用户名: 密码: 验证码:
苎麻对重金属吸收和积累特征及镉胁迫响应基因表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采矿业、工业生产和高强度的农业活动将大量的重金属带入土壤环境,破坏土壤生态系统。重金属通过植物吸收进入食物链,进而在人体内长期累积,严重危害人们的健康。植物修复技术以其操作简便、环境友好、修复成本低廉性和工程处理简易等优点日渐受到人们重视。
     苎麻又名“中国草”,具有抗逆能力强、繁殖能力强、根系庞大、生物产量高等特点。我国苎麻种质资源十分丰富,为筛选可应用于重金属植物修复的品种提供了有利的条件。选择重金属耐性强、富集量大且还能高产优质的品种对修复重金属污染土壤具有实际意义。苎麻主要作为纺织等工业原料,通过食物链危害人体健康的风险较小,在治理土壤污染的同时还有一定的经济收益。
     本文首先采用定位试验研究了矿区野生型苎麻对重金属的吸收积累特征;然后采用盆栽试验和大田微区试验相结合的方法研究了重金属镉对苎麻栽培品种生长的影响、筛选耐镉品种的方法和指标、研究了苎麻对重金属镉的吸收积累特征及其品种间差异;最后采用Solexa技术研究苎麻镉胁迫响应基因表达。主要研究结果如下:
     1、矿区野生型苎麻对重金属吸收和积累特征
     石门雄黄矿区As污染严重,伴随Cd、Sb污染和轻微的Pb污染;冷水江锑矿区Sb为主要污染物,伴随Cd、As、Pb污染;浏阳七宝山矿区Cd污染严重,伴随Pb、Zn、Cu污染。Sb和As在苎麻不同部位间的分布次序为叶片中含量最高,其余重金属在部位间分布没有规律。所有采样点苎麻地上部的Cd含量比一般植物的Cd含量大2~10倍,As含量大9.9~147.5倍,Sb含量大1.2~338.4倍。苎麻地上部Cd、As含量与土壤中Cd、As总量显著相关,苎麻地上部Pb、Sb、Zn和Cu含量与土壤Pb、Sb、Zn和Cu总量没有显著相关性。Cd富集系数和转移系数最高值为2.07和3:As富集系数和转移系数最高值为1.04和12.42,Sb富集系数和转移系数最高值为1.91和9.04。苎麻生物量大,地上部Cd、Pb、As、Sb、Zn和Cu的积累量分别高达0.11、1.17、0.72、7.97、6.71和1.69 kg/hm2。说明苎麻适合用作矿区复合重金属污染土壤的环境治理和修复。
     2、苎麻栽培品种对镉适应性和耐性评价
     盆栽试验和大田微区试验结果表明Cd对苎麻株高、茎粗、皮厚、生物量、叶绿素含量等有显著影响,且浓度越高,影响程度越大。但盆栽试验中,石阡竹根麻、宜春红心麻和川苎1号三个品种在Cd浓度23~46mg/L下的地上部生物量均高于对照;大田微区试验中,石阡竹根麻和川苎1号在25mg/kgCd处理下的生物量较对照分别增加了38%和36%。通过对苎麻耐性指标综合评价,发现盆栽试验和大田微区试验结果一致,建立了以珍珠岩为基质的营养液盆栽试验筛选苎麻耐镉品种的方法和指标。通过聚类分析将供试品种分为3类:高耐型,中耐型和低耐型。
     3、苎麻栽培品种镉吸收积累特征
     盆栽试验结果表明苎麻各器官Cd平均含量按大小排序依次为茎皮>根>骨>叶,苎麻地上部Cd含量与土壤Cd浓度呈显著正相关(0.963)。盆栽试验中Cd处理为23、46、91和182mg/L时,苎麻地上部Cd平均含量分别为22.93,37.22,71.27和88.08mg/kg。大田微区试验结果表明茎皮>麻骨>叶,茎皮中Cd含量显著高于其它器官。大田微区试验对照(1.65mg/kg、Cd处理25mg/kg和100mg/kg时苎麻地上部Cd平均含量分别为7.75,28.19和45.11 mg/kg。苎麻地上部Cd积累量品种间差异显著,中苎1号和富顺青麻Cd积累量较强,土壤Cd浓度为1.65mg/kg时,种植中苎1号全年每公顷可产原麻2300kg的同时能从土壤中带走Cd 0.25kg/hm2,土壤Cd浓度为25mg/kg和100mg/kg时,种植富顺青麻全年每公顷可产原麻1900kg以上,同时可分别吸附Cd0.76和0.97kg/hm2。以耐性隶属函数值和地上部Cd含量为指标将苎麻品种聚类为4个不同类型,高耐低吸收型、高耐高吸收型、低耐低吸收型和低耐高吸收型。
     4、苎麻镉胁迫响应基因表达研究
     构建了对照(未加Cd处理)和100mg/kgCd处理的苎麻根系数字表达基因数据库。通过Solexa测序分别获得了3,654,395和3,572,333个标签(tag,Clean tag分别占测序总数的93.18%和93.76%。通过数据分析,在对照和处理间共筛选到差异表达基因3887个,包含2883个上调基因和1004个下调基因,blast比对发现其中大部分差异表达基因为未知基因,有待进一步发掘利用。对功能已知差异表达基因进行功能注释富集分析,在分子功能上这些基因主要富集在结合功能和催化活性功能,在细胞位置上主要富集在质膜和液泡。苎麻差异表达基因主要富集途径为谷胱甘肽代谢途径以及半胱氨酸、甲硫氨酸代谢途径,共有55个基因上调表达。
With the development of mining, industry and agriculture, heavy metals pollution becomes more and more serious, and has threatened soil ecosystem, agricultural production and human health seriously. Phytoremediation is attracting interest and attention from governments and enterprises technique as a potentially engineering-economical, cost-effective, and green to clean up heavy metal from polluted soil.
     Ramie (Boehmeria nivea(L.) Gaud.), also named "China grass", is an important source of cellulose-rich natural fibres(bast fibres) which has anti-stress ability, rapid growth and higher biomass. Ramie's primary purpose is making clothing, culturing ramie could minimizes the potential hazard of bringing toxic metals into food chains. It is significative to renovate heavy metals from contaminated soil with ramie due to its high accumulation and high economic value.
