用户名: 密码: 验证码:
雏鸵鸟HPA轴的形态学、发育学及其在ND应激下的调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸵鸟是世界上现存体形最大不能飞行的鸟纲动物,具有很高的饲养价值。雏鸵鸟由于各种生理机能尚未健全,抵抗力低,对机体内外环境的变化和病原的侵袭非常敏感,容易发生应激反应。因此,此阶段下丘脑-垂体-肾上腺轴(HPA轴)功能的完善程度决定着机体的应激反应能力,最终影响雏鸵鸟的生长发育。新城疫(ND)是鸵鸟养殖业中最主要的传染病之一,雏鸟的发病率高达50%。ND作为应激原,进入机体后可引起一系列病理变化,使机体HPA轴处于过度激活或失活状态,进一步加重内环境紊乱,引起病情加重。鉴于此,本研究以雏鸵鸟为试验动物,分正常组(0d、45d和90d)和攻毒组(45d,皮下注射鸡新城疫标准毒株F_(48)E_9),利用HE染色技术、透射电镜(TEM)技术、组织化学技术、放射免疫测定(RIA)技术、免疫组化技术定位表达(SABC)技术及原位缺口末端标记(TUNEL)技术等多种手段,从组织、细胞、亚细胞、细胞因子等方面系统研究雏鸵鸟HPA轴的形态结构、发育特点及ND应激下的调控机理。主要研究内容和研究结果包括以下几个方面:
     1雏鸵鸟HPA轴的形态结构
     本试验以1d、45d和90d健康非洲雏鸵鸟为试验动物,通过光镜和电镜样本制作,采用石蜡切片及HE技术,研究雏鸵鸟HPA轴的形态结构。结果显示:雏鸵鸟HPA轴有其自身的特点,其肾上腺结构与其它鸟类的有差异。雏鸵鸟的左右肾上腺形态、大小、位置有一定的差异,左侧肾上腺呈长椭圆形,右侧肾上腺呈三角形或扁椭圆形,较左侧的宽,重。肾上腺实质由肾间组织(皮质)和嗜铬细胞(髓质)交错排列,肾上腺皮质组织分为周围带和中央带,周围带可分为外区(被膜下带)和内区。周围带外区细胞的排列似乎与哺乳动物球状带的相似,内区细胞排列相似于哺乳动物束状带的,中央带细胞排列相似于哺乳动物网状带的,这是鸵鸟肾上腺成带的重要标志。相比于位于肾上腺内层(周围带内区和中央带)的细胞,被膜下带细胞的胞质染色较淡,且含有若干空泡。此外,和中央带细胞不同,被膜下带细胞似乎含有更多的线粒体和较少的脂滴。肾上腺髓质细胞排列成索,含有两种嗜铬细胞,即肾上腺素细胞和去甲肾上腺素细胞。它们均含较丰富的细胞器和大量的分泌颗粒,颗粒表面有膜包裹,内含核芯。其主要区别:肾上腺素细胞的分泌颗粒,其核芯多位于中央,核芯与界膜之间有一狭窄的空晕;去甲肾上腺素细胞的分泌颗粒,其核芯偏于颗粒一侧并贴于界膜上,而使颗粒的另一侧留下一个较大的腔隙。以上结果表明,雏鸵鸟HPA轴的形态结构与其它禽类的有差异,其肾上腺的形态结构与部分哺乳动物的相似。
     2雏鸵鸟HPA轴的发育特点
     本研究以1d、45d和90d健康非洲雏鸵鸟为试验动物,利用HE染色技术、TEM技术、RIA技术、免疫组织化学SABC技术及TUNEL技术,研究雏鸵鸟HPA轴的发育特点。研究结果显示:雏鸵鸟HPA轴组织学结构随日龄的增长而不断完善,其在生后早期发育较快,45d时肾上腺皮质分区明显,髓质明显增多,细胞器明显增多。不同日龄雏鸵鸟HPA轴内均存在细胞凋亡现象,但凋亡程度有所不同,1d鸵鸟下丘脑内神经细胞凋亡较多(P<0.01),之后凋亡逐渐减少;垂体内细胞凋亡较少,凋亡呈增龄性减少;1d鸵鸟肾上腺内的细胞凋亡较少,45d时凋亡明显增多(P<0.01),90d时有所减少。不同日龄雏鸵鸟HPA轴内均可检测到GABA阳性产物,随日龄的增长,其表达量呈增加的趋势,平均积分光密度则在不同器官内呈不同的规律性变化;下丘脑内GABA阳性产物表达量较高,45d时的平均积分光度较高(P<0.01);垂体内GABA阳性产物表达量较低,其平均积分光度随日龄逐渐下降;肾上腺内GABA阳性产物表达量较低,阳性信号呈增龄性增强,90d时平均积分光度达到最高(P<0.01)。雏鸵鸟血清ACTH和Cor水平随年龄增长有明显变化。1d鸵鸟血清ACTH水平在1~45d之间呈上升趋势,之后下降至低于1d的水平(P<0.01);雏鸵鸟血清Cor水平在1~45d之间呈下降的趋势,之后渐回升到1d的水平。以上研究结果表明,随着日龄的增长,雏鸵鸟HPA轴的结构和功能不断完善,其在生后早期发育较快。
     3雏鸵鸟ND应激下的HPA轴调控机理
     将试验动物随机分为攻毒组和对照组。利用HE染色技术、TEM技术、RIA技术、免疫组织化学SABC技术及TUNEL技术,研究雏鸵鸟ND应激下的HPA轴调控机理。研究结果显示:NDV可引起雏鸵鸟HPA轴发生明显的组织病理学变化,肾上腺病变较严重,下丘脑次之,垂体病变较轻,其病变程度显示了雏鸵鸟HPA轴功能受损程度。雏鸵鸟感染NDV,HPA轴内细胞凋亡数量在病毒感染期间明显高于对照组,提示NDV能诱导雏鸵鸟HPA轴系统发生细胞凋亡;在病毒接种后1d,肾上腺内可检测到大量凋亡细胞,接种5d后凋亡数量显著增加(P<0.01),之后凋亡呈下降趋势,肾上腺内细胞凋亡的动态变化反映了雏鸵鸟HPA轴对ND病变的适应和调节。雏鸵鸟感染NDV,HPA轴内GABA表达均下降,肾上腺内GABA阳性产物数量在接种后第1d急剧减少(P<0.01),至第3d最低(P<0.01),之后随着病毒接种时间的延长,其表达量有所回升,但仍低于与对照组,肾上腺内GABA表达量的消长规律提示GABA可能参与了ND应激下的应激反应过程。雏鸵鸟感染NDV,血清ACTH水平于NDV病毒接种后第1d开始上升,至第5d达峰值(P<0.01),之后有所下降,渐趋于正常。血清Cor水平于病毒接种后第1d开始下降,至第7d有所回升,第9d渐趋于正常水平,表明NDV接种后雏鸵鸟血清ACTH和Cor水平的变化与其HPA轴功能的损伤及恢复密切相关。
The Ostrich is the biggest, unflyable bird existing in the world, whose significant feeding value has assumed. Because of their incomplete physiological function, low resistance, the stress reaction inducing by the change of internal and external environment and the invasion of pathogen easily occur in ostrich chicks, Thus, the perfect function of hypothalamus-pituitary-adrenal axis (HPAA) can decide the stress ability, growth and development of ostrich chicks. New castle disease (ND) is one of the most serious infection diseases that damage ostrich cultivation. The highest disease incidence of ostrich chicks is 50%. As a stressor, ND could invade the organism and cause a series of pathological changes in body, which induced excessive activation or inactivation of ostrich chicks' HPA axis, and seriously disturbs the organismic internal environment. In the present study, ostrich chicks were divided into normal group (0d, 45d and 90d) and challenge group (45d) at random. Using the methods of HE staining, transmission electron microscopy (TEM), radioactive immunoassay (RIA), immunohistochemistry (SABC), histochemical method and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), the morphological structure, development characteristics of ostrich chicks' HPA axis and the regulation mechanism in the stress reaction after artificially challenged with chicken NDV were illustrated. The main contents and research results are as follows:
