用户名: 密码: 验证码:
异端类型三坐标测量机结构原理及误差修正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三坐标测量机是一种高效率的三维测量仪器,它集成了机械、光学、电子、计算机等技术。随着现代制造业的发展,MEMS器件的出现对测量机提出更高的精度要求。本文对一台用于生产现场的大量程低精度要求的悬臂式坐标测量机,和一台实验室环境下的新型小行程纳米级精度的坐标测量机进行了研究,围绕这两种不同类型的三坐标测量机的结构布局、误差分析及误差修正问题而展开。
     悬臂式测量机为传统结构,用于工字钢结晶器内腔现场测量,测量范围为600×600×800mm。本文详细分析了该测量机的各主要误差源,对常用的三坐标测量机21项几何误差修正模型加以改进,增加光栅零位修正量和长悬臂非刚性修正量,使用齐次坐标转换理论建立了测量机的机构误差修正模型。使用双频激光干涉仪、激光跟踪仪对测量机误差进行了分离,修正后的测量结果表明,测量机的最大位移误差由原来最大600μm降低到50μm。
     对国内外现有的纳米级精度三坐标测量机进行研究后,总结获得影响测量精度的一些关键因素,在此基础上提出了三轴测量线垂直共点、x-y导轨导向面与测量面三面共面、测点与三面重合的纳米三坐标测量机“331”结构构建原则。这种结构可以有效消除三维运动系统中阿贝误差的影响,降低导轨运动直线度误差对三维运动台定位精度的影响。
     文章详细介绍了一台基于“331”原则的纳米三坐标测量机,测量范围为50×50×50mm,各轴激光干涉仪测长的分辨率为1nm,纳米三维测头分辨率为1nm,适用于微器件和小尺寸量的测量。测量机三维工作台使用低热膨胀系数的铟钢作为主体材料,x、y轴采用了共平面、对称式设计。文中创新性的提出了一种力支撑点可跟随工作台沿x-y二维游动的力平衡系统,该结构能有效克服因工作台三维运动而导致自身作用力无法平衡的问题,可保证测量机各关键部件力变形较小,降低电机驱动阻力。在装调完成后,测量机各轴导轨的直线度误差在±1u以内,角运动误差均在30角秒以内。
     误差建模和误差修正是纳米坐标测量机研制的关键技术。本文首先使用现代精度理论分析了纳米测量机的误差影响因素,推导获得误差修正模型。误差模型的分析结果表明,x、y导轨的不完善性并不会对测量带来影响,测量机的主要误差项为激光器测长误差和反射镜的垂直度与平面度误差。然后使用激光干涉仪和几何量标准件对测量机的各项误差进行了分离,使用插值算法计算获得误差修正函数,并建立了纳米测量机z轴基于三次样条插值方法的三维误差模型。在完成插值修正后,使用激光干涉仪和标准件对修正结果进行了检验,测量结果表明:测量机沿对角线的最大位移误差由修正前的3500nm降低到150nm以内;台阶高度和量块长度测量的最大偏差小于100nm,标准差小于30nm。
CMM is a kind of efficient three-dimensional measuring instrument, which integratesmechanical, optical, electronic, computer and other technology. With the development of modernmanufacturing, the emergence of MEMS devices require the higher accuracy on the measuringmachines. In this paper, a cantilever-type coordinate measuring machine for the production site witha large number of range and low accuracy requirements and a coordinate measuring machine withsmall trip nanoscale precision under the laboratory environment was studied. The main contents ofthis thesis are revolving around structure and layout, error analysis and error correction.
     This cantilever measuring machine has a traditional structure which was designed formeasuring continuous casting mold and it has a measuring range of600×600×800mm. In this paper,a self-designed cantilever Coordinate Measuring Machine(CMM) for measuring continuous castingmold was studied, main errors sources which have impact on measuring accuracy of measuringmachine were analyzed. The geometric error modal was founded by the theory of homogeneouscoordinate, which include non-rigid error compensation. Laser interferometer and laser tracker wereused to separate each error, then these errors were compensated after be calculated. Measured resultsdemonstrated that, when measuring machine move along the diagonal of measuring space, themaximum displacement error reduce to50μm from600μm after compensation.