     In this study, heavy metal concentrations and bioaccumulation of ramie growing on 3 mining areas in Shimen, Lengshuijiang and Liuyang of Hunan Province were analyzed. Then, pot and field experiments were carried out to investigate the Cd tolerance of 9 ramie varieties, screen the tolereance index and analyse the capacity of ramie varieties to absorb Cd from contaminated soil. At the last, expression of Cd stress response genes were researched using solexa sequencing. The main results are as follows:
     1.Heavy metal concentrations and bioaccumulation of ramie growing on mining areas
     Soils from realgar mine area(Shimen) was heavily contaminated by As, while soils from antimony mine area(Lengshuijiang) was highly contaminated by Sb, and Qibao mountain area(Liuyang) was mainly contaminated by Cd. Ramie from these 3 sites grew well in different metal-contaminated habitats. In these 3 sites, Cd, As, Sb concentrations in ramie were 2-10,9.9-147.5,1.2-338 times higher than that in other plant species, respectively. And Sb, As concentration in ramie leaves were higher than that in roots and stems. Cd, As concentrations in ramie shoot were significantly correlated to Cd, As concentration in soil respectively. While Pb, Sb, Zn and Cu concentration in ramie shoot was not significantly correlated to Pb,Sb,Zn and Cu concentration in soil. Among these samples, the highest bioaccumulation factor(BF) and transfer factor(TF) of Cd were 2.07 and 3, those of As were 1.04 and 12.42, and those of Sb were 1.91 and 9.04,respectively. The total accumulations of Cd, Pb, As, Sb, Zn and Cu in these ramie samples were reached 0.11,1.17,0.72,7.97,6.71 and 1.69 kg/hm2 respectively. Ramie is a good candidate for phytoremediation of mining areas contaminated by multi-metals.
     2. Adaptability and tolerance evaluation of ramie varieties to Cd
     Height, diameter of stem, thickness of bark, biomass and chlorophyll of ramie were significantly reduced by Cd concentration in pot and field culture.Low Cd concentration enhanced the growth of some varieties of ramie, biomass of Shiqianzhugen,Yichun hongxin,and Chuanzhu No.1 which grown in Cd solution (46mg/L) were higher than that grown in control, biomass of Shiqianzhugen and Zhongzhu No.1 which grown on soil added with Cd(25mg/kg) were higher than that grown in control. The TI of Cd in ramie varies with varieties. The physiological and agronomic traits related to Cd tolerance of pot and field experiment were measured and analyzed, the results showed that screening ramie genotype by using height, biomass of shoot, biomass of root and chlorophyl of ramie grown in Cd solution as screening index would probably be an effective method to screen ramie genotype with high Cd tolerance. Nine ramie varieties were clusting 3 types by response to Cd, high-tolerance type, middle-tolerance and low-tolerance type.
     3. Uptake and accumulation of Cd in different ramie varieties
     Cd concentration in bark was significantly higher than that in other organs of ramie. When Cd concentrations were 23,46,91 and 182mg/L in solution respectively, Cd concentration in aboveground parts were 22.93,37.22,70.60 and 86.97mg/kg, which was significantly correlated to Cd concentration in solution. In field experiment, there were significant differences in Cd concentrations of aboveground part, under CK and Cd treatments(25,100mg/kg), Cd concentrations in shoot were 7.75,28.19 and 45.11mg/kg respectively. BF was decreased with the increase of Cd concentration. There were significance differences in Cd accumulation in shoot between Cd treatment and varieties. Two varieties were selected to renovate different pollution soil, Zhongzhu No.1 is fit for moderate contaminated soil by Cd(1-2mg/kg), Fushunqingma is fit for highly contaminated soil by Cd(25 and 100mg/kg). Nine varieties would class to four types by Cd concentration and tolerance:high-tolerance and low concentration, high-tolerance and high-concentration, low-tolerance and low-concentration, low-tolerance and high-concentration.
     4.Expression of Cd stress response genes in ramie
     Two RNA libraries of Cd stress(100mg/kg) and control of ramie root were sequenced using solexa, and over 3.5 million short sequence reads were produced.3887 differently expressed genes of ramie root under Cd stress were selected referring to the significance of digital gene expression profiles. By blasting search to NCBI, we found most of differently expressed genes were unknown. The results of gene ontology functional enrichment analysis for differently expressed genes showed that main functions of these genes were binding and catalytic activity, and the main cell component which these genes enriched were plasma membrane and vacuole.The main pathways of these genes were glutathione metabolism and cysteine and methionine metabolism.
引文
[1]孙铁珩.环境土壤学与污染土壤生态修复.见:周健民,石元亮主编.面向农业与环境的土壤科学(综述篇)[M].北京:科学出版社,2004
    [2]许嘉琳,杨居荣.陆地生态系统中的重金属[M].中国环境科学出版社,北京,1995
    [3]黄琳,蔡鲁晟,贾莹.我国环境中有害重金属的来源与分布及防治对策[J].科技情报开发与经济,2007,17(7):189-191
    [4]骆永明.中国主要土壤环境问题及对策[M].南京:河海大学出版社,2008.26-29
    [5]戴军,刘腾辉.广州菜地生态环境的污染特征[J].土壤通报,1995,26(3):102-104
    [6]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006.34(3):549-552
    [7]茹淑华,孙世友,王凌等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.
    [8]唐书源,李传义,张鹏程等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74-75
    [9]魏秀国,何江华,陈俊坚等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    [10]谢建治,刘树庆,王立敏等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.
    [11]许月英,李刚,贾那别克等.乌鲁木齐市“菜篮子”基地土壤环境质量现状调查[J].干旱环境监测,2006,20(3):137-141
    [12]李秀兰,胡雪峰.上海郊区蔬菜重金属污染现状及累积规律研究[J].化学工程师,2005,116(5):36-38,59
    [13]罗晓梅,张义蓉,杨定清等.成都地区蔬菜中重金属污染分析与评价[J],四川环境2003,22(2):49-51
    [14]张莉,刘玲.贵阳市售蔬菜重金属含量状况的分析与评价[J].贵州农业科学2006,34(增刊):59-60
    [15]赵其国.净土洁食问题[EB].科学时报,http://www.cas.ac.cn/html/Dir/2003/06/19/5673.htm.
