    [228]王安明,杨春和,黄诚,等.层状盐岩力学和变形特性数值试验研究[J].岩土力学, 2009, 30(7):2173-2179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700