     Nano Coordinate Measuring Machine both at home and abroad were researched and analyzed,and then some of the key factors that affect the measurement accuracy were summed up. On thisbasis, the "331" principle for Nano-CMM was put forth: Three measuring line intersect to one point;x、y plane of guide overlap with measuring plane; The intersection point of three measuring lines ison the measuring plane. This type of distribution can eliminate the influence of Abbe error fromprinciple and lower effect that rails’ movement errors bring to working table.
     This paper introduces a Nano-CMM, the structure layout of it is based on the "331"construction principles. The machine has a measuring range of50×50×50mm, and the resolution is1nm, apply to the measurement of micro-devices and thin size. Measuring machine table used invarsteel with low thermal expansion coefficient as the main material. The x and y axis of workbenchtakes coplanar moving platform and symmetrical design. A special force balance system was putforward in this paper, the force support points of it can move with workbench along the x and ydirection. This structure can effectively balance the internal force of the measuring machine whichcaused by the three-dimensional movement of workbench, reduce the deformation of the keycomponents of the measuring machine, reduce the resistance of motor-driven. The straightness errorof each guide is within±1u, angular motion errors are less than30arcsec after the alignment of Nano-CMM.
     Error analysis, modeling, and separation of the interpolation correction are the key technologiesof developing Nano-measuring machine. In this paper, the error influencing factors of the modernprecision Nano-measuring machine was analyzed, and the error correction model was derived. Theresults show that the main sources of error of the measuring machine are laser measurement lengtherror and the flatness deviations and out-of-squareness error of the mirror, and x, y rail imperfectionsdo not affect the measurement results. Using the interpolation algorithm a one-dimensional errorfunction was calculated, and three-dimensional error models of z-axis of Nano-measuring machinewere established based on cubic spline interpolation method. And also the errors of the measuringmachine were isolated by using a laser interferometer and standard parts. After the interpolationcorrection, the corrected results were tested by using a laser interferometer and standard parts. Themeasurement results show that: Measuring machine the greatest displacement error along thediagonal of measuring machine were reduced from3500nm to150nm or less after correction, andThe maximum deviation of measured values of the step height and length of the gauge block are lessthan100nm, and the standard deviation are both30nm or less.
引文
[1]张国雄.三坐标测量机[M].天津:天津大学出版社,1999.
    [2]王伟丽.纳米三坐标测量机机械结构及接触式测头技术研究[D].合肥工业大学博士论文,2008.
    [3]张国雄.坐标测量技术发展方向[J].红外与激光工程.2008.4(37):1-5.
    [4]荣烈润.三坐标测量机的现状和发展动向[J].机电一体化.2001.6,8-11.
    [5]刘祚时,倪潇娟.三坐标测量机(CMM)的现状和发展趋势[J].机械制造.2004.42(480).
    [6] Woody, S.C. and Smith S. T. Resonance-based vector touch sensors[J], Precision Engineering,Vol.27, No.3,2003, pp.221-233.//MEMS器件
    [7]费业泰,赵静,王宏涛,马修水.三坐标测量机动态误差研究分析[J].仪器仪表学报.2004,No.4(增刊),P773-776.
    [8]赵英剑,郭敬滨,张国雄.弱刚度三坐标测量机的误差补偿[J].制造技术与机床,2000,4:38-40.
    [9] Heinrich Schwenke, etc,“Future challenges in Co-ordinate Metrology: addressing metrologicalproblems for very small and very large parts”, IDW Conference, Knoxville, May,2001, pp.1-12.
    [10] K. Takamasu, S. Ozawa, T. Asano. Basic Concepts of Nano-CMM [R]. The Japan-ChinaBilateral Symposium on Advanced Manufacturing Engineering,1996.
    [11] K. Takamasu, Masahiko Hiraki, Kazuhiro Enami. Development of Nano-CMM andParallel-CMM: CMM in the21th Century [R]. International Dimensional Metrology Workshop,May10-13,1999Tennessee, USA.
    [12] K. Takamasu, M. Fujiwara, H. Naoi. Friction drive system for nano-CMM [C]. Proc.Mechatronics2000,21-23Sep.2000, Warsaw, Poland.