    [16]骆永明.长三角土壤污染现象日益严峻,有毒物质污染初步显现[EB].中国环境报, 2004-09-17.http://www.CFEJ.net
    [17]邢前国,潘伟斌,张太平.重金属污染土壤的植物修复技术[J].生态科学,2003,22(3):275-279
    [18]陈怀满著.土壤-植物系统中的重金属污染[M].北京,科学出版社,1996.
    [19]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004
    [20]宋静,朱荫嵋.土壤重金属污染修复技术[J].农业环境保护,1998,17(6):271-273.
    [21]Mulligan C.N., Yong R.N., Gibbs B.F.Remediation technologies for metal-contami nated soils and groundwater:an evaluation[J]. Engineering Geology,2001,60: 193-207
    [22]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762
    [23]陈怀满.环境土壤学[M].北京,科学出版社,2005,398-441
    [24]细田敏昭,张向荣(译).土壤污染现状与今后的课题[J].国外农业环境保护.1992,(1):19-22.
    [25]山根忠昭,颜景波(译).重金属污染土壤的改良方法[J].农业新技术新方法译丛,1986,(51:1-7
    [26]Chen H. M.Pollution of Heavy Metals in Soil-Plant System [M].Beijing:Science Press,1996:7-8.
    [27]Roh.Y, N. T.Edwards, S. Y. Lee,et al. Thermal-treated soil for mercury removal:Soil and phytotoxicity tests[J] Journal of Environmental Quality,2000,29(2):415-424
    [28]Stern E.A., Donato K.R., Ciesceri N.L.,et al. Integrated sediment decontamination for the NY/NJ Harbor[C]. Proceedings of the National Conference on Management and Treatment of Contaminated Sediments, Cincinnati, OH,2000,13-15
    [29]蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复.环境污染与防治[J],2006,28(3):210-214
    [30]周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508
    [31]Van C. L. Elect rokinetics. Technology Overview Report[R].Groundwater Remedia tion Technologies Analysis Centre,1997,1-17.
    [32]Patterson, JW, Passino R. Metal speciation, separation and recovery[M]. Chelsea, M I: Lewis Publishers,1990:77-94
    [33]陈文清,侯伶龙,刘琛等.根际微生物促进下鱼腥草对镉的富集作用[J].四川大学学 报(工程科学版).2009,41(2):120-124
    [34]刘茵,孔凡美,冯固.丛枝菌根真菌对紫羊茅镉吸收与分配的影响[J].环境科学学报,2004,24(6):1122-1127
    [35]EPA. A citizen's guide to phytoremediation[R].1998
    [36]Baker A.J.M.,Reeves R.D.,Hajar A.S.M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens[J]. New phytologist,1994,127:83-92
    [37]宋静.土壤重金属植物有效性评价及铜污染土壤的植物修复研究[D].中国科学院研究生院博士论文,2002
    [38]Heaton ACP, Rugh CL, Wang NJ,et al. Phytoremediation of mercury- and methyl-lmercury-polluted soils using genetically engineered plants[J]. Journal of Soil Contamination,1998,7 (4):497-509
    [39]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39-44
    [40]Watanabe M. E. Phytoremediation on the brink of commercialization[J]. Environme-ntal Science and Technology,1997,A31:182-186.
    [41]Raskin I., Smith R.D, Salt D.E. Phytoremediation of metals:using plants to remove pollutants from the environment[J]. Journal of Current Opinion in Biotechnology, 1997,8(2):221-226
    [42]Smith R.A.H., Bradshaw A. D. The use of metal tolerant plant population for the reclamation of metalliferous wastes[J]. Journal of Applied Ecology,1979,16:595-612
    [43]Cunningham S.D, Berti W.R, Huang J.W. Phytoremediation of contaminated soils[J]. Trends in Biotechnology,1995,13:393-397
    [44]Cunningham S.D., Anderson T.A., Schwab AP., et al.Phytoremediation of soils contaminated with organic pollutants[J]. Advances in Agronomy,1996,56:55-114
    [45]Salt D.E., Blaylock M., Kumar PBAN, et al. Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants[J]. Bio-technology, 1995,13:468-475
    [46]Salt D.E., Smith R.D., Raskin I. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular[J]. Molecular Biology,1998,49:643-668
    [47]Raskin I., Kumar PBAN, Dushenkov S., et al. Bioconcentration of heavy metals plants[J]. Journal of Current Opinion in Biotechnology,1994,5:285-290
    [48]龚月桦,王俊儒,高俊凤.植物修复技术及其在环境保护中的应用[J].农业环境保护, 1998,17 (6):268-270.
    [49]Lasat. M.M. Phytoextraction of toxic metals:A review of biological mechanisms[J]. Journal of Environmental Quality,2002,31:109-120
    [50]Baker A.J.M, McGrath S.P., Sidoli C.M.D., et al.The possibility of in situ heavy metal decontamination of polluted soils using crops metal-accumulating plants[J]. Resources, Conservation and Recycling,1994,11:41-49
    [51]Robisnon B.H., Brooks R.R., Howes A.W., et al. The potential of high-biomass Ni hyperaccumulato Berkheya coddii for phytoremediation and phytomining[J]. Journal of Geochemical Exploration,1991,60:115-126
    [52]Blaylock M.J., Salt D.E, Dushenkov L, et al. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997,31:860-865
    [53]Ebbs SD, Lasat MW, Brady DJ, et al. Phytoremediation of cadmium and zinc from a contaminated soil[J]. Journal of Environmental Quality,1997,26:1424-1430
    [54]Wu J, Hsu FC, Cunningham SD. Chelate-assisted Pb Phytoextraction:Pb availability, uptake and translocation constraints[J]. Environmental Scinece and Technology,1999, 33:1898-1904
    [55]Chaney R L, Minnie M, Li Y M, et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology,1997,8:279-284.
    [56]Baker AJM, Brook RR. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989,1:81-126
    [57]Teery N, Banuelos C. Vangronsveld J eds. Phytoremediation of Contaminated Soil and Water[M]. Florida, USA:Lewis Publishers,2000,85-107.
    [58]Reeves R. D.,Baker J. M. Metal-accumulating plants. In Phytoremediation of Toxic Metals:Using Plant to Clean Up the Environment[M]. Eds. H Raskin and B. D. Ensley. John Wiley&Sons, Inc.,Londen.2000,193-230.
    [59]Tang S R,Wilike B M,Huang C Y.The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River,the People's Republic of China[J].Plant Soil,1999,209(2):225-232
    [60]刘威,束文圣,蓝崇珏.宝山堇菜(Viola baoshanensis)-一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049
    [61]龙新宪,王艳红,刘洪彦.不同生态型东南景天对土壤中Cd的生长反应及吸收积累 的差异性[J].植物生态学报,2008,32(1):168-175
    [62]zhao F J,Lomhi E, McGrath S P. Heavy metal hyperaccumulation plants:physiology and potential for phytoremediation[J]. Proceedings of SoilRem,2000,161-165.
    [63]Dahmani-Muller H,van Oort F,Gelie B,et al.Strategies of heavy metal uptake by three plant species growing near a metal smelter[J].Environment Pollution,2000, 109(2):231-238
    [64]岳庆玲.湖南典型矿区土壤和植物重金属污染研究[D].西北农林科技大学硕士论文,2004.
    [65]陈同斌,韦朝阳,黄泽春等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210
    [66]韦朝阳,陈同斌,黄泽春等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778
    [67]Zhao F J,Wang J R,Barker J H A.,et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vattata[J].New Phytologist,2003,159 (2):403-410
    [68]Jaffre T. Etude Ecotogique du Peuplement Vegetat des Sols Derives de Roches Ultrabasiques en Nouvelle Caledonie, Paris,Travaux et Documents de 1'Orstom, 1980.124
    [69]薛生国.超积累植物商陆的锰富集机理及其对污染水体的修复潜力[D].浙江大学博士学位论文,2005.
    [70]薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物-商陆[J].生态学报,2003,23(5):935-937
    [71]薛生国,陈英旭,骆永明等.商陆的锰耐性和超积累[J].土壤学报,2004,41(6):889-895
    [72]Authur B., Crews H., Morgan C. Optimizing plant genetic strategies for minizing environmental contamination in the food chain[J]. Internal Phytoremediation,2000,2 (1):1-21
    [73]汪雅各,卢善玲,盛沛麟等.蔬菜重金属低累积轮作[J].上海农业学报,1990,6(3):41-49
    [74]李军辉,卢瑛,尹伟.佛山市某工业区周边蔬菜重金属富集特征的研究[J].华南农业大学学报,2008,29(4):17-20
    [75]李铭红,李侠,宋瑞生.农田中农作物对重金属镉的富集特征研究[J].生态农业学报,2008,16(3):675-679
    [76]赵秀兰,刘晓.不同品种烟草生长和镉及营养元素吸收对镉胁迫响应的差异[J].水土保持学报,2009,23(1):117-121
    [77]王激清,茹淑华,苏德纯.用于修复土壤超积累镉的油菜品种筛选[J].中国农业大学学,2003,8(1):67-7
    [78]黄会一,蒋德明等.木本植物对土壤中镉的吸取、积累和耐性[J].中国环境科学,1989,9(5):323-3301
    [79]Korcak R F. Cadmium distribution in field grown fruit trees[J]. Journal of Environme-ntal Quality,1989,18 (4):519-521
    [80]Klang-westin E, Eriksson J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils[J]. Plant and soil,2003,249:127-137
    [8l]张连忠,路克国,杨洪强.苹果幼树铜、镉分布特征与累积规律研究[J].园艺学报,2006,33(1):111-114
    [82]梁景森,尚鹤,李柏忠等.北京市房山区绿化树种对Cd(镉)的吸收作用[J].林业科学研究,1998,11(2):142-146
    [83]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    [84]魏树和,周启星,王新等.杂草中具重金属超积累特征植物的筛选[J].自然科学进展,2003,13(12):1259-1263.
    [85]B.Yang, M.Zhou, W.S.Shu,et al. Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage[J]. Environmental pollution, 2010,158(2):551-558
    [86]佘玮,揭雨成,邢虎成等.湖南冷水江锑矿区苎麻对重金属的吸收和富集特性[J].农业环境科学学报,2010,29(1):91-96
    [87]曹德菊,周世杯,项剑.苎麻对土壤中镉的耐受和积累效应研究[J].中国麻业,2004,26(6):271-274
    [88]代剑平,揭雨成,冷鹃等.镉污染环境中镉在苎麻植株各部分分布规律的研究[J].中国麻业,2003,25(6):279-293.
    [89]徐卫红,黄河,王爱华.根系分泌物对土壤重金属活化及其机理研究进展[J].生态环境,2006,15(1):184-189
    [90]杨居荣,贺建群,黄翌.农作物镉耐性的种内和种间差异[J].应用生态学报,1994,5(2):192-196
    [91]旷远文,温达志,钟传文等.根系分泌物及其在植物修复中的作用[J].植物生态学报, 2003,27(5):709-717
    [92]林琦,陈英旭,陈怀满.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报,2003,9(4):425-431
    [93]Jones D L,Darrah P R,Dochian L V.Critical evaluation of organicacid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake[J].Plant Soil,1996,180:57-66
    [94]Krishnamurti G S R,cieslinski G,Huang P M, et al.Kinetics of cadmium release from soils as influenced by organic acids-implication in cadmium availability[J]. Journal of Environmental Quality,1997,26:271-277
    [95]Cieslinski G,Van Rees K C J,Sranigelska A M,et al.Low molecular-weight organic acids in rhizosphere soils of durum wheat and their efect on cadmium bioaecumulation [J].Plant and Soil,1998,203 (1):109-117
    [96]蒋先军,骆永明,赵其国等.镉污染土壤植物修复的EDTA调控机理[J].土壤学报,2003,40(2):205-209
    [97]陈英旭,林琦,何云峰.有机酸对铅,镉植株危害的解毒作用研究[J].环境科学学报,2000,20(4):467-472.