    [13] M. Fujiwara, A. Yamaguchi, K. Takamasu. Evaluation of stages of Nano-CMM, Initiatives ofprecision engineering at the beginning of millennium [M]. Kluwer Academic Publishers(Netherlands).2001, pp.634-638.
    [14] John A Kramar. Nanometre resolution metrology with the Molecular Measuring Machine [J].Meas. Sci. Technol.16,2005:2121–2128.
    [15] Leach, R K, Murphy, J “The design of co-ordinate measuring probe for characterising trulythree-dimensional micro-structures”.4th euspen International Conference, Glasgow, UK,31May2004-2June2004,230-231.
    [16] G.N.Peggs, A.J.Lewis, S. Oldfield,“Design for a compact High-Accuracy CMM”, Annals ofthe CIRP, Vol.48, No.1,1999, pp.417-420.
    [17] E. B. Hughes, Wilson, A., G. N. Peggs. Design of high accuracy CMM based on multilaterationtechniques [J]. Annals of the CIRP49(2000), pp.391-394.
    [18] Uwe Brand, Thomas Kleine-Besten, Heinrich Schwenke. Development of a special CMM fordimensional metrology on microsystem components[R]. ASPE15th Annual Meeting in Scottsdale(Arizona),22th-27th, October2000.
    [19] John A Kramar2005J. Appl. Mechanical.162121-2128.
    [20] W van Vliet,“Development of a fast Mechanical Probe for Coordinate Measuring Machines”,ISBN90-386-0168-9, PhD thesis, Windhoven University of Technology,1996.
    [21] H. Haitjema, et.,“Development of a Silican-based Nanoprobe System for3-D Measurements”,Annals of the CIRP, Vol.50, No.1, pp.365-368,2001.
    [22] Pril, Wouter O.“Development of High Precision Probes for Coordinate Measuring Machines”,Eindhoven: Technische Universiteit, Eindhoven,2002, PhD Thesis.
    [23] I. Schmidt, et al.,"Investigations and calculations into decreasing the uncertainty of ananopositioning and nanomeasuring machine (NPM-Machine)," Measurement Science&Technology, vol.18, pp.482-486, Feb2007.
    [24] G. Jager, et al.,"The Metrological Basis and Operation of Nanopositioning and NanomeasuringMachine NMM-1," Tm-Technisches Messen, vol.76, pp.227-234,2009.
    [25]朱志良.纳米级三次元量测仪之研制[D],台湾大学机械工程研究所博士论文,2002.
    [26]范光照,朱志良,钟添东.小型微/纳米级三坐标测量机的研制[J].纳米技术与精密工程,2003,1(1).
    [27]高宏唐.2.5维大范围纳米激光干涉测长信号处理子系统的研究[D].北京:中国计量科学研究院硕士论文,2005.
    [28]王霁,朱振宇,李华丰.一种应用于纳米测量机的高精度干涉仪[J].微纳电子技术,2011,48(7),464-468.
    [29]朱振宇,傅星,李华丰,任冬梅,王霁.移相干涉技术用于运动姿态精密测量[J].计测技术,2011,31(1),29-35.
    [30]李源,栗大超,胡小唐.应用于纳米测量机的MEMS微接触式测头的结构设计和优化[J],传感技术学报,2006,19(5),1512-1515.
    [31]王伟丽,范光照,程方.新型纳米级二维工作台的参数测试[J].机械制造,2006,44(2):64-67.
    [32] Chen Y.J, Fan. K.C, Liu Y.S, Cheng F. A High precision focus probe for the quality assessmentof grating pitch [J], Key Engineering Materials, Vol.339,2007:200-205.
    [33] K C Fan, Y T Fei, X F Yu, et al. Development of a low-cost micro-CMM for3Dmicro/nanomeasurements [J]. Meas. Sci. Technol,2006,17:524–532.
    [34]王伟丽,范光照,刘玉圣.基于共平面二维工作平台的精密测量系统[J].中国计量学院学报.2005,16(4):264-267.
    [35]程方.纳米三坐标测量机测控系统关键技术技术研究[D].合肥工业大学博士论文,2010.
    [36] Fang Cheng, KuangChao Fan,“An Improved Design of the Linear Diffraction GratingInterferometer”, Proceedings of ASPEN2009, November11-13,2009, Kitakyushu, Japan.