    [98]张敬锁,李花粉,衣纯真.有机酸对水稻镉吸收的影响[J].农业环境保护,1999,18(6):278-280
    [99]张献义,陈敏忠.应用电子探针技术进行松树菌根与根际粘胶层关系的研究[J].南京林业大学学报,1995,19(3):1-5
    [100]Baath E. Effects of heavy metals in soil on microbial processes and populations[J]. Water, Air and Soil Pollution,1989,47:335-379
    [101]Kandeler E, Luftenegger G, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities[J]. Biology and Fertility of Soils,1997,23 (3):299-306
    [102]Yan X M, He J Z. The research progress and mechanic on microbe restore heavy metalpollution[J]. Journal of Anhui Agricultural Sciences,2002,30 (6):877-879
    [103]JonesD L. Organic acids in the rhizosphere-A criticalreview[J]. Plant and Soil,1998, 205:25-44
    [104]Fischer F, Bipp HP. Removal of heavymetals from soil components and soils by natural chelating agents. Ⅱ.Soil extraction by sugar acids[J]. Water, Air, and Soil Pollution,2002,138:271-288
    [105]Patterson, J W, Passino R. Metal speciation, separation and recovery[M]. Chelsea, M I:Lewis Publishers,1990:77-94
    [106]Fernalnde Z, Ssecane S, Merino A. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils[J]. Communications in Soil Science and Plant Analysis,1999,30:1867-1884
    [107]李花粉.根际重金属污染[J].中国农业科技导报,2002,2(4):54-59
    [108]Gouia H., Ghorbal M. H., Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean [J]. Plant Physiology and Biochemistry,2000,38 (718):629-638
    [109]唐世荣.污染环境植物修复的原理与方法[M].北京,科学出版社,2006
    [110]黄冬芬,奚岭林,杨立年等.不同耐镉基因型水稻农艺和生理性状的比较研究[J].作物学报,2008,34(5):809-817
    [111]周青,张辉,黄晓华等.镧对镉胁迫下菜豆(Phaseolus vulgaris)幼苗生长的影响[J].环境科学,2003,24(4):46-53
    [112]刘俊,廖柏寒,周航等.镉胁迫下大豆生长发育的生理生态特征[J].生态学报,2010,30(2):333-340
    [113]纪淑娟,王俊伟,黄莉萍等.重金属镉胁迫对小麦生长的影响及小麦镉污染预测的研究[J].粮食加工,2008,33(1):51-53
    [114]李景梅,葛建镕,冯耀勇等.不同镉水平对菠菜生长及营养元素含量的影响[J].长春理工大学学报,2007,30(4):72-75
    [115]王松良,陈选阳,陈辉等.小白菜镉耐性形成的生理生化机理研究[J].中国生态农业学报,2007,15(5):120-124
    [116]彭伟正,王克勤,胡蝶等.镉在黄瓜植株体内分布规律及其对黄瓜生长和某些生理特性的影响[J].农业环境科学学报,2006,25(增刊):92-95
    [117]Moral R., Gomez I., Navarro Pedreno J., et al. Effect of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture [J]. Journal of Plant Nutrition,1994,17 (6):953-962
    [118]杨明杰,林咸永,杨肖娥.Cd对不同类植物生长和养分积累的影响[J].应用生态学报,1998,9(1):89-94
    [119]赵秀兰,刘晓.不同品种烟草生长和镉及营养元素吸收对镉胁迫响应的差异[J].水土保持学报,2009,23(1):117-131
    [120]孙建云,沈振国.镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响[J].应用生 态学报,2007,18(1):2605-2610.
    [121]Wang M., Zou J. H., Duan X. C., et al. Cadmium accumulation and its effect on metal uptake in maize(Zea mays L.)[J].Bioresource Technology,2007,98(26):82-88.
    [122]Liu J. G., Liang J. S., Li K Q,et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J].Chemosphere,2003,52(9):1467-1473.
    [123]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8(3):26-29
    [124]施国新,杜开和,解凯彬等.汞、镉对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378
    [125]罗立新,孙铁珩等.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18(5):495-499
    [126]王焕校.污染生态学[M].北京:高等教育出版社,1999.44-68
    [127]赵菲佚,翟禄新,陈荃等.Cd、Pb复合处理下2种离子在植物体内的分布及其对植物生理指标的影响[J].西北植物学报,2002,22(3):595-601
    [128]王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13
    [129]荆红梅,郑海雷.植物对镉胁迫响应的研究进展[J].生态学报,2001,21(12)2125-2130
    [130]段昌群,王焕校.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13:31-35
    [131]杨居荣,贺建群等.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197
    [132]Huang C Y,Bazzaz F A. The inhibition of soybean metabolism by cadmium and lead[J]. Plant Physiology,1974,54:122-124
    [133]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75
    [134]段昌群,王焕校等.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13(5):31-35
    [135]Burzynski M. Activtity of some enzymes involved in NO-3 assimilation in cucumber seedlings treated w ith lead or cadmium[J]. Acta Physioloyiae Plantarum,1990,12 (2):105-116
    [136]陈朝明,龚惠群.Cd对桑叶品质生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4):417-423
    [137]李荣春.Cd,Pb及其复合污染对烤烟叶片生理生化及其亚显微结构的影响[J].植物生态学报,2000,24:238-242
    [138]陈平,余土元,陈惠阳等.硒对镉胁迫下水稻幼苗生长及生理特性的影响[J].广西植物,2002,22(30):277-282
    [139]葛才林,络剑峰,刘冲等.重金属对水稻呼吸速率及相关同工酶影响的研究[J].农业环境科学学报,2005,24(2):222-226
    [140]王红旗,陆泗进,陈延君.污染土壤植物修复中螯合诱导和转基因技术的应用现状与前景[J].地学前缘,2005,12:36-43
    [141]Guerinot M L. The ZIP family of metal t ransporters[J].Biochim Biophys Acta 2000,1465:190-198
    [142]Li P,Qi J L,Yin L P.Functional expression of MxIR71,from Malus xiaoj inensis, complements an iron uptake deficient yeast mutant for plasma membrane Targeting via membrane vesicles trafficking process[J].Plant Science,2006,171 (1):52-59
    [143]David J. Eide Zinc transporters and the cellular trafficking of zinc[J]. Biochemisette Biophysica Acta,2006,1763 (7):711-722
    [144]Guerinot M L, Eide D. Zeroing in on zinc up take in yeast and plants[J]. Current Opinion in Plant Biology,,1999,2:244-249
    . [145] Pence N S.,Larsen P B.,Ebbs S D.,et al. The molecularphysiology of heavy metal transport in the Zn/Cd hyper-accumulator Thlaspi caerulescens [J]. Proceedings of the National Academy of Sciences,2000,97:4956-4960
    [146]Takafumi Mizuno, Koji Usui. Cloning of three ZIP/Nramp t ransporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+ -transport abilities[J]. Plant Physiology and Biochemist ry,2005,43 (8):793-801
    [147]Takafumi Mizuno, Koji Usui. Investigation of the basis for Ni tolerance conferred by the expression of TjZntl and TjZnt2 in yeast strains[J]. Plant Physiology and Biochemistry,2007,45 (8):976-982
    [148]Lombi E.,Tearall K L.,Howarth J R.,et al. Influence of iron status on cadmium and zinc uptake by different ecotype of the hyperaccumulator Thaspicaerulescens[J] Plant Physiology,2002,128:1359-1367
    [149]Vert G.,Grotz N.,Dedaldechamp Y.,et al. IRT1 an Arobidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell,2002,14:1223-1233
    [150]Connolly E L., Fett J P., Guerinot M L. Expression of the IRT1 metal t ransporter is cont rolled by metals at levels of transcript and protein accumulation[J].Plant Cell,2002,14:1247-1257
    [151]Thomine S.,Wang R.,Ward J M.,et al. Cadmium and iron t ransport by members of a plant metal t ransporter family in A rabi dopsis with homology to Nramp genes [J].Proc Natl Acad Sci USA,2000,97:4991-996
    [152]Clemens S.,Antosiewicz D M.,Ward J M., et al.The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast[J]. Proceedings of the National Academy of Sciences,1998,95:12043-12048
    [153]Howden R., and Cobbett C.S. Cadmium-sensitive mutants of Arabidopsis thaliana[J].Plant Physiology,1992,100:100-107
    [154]Harada E., Choi Y-E., Tsuchisaka A., et al. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium[J]. Journal of Plant Physiology,2001,158:655-661
    [155]Zhu Y L,Pilon-Smits E A H,Tarun A S.,et al.Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing s-glutamylcysteine synthetase [J].Plant Physiology,1999,121:1169-1177
    [156]Martinez M., Bernal P., Almela C., et al.An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils[J]. Chemosphere.2006,64(3):478-485
    [157]Murphy A., Zhou J., Goldsbrough P.B.,et al.Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana[J]. Plant Physiology,1997,113 (4):1293-1301
    [158]Misra S., and Gedamu L. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L[J]. Theoretical and Applied Genetics,1989,78(2):161-168
    [159]Pan A., Yang M., Tie F., et al. Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants[J].Plant Molecular Biology, 1994,24(2):341-351
    [160]陈虹,姜廷波,丁宝建等.转柽柳金属硫蛋白基因(MT1)烟草的获得及对重金属镉的抗性分析[J].农业生物技术学报,2007,15(2):247-256
    [161]张海燕.大蒜重金属抗性基因的克隆及其功能分析[D].中国科学院研究生院博士论文,2005
    [162]曾文炉,赵飞飞,曹照根等.转小鼠金属硫蛋白-1基因聚球藻7002对重金属耐受性的研究[J].环境污染与防治,2008,30(3):66-70
    [163]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学,2001,7(1):92-99
    [164]李红,邝炎华.植物磷胁迫蛋白和铁胁迫蛋白研究进展[J].植物学通报,2001,18(5):571-576
    [165]钱永常,余叔文.植物中的逆境蛋白[J].植物生理学通讯,1989,25(5):5-11
    [166]Neumann D, LichtenbergerO, GuntherD, et al. Heat-shock proteins induce heavy metal tolerance in higher plants[J]. Planta,194:360-367
    [167]柴团耀,张玉秀,Gerard B菜豆重金属胁迫响应基因:cDNA克隆及其表达分析[J].植物生理学报,1998,24(4):399-404
    [168]Shim Donghwan,Hwang Jae-Ung,Lee Joohyun,et al.Orthologs of the Class A4 Heat Shock Transcription Factor HsfA4a Confer Cadmium Tolerance in Wheat and Rice[J]. Plant cell,2009,21(12):4031-4043
    [169]Jungmann J.,Reins H A.,Sehobert C.,et al.Resistance to cadmium mediated by ubiquitin-dependent Proteolysis[J]Natare,1993,361:369-371
    [170]Tanaka K.Proteasones:structure and biology[J]. Journal of Biochemistry,1998,123: 195-204
    [171]Jungmann J., Reins HA., Lee J.,et al. MAC1, a nuclear regulatory protein related to Cudependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast[J].EMBO Journal,1993,12(13):5051-5056.
    [172]Takimoto I.,Christensen A H.,Quail P H.,et al.Non-systemic expression of a stress-responsive maize polyubiquitin gene(Ubi-1)in transgenic rice plants[J].Plant Molecular Biology,1994,26:1007-1012
    [173]黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526
    [174]Veitch N.C.Horseredish Peroxidase:a modern view of a classic enzyme[J]. Phytochemistry,2004,65(3):249-259.
    [175]Tognolli M,Penel C,Greppin H.,et al.Analysis and expression of the class Ⅲ peroxidase Large gene family in Arabidopsis thaliana [J].Gene,2002,288(1-2): 129-138
    [176]Foyer CH., Souriau N., Perret S., et al. Overexpression of glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in Polar trees[J]. Plant Physiology,1995,109:1047-1057
    [177]Goldsbrough P B. Metal tolerance in plants:the role of phytochelatins and metallothioneins. In:Terry N., Banuelos G S eds. Phytoremediation of trace elements[M]. Michigan:Ann Arbor Press,1998
    [178]张斌,范仲学,柳絮等.植物修复重金属污染土壤的遗传工程研究[J].分子植物育种,2006,4(6):37-43
    [179]Mio W., Fumie S., Akira N.,et al.Introduction of yeast metallothionein gene (CUP1) into plant and evaluation of heavy metal tolerance of transgenic plant at the callus stage[J]. Soil Science and Plant Nutrition,2005,51:129-138
    [180]Song W.Y., Sohn E.J., Martinoia E., et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants[J].Nature Biotechnology,2003,21(8): 914-919
    [181]Lee J., Bae H., Jeong J.,et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals [J]. Plant Physiology,2003,133 (2):589-596
    [182]Kim D.Y.,Bovet L., Kushnir S.,et al.AtATM3 is involved in heavy metal resistance in Arabidopsis[J].Plant Physiology,2006,140(3):922-932
    [183]卢碧霞.转金属硫蛋白基因水稻的特异表达及其对重金属抗性的研究.西北农林科技大学,2006,博士论文
    [184]陈艳.湖南省土壤污染现状与修复[J].湖南农业科学,2002,6:31-33.