    [37]王洪兴,刘志国.板坯连铸机黏结漏钢分析与预防措施[J].中国冶金,2011,21(9),30-35.
    [38]万安元.国内外板坯结晶器镀层情况简介[J].材料保护,2001,(04).
    [39]李建飞,李慧琴,韩强.板坯连铸结晶器内漏钢坯壳厚度的测量与分析[J].内蒙古科技大学学报,2011,30(6),104-106.
    [40]庞振基,黄其圣.精密机械设计[M].北京:机械工业出版社,2000:230-253.
    [41]周传宏.滚动直线导轨副静态和动态特性研究[D].武汉:华中科技大学博士论文,1999.
    [42]喻忠志.我国滚动直线导轨副的发展及趋势[J].机床零部件.2001.7,13-14.
    [43]费业泰,卢荣胜.动态测量误差修正原理与技术[M].北京:中国计量出版社.2001.
    [44]董晨松.三坐标测量机动态误差研究[M].天津大学博士论文.2002.
    [45]赵英剑,张国雄.三坐标测量机非刚体误差补偿模型中附加函数的研究[J].组合机床与自动化加工技术,1999,No.6,pp.28-32.
    [46]林璨.三坐标测量机的精度检定与位置误差补偿[J].现代计量测试.1995,2:21-24.
    [47] ZHANG G X, ZHANG H Y, GUO J B, LI X H. Error compensation of cylindrical coordinatemeasuring machines[A].60th General Assembly of CIRP[C]. Pisa: CIRPANNALS-MANUFACTURING TECHNOLOGY,2010:501-504.
    [48]林述温,吴昭同,李刚.三坐标测量机非刚性效应测量误差分布特征[J].仪器仪表学报,2001,22(2):172-175.
    [49]汪平平,费业泰,林慎旺.柔性三坐标测量臂的标定技术研究[J].西安交通大学学报.2006(03):284-288.
    [50]汪平平,费业泰,尚平,等.柔性坐标测量机参数辨识方法[J].农业机械学报.2007,38(07):129-132.
    [51] Denavit J., Hartenberg R. B. A kinematics notation for lower-pair mechanism based onmatrices[J]. Journal of Applied Mechanics.1955,23:215-221.
    [52]陈宝刚,费业泰.齐次坐标变换的测量机误差修正模型[J].黑龙江科技学院学报,2010,20(2):142-145.
    [53]杨洪涛,费业泰,陈宝钢.长悬臂坐标测量机动态力引起的误差分析与控制[J].农业机械学报,2008,39(1):165-168.
    [54]刘玉圣,范光照,陈叶金.高精度衍射光栅干涉仪的研制[J].工业计量. Vol.16. No.2, pp.1-3,2006.
    [55]李百堃.简易型高对位公差之雷射绕射式光学尺之研制[D].台湾大学机械工程学系研究所硕士论文,2007.
    [56] Katerina Moloni,“Ensuring nanopositioning accuracy requires sensor monitoring and carefulx-y stage design”, SPIE OE magazine, June2002, pp.40-41.
    [57] K C Fan, Y T Fei, X F Yu, et al. Development of a low-cost micro-CMM for3Dmicro/nanomeasurements [J]. Meas. Sci. Technol,2006,17:524–532.
    [58]陈津平,张宝峰,胡晓东,胡小唐.微型激光干涉仪应用于纳米测量机[J].计量技术. No.4, pp.6-8,2002.
    [59] Masanao Fujiwara, Kiyoshi Takamasu, Shigeo Ozono.“EVALUATION OF PROPERTIESOF NANO-CMM BY THERMAL DRIFT AND TILT ANGLE”. Proceedings, XVII IMEKO WorldCongress, June22-27,2003, Dobrovnik, Croatia,1794-1797.
    [60] Teague, E.C. and C. Evans P1989Patterns for Precision Instrument Design (Virginia, Norfolk).
    [61] Bryan J.B.1990International Status of Thermal Error Research, vol39/2645.
    [62] John A Kramar2005J. Appl. Mechanical.162121-2128.