    [185]郭朝晖,朱永.典型矿冶周边地区土壤重金属污染及有效性含量[J].生态环境,2004,13(4):553-555.
    [186]雷梅,岳庆玲,陈同斌等.湖南柿竹园土壤重金属含量及植物吸收特征[J].生态学报,2005,25(5):1146-1151.
    [187]孙健,铁柏清,秦普丰等.铅锌矿区土壤和植物重金属污染调查分析[J].植物资源与环境学报,2006,15(2):63-67.
    [188]曹德菊,王光宇,汪琰等.安徽铜陵矿区优势植物的重金属富集特性研究[J].农业环境科学学报,2005,24(6):1079-1082.
    [189]王英辉,陈学军,赵艳林等.铅锌矿区土壤重金属污染与优势植物累积特征[J].中国矿业大学学报,2007,36(4):487-493.
    [190]刘月莉,伍钧,唐亚等.四川甘洛铅锌矿区优势植物的重金属含量[J].生态学报,2009,29(4):2020-2026.
    [191]李宗道,胡久清.麻类形态学[M].北京:科学出版社,1989,46-47.
    [192]揭雨成,冷鹃.中国苎麻种质资源研究的现状和展望[J].中国麻作.2000,22(3):13-15.
    [193]韦朝阳,陈同斌.高砷区植物的生态与化学特征[J].植物生态学报,2002,26(6):695-700.
    [194]王振刚,何海燕,严于伦等.石门雄黄矿附近地区慢性As中毒流行病学特征[J].环境与健康杂志,1999,16(1):4-6.
    [195]童方平,徐艳平,龙应忠等.冷水江锑矿区重金属污染林地土壤环境质量评价[J].中国农学通报,2008,24(12):179-183.
    [196]何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物效应[J].化学进展,2004,16(1):131-135.
    [197]曾敏,廖柏寒,曾清如等.湖南郴州、石门、冷水江3个矿区As污染状况的初步调查[J].农业环境科学学报,2006,25(2):418-421.
    [198]戴塔根,刘星辉,童潜明.湖南浏阳七宝山矿区宝山河不同时期环境污染对比研究[J].矿业工程,2005,25(6):9-13.
    [199]鲁如坤.土壤农化分析法[M].北京:中国农业科技出版社,2000,79-84.
    [200]Crommentuijn T.,Polder M D.,van de Plasche E J.RIVM Report No.601501001, National Institute of Public Health and the Environment[R].Bilthoven,The Netherlands.1997
    [201]曹鉴燎.都市生态走廊[EB].http://sd.thnet.gov.cn/star/3-shengtai/2-03.htm 2005-06-23.
    [202]Hammel W.,Debus R.,Steubing L.Mobility of antimony in soil and its availability to plants[J].Chemosphere,2000,41(11):1791-1798.
    [203]Baroni F.,Boscagli A.,Protano G.,et al.Antimony accumulation in Achillea ageratum,Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area[J].Environmental Pollution,2000,109(2):347-352.
    [204]C E Koller,J W Patrick,R J Rose,et al.Arsenic and heavy metal accumulation by Pteris vittata L. and P.umbrosa R. Br[J]. Bulletin of enviroment contamination and toxicology,2008,80:128-133.
    [205]Hammel W.,Debus R.,Steubing L.Mobility of antimony in soil and its availability to plants[J].Chemosphere,2000,41(11):1791-1798.
    [206]宁增平,肖唐付.锑的表生地球化学行为与环境危害效应[J].地球与环境,2007,35(2):176-182.
    [207]Chaney R L.,Minnie M., Li Y M., et al. Phytoremediation ofs oil metals[J]. Current opinion in Biotechnology,1997,8:279-284.
    [208]张玉秀,柴团耀,Gerard BURKARD植物耐重金属机理研究进展[J].植物学报,1999,41(5):453-457.
    [209]Hall J L.Cellular mechanisms for heavy metal detoxification and tolerance [J]. Journal of Experimental Botany,2002,53:1-11.
    [210]Padmavathiamma P K., Li L Y. Phytoremediation technology:hyper-accumulation metals in plants[J]. Water, Air and Soil Pollution,2007,184(1-4):105-126.
    [211]Rout G. R., Samantaray S., Das P. Differential cadmium tolerance of mung bean and rice cultivars in hydroponic culture [J]. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science,2000,49 (4):234-241
    [212]陶向新:模糊数学在农业科学中的初步应用[J].沈阳农业大学学报,1982
    [213]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523
    [214]Greger M., Lindberg S. Effects of Cd2+ and EDTA on young sugar beets(Beta vulgaris).I. Cd2+ uptake and sugar accumulation [J].Plant Physiology,1986,66(1): 69-74
    [215]马朝红,曾德生.土壤中镉对水稻生长的影响[J].湖北农业科学,1992,2:26-30
    [216]SanitAdi Toppi L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany,1999,41:105-130
    [217]Singh B. R., Narwal R. P., Jeng A. S., et al. Crop uptake and extractability of cadmiun in soils naturally high inmetals at different pH levels[J]. Soil Science Plant Analysis,1995,26 (13/14):2123-2142
    [218]Ye Z.H., Baker A. J. M., Wong M. H., et al. Zinc,lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmitesaust ralis (Gav.) Trin. ex Steudel[J]. Annals of Botany,1991,80 (3):363-370
    [219]Raskin H., Ensley B.D. Phytoremediation of Toxic Metals:Using Plant to Clean up the Environment[M]. John Wiley and Sons,Inc., London,1999,193-230
    [220]王欣,刘云国,艾比布·努扎艾提等.苎麻对镉毒害的生理耐性机制及外源精胺的缓解效应[J].农业环境科学学报2007,26(2):487-493.
    [221]林匡飞,张大明,李秋洪等.苎麻吸镉特性及镉土的改良试验[J].农业环境保护,1996,15(1):1-4,8
    [222]王凯荣,龚惠群.苎麻(B. nivea(L). Gaud)对土壤Cd的吸收及其生物净化效应[J].环境科学学报,1998,18(5):509-516.
    [223]李花粉.根际重金属污染[J].中国农业科技导报,2002,2(4):54-59
    [224]Gouia H., Ghorbal M. H., Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean [J]. Plant Physiology and Biochemistry,2000,38 (718):629-638
    [225]Kamnev AA., van der Lelie D. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation[J]. Bioscience reports,2000,20: 239-258
    [226]顾继光,周启星.镉污染土壤的治理及植物修复[J].生态科学,2002,21(4),352-356
    [227]Black H. Absorbing possibilities:phytoremediation [J]. Environmental Health Perspectives,1995,103(17):1106-1108
    [228]龙育堂,刘世凡,熊建平.苎麻对稻田土壤汞净化效果研究[J].农业环境保护,1994,13(1):30-33
    [229]赖发英,叶青华,涂淑萍等.重金属污染地区的植物调查与研究[J].江西农业大学学报,2004,26(3):455-457
    [230]廖白基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1993:299-302.
    [231]王芳,杨勇,张燕等.不同蔬菜对镉的吸收积累及亚细胞分布[J].农业环境科学学报,2009,28(1):44-48
    [232]楼根林,张中俊,伍钢等.镉在不同土壤的蔬菜中残留规律的研究[J].环境科学学报,1990,10(2):153-159
    [233]Wang J.,Evangelou B P.,Nielsen M T.,et al.Computer-simulated evaluation of possible mechanisms for quenehing heavy metal ion activity in Plant vacuoles[J]. Plant physiology,1991,97:1154-1160
    [234]Nishizono H., Zchikawa H., Suziki S.,et al.The role of the root cell wall in the heavy metal tolerance of Athyrium yokosense[J]. Plant and Soil,1987,101:15-20.
    [235]Peterson PJ. The Distribution of Zinc-65 in Agrostis tenuissibth and A. stolonifera L. Tissues4[J]. Journal of Experimental Botany,1969,20:863-875.
    [236]Salt D E.,Pickering I J.,Prince R C.,et al.Metal accumulation by aquacultured seedlings of Indian mustard[J].Environmental Science and Technology,1997,31: 1636-1644
    [237]张剑如,叶金武,徐立宏.含镉废水处理研究进展[J].广州化工,2007,34(2):28-30
    [238]'t Hoen, P. A., Y. Ariyurek, et al.Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic Acids Research,2008,36(21):e141.
    [239]Morrissy, A. S.,Morin R. D., Delaney A.,et al. Next-generation tag sequencing for cancer gene expression profiling[J]. Genome Research,2009,19:1825-1835
    [240]Audic S.,Claverie J. M. The significance of digital gene expression profiles[J].Genome Research,1997,7(10):986-995.
    [241]Kanehisa, M., Araki M., Goto S.,et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research,2007,12:480-484.
    [242]陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫[J].西北植物学报,2004,24(6):1119-1130.
    [243]郑钧.玉米幼苗水分胁迫相关基因的克隆与分析[D].博士学位论文.北京:中国农业大学,2004
    [244]汤叶涛,关丽捷,仇荣亮等.镉对超富集植物滇苦菜抗氧化系统的研究[J].生态学报,2010,30(2):324-332
    [245]Ball L.,Accotto G P.,Bechtold U.,et al.Evidence for a Direct Link etween Glutathione Biosynthesis and Stress Defense Gene Expression in Arabidopsis [J]. The Plant Cell,2004, (16):2448-2462.
    [246]Cobbett C S.,May M J.,Howden R.,et al.The glutathione-deficient, cadmium-sensitive mutant, cad2-1,of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase[J].Plant Journal,1998,16(1):73-78
    [247]于方明,汤叶涛,仇荣亮等.Cd胁迫下超富集植物圆锥南芥抗氧化机理[J].环境科学学报,2010,30(2):409-414
    [248]许英,代剑平,揭雨成等.镉胁迫下苎麻的生理生化变化与耐镉性的关系[J].中国麻业科学,2006,28(6):301-305
    [249]庞晓斌.小麦幼苗水分胁迫应答基因表达谱[D].吉林大学博士论文,2006
    [250]Rabinowicz P D., Braun E L., Wolfe A D., et al. Maize R2R3 MYB gene:sequence analysis reveals amplification in the higher plants[J]. Genetics,1999,153(1): 427-444.
    [251]Jin H., Martin C. Multifunctionality and diversity within the plant MYB-gene family[J]. Plant Molecular Biology,1999,41(5):577-585.
    [252]Singh K., Foley RC., Onate-Sanchez L. Transcription factors in plant defense and stress response[J]. Current Opinion in Plant Biology,2002,5(5):430-436.
    [253]Dai X., Xu Y., Ma Q.,et al.Overexpression of an R1R2R3 MYB gene, OsMYB3R-2,increases tolerance to freezing, drought, and salt stress intransgenic Arabidopsis[S]. Plant Physiology,2007,143(4):1739-1751
    [254]Shimono M.,Sugano S.,Nakayama A.,et al.Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J].Plant Cell,2007,19(6):2064-2076
    [255]秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50
    [256]余涛,支立峰,彭论等.烟草中一条新的S-腺苷甲硫氨酸合成酶基因的克隆及表达分析[J].武汉植物学研究,2004,22(4):277-283.
    [257]Gupta P., Duplessis S., White H., et al.Gene expression patterns of trembling aspen trees following long term exposure to interacting elevated CO2 and tropospheric O3 [J].New Phytologist,2005,167:129-142.
    [258]Ma X L.,Wang Z L., QI Y C., et al. Isolation of S-adenosylmethionine synthetase gene f rom Suaeda salsa and its differential expression under NaCl stress [J]. Acta Botanica Sinica,2003,45(11):1359-1365.
    [259]Breusegem F van, Dekeyser R.,Gielen J, et al. Characterization of a S-adenosylmet hionine synthase gene in rice [J]. Plant Physiology,1994,105:1463-1464.
    [260]刘明坤,刘关君,魏志刚等.西伯利亚蓼半胱氨酸合成酶基因的克隆与表达[J].遗传,2008,30(10):1363-1371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700