    [63]张松,张书练,任舟.采用Nd:YAG微片激光器的激光回馈干涉仪的研制[J].红外与激光工程.2011,40(10),1914-1917.
    [64]束永俊,李桂灿,DVD激光头基本原理[J],电声技术,Vol.1, No.6, pp.32-37,2000.
    [65]陈叶金,创新型微纳米测量探头机理的研究[D],合肥工业大学博士论文,2007.
    [66] K. C. Fan, C. Y. Lin and L. H. Shyu,“Development of a Low-cost Focusing probe for ProfileMeasurement”, Measurement Science and Technology, Vol.11, No.1, pp.1-7,2000.
    [67] K. C. Fan, Yejin Chen,“A Study on the Mechanism of an Innovative High-speed ScanningMiniature Nano-measuring Probe”, Measurement Technology and Intelligent Instruments VI,pp.71-76,2004.
    [68] Fang Cheng, Kuang Chao Fan,“A robust control scheme of nanopositioning driven byultrasonic motor”. Proceedings of SPIE,713010.
    [69]关德军,王伟.保持多根钢丝绳承重均衡的新机构[J].机械工程师.2006(7):74.
    [70]张英,姚燕安,查建中.机构平衡的可移动配重法[J].上海交通大学学报.2006(12):2039-2045.
    [71]张英,姚燕安,查建中.基于平面连杆机构的主动平衡器[J].上海交通大学学报.2010(12):1727-1734.
    [72]程伶俐,余晓芬.纳米磁悬浮二维工作台力平衡结构设计[J].农业机械学报.2009(9):197-200.
    [73]羡一民,薛梅.激光波长补偿问题[J].工具技术.2004.9(38):142-143.
    [74]羡一民.双频激光干涉仪的原理与应用[J].工具技术.1996.24(30):44-46.
    [75]殷纯永等.自动补偿双频激光测量系统.清华大学学报,1979,19(2).
    [76]黄秉琪.阿伦方差公式的扩充[J].计量技术,1990,(08),35-37.
    [77]肖明耀.有限频域噪声引起的Allan方差修正[J].计量学报,1986,7(4):2842290.
    [78]任亚飞,柯熙政.基于阿伦方差的微机电陀螺误差建模及其粒子滤波[J].中国计量学院学报,2009,2(20),102-106.
    [79] B Edlen. The reflective index of air. Metrologia, Vol.2,1966(2).
    [80]费业泰.误差理论与数据处理[M],北京:机械工业出版社,2010.
    [81]陈忠,数值计算方法[M],北京:石油工业出版社,2001.
    [82]肖红,曹茂俊,李盼池,王海英.基于分段线性插值的过程神经网络训练[J].计算机工程.2011,(20).
    [83]陈岭;许晓龙;杨清;陈根才;基于三次样条插值的无线信号强度衰减模型[J].浙江大学学报(工学版),2011(9).
    [84]包园园.三次样条函数在自由曲线测量中的应用研究[J].机械制造与自动化,2009,(02).
    [85]李洪娟,赵星.三次样条插值理论在生存函数中的应用[J].统计与决策,2009,(24).
    [86]谢文龙.三次样条函数的构造方法[J].江南学院学报,2000,(02).
    [87]张昉.平面度误差的最小二乘法分析[J].机械制造与自动化,2002,(03).
    [88]李书平.基于Excel的平面度误差最小二乘法评定[J].广西工学院学报,2006,(02).
    [89]许有信,由银.边界条件对双三次插值样条的影响[J].南京航空学院学报,1989,3(21),114-122.
    [90]夏瑞雪,陈晓怀,卢荣胜,俞庆平.新型纳米三坐标测量机误差检定方法的研究[J].电子测量与仪器学报,2010,24(3):250-256.
    [91]祝连庆,陈青山,董明利,张舒.基于双频激光干涉的坐标测量机测量不确定度检定系统[J].仪器仪表学报,2006,(S1):108-109.
    [92]郝彦彬.平行平晶平行度测量结果的不确定度评定[J].中国计量,2008,(04).
    [93]陈仁哲.几种平面度数据处理方法的比较[J].电加工与模具,1988,(01).
    [94]彭少清.平面度误差数据处理新方法[J].工具技术,1998,(11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700