     1. Morphological structure of ostrich chicks' HPA axis
     1, 45 and 90d healthy ostrich chicks were used in the present study to investigate the morphological structure of ostrich chicks' HPA axis by the methods of HE staining and TEM. The results indicated that the ostrich chicks' HPA axis has its own features comparing with other birds. Differences between the left and right adrenal glands were found in shape, size and location. The left adrenal gland is oblong, and the right gland is often triangle exhibiting wider and weighter than the left gland. The main tissue of adrenal glands of ostrich chicks were interdigitation consisted of the interrenal tissue (adrenal cortex) and chromaffin cell (adrenal medulla). The interrenal tissue was divided into a peripheral zone (PZ) and a central inner zone (CZ), and the PZ could be divided into outer area (sub-capsular zone, SCZ) and inner area (IZ). The arrangement of SCZ cells appeared similar to that of zona glomerulosa in mammalian adrenal cortex and also the arrangement of IZ cells resembled that of zona fasciculata, as well as the arrangement of CZ cells appeared like the zona reticularis, suggesting the significant signs of zonation in African ostrich adrenal cortex. The cytoplasm of interrenal cells located beneath the adrenal capsule (SCZ) were stained lighter than that of interrenal cells located inside the adrenal gland (IZ and CZ) and contained several vacuoles. Additionally, unlike CZ cells, SCZ cells contained more mitochondria and lesser lipid droplets. The medulla cells formed cell lines, contained two types of chromaffin cells, i.e. adrenaline cells and norepinephrine cells. Their ultrastructural features appeared characterist of affluent cellular organ and considerable catecholamine-containing secretory granules, both types of granules were membrane-limited. The type I granules possessed an central core, and a confined halo could be found between limiting membrane and core; however, the type II granules had an eccentric core, which polarized one side of secretory granule and sticked limiting membrane, giving a lager lacouna appearance in another side of secretory granule. These results demonstrate there are obvious differences in the HPA axis between ostrich chicks and other poultries and the histological structure of adrenal glands was similar with that of some mammalian.
     2. Developmental characteristics of ostrich chicks' HPA axis
     1, 45 and 90d healthy ostrich chicks were selected from normal group. The development characteristics of ostrich chicks' HPA axis was detailly observed by HE staining, TEM, RIA, SABC and TUNEL. The results showed the HPA axis' histological structure acquired development unceasingly with the ages of ostrich chicks, especially in early postnatal development. The significant signs of zonation, an evident increase of adrenal medullary cells and cell organs were observed in 45d African ostrich adrenal glands. Apoptosis cells in HPA axis could be detected in any developmental period from 1d to 90d ostrich, but the apoptosis degree varying in different organs. In hypothalamus, A large number of apoptosis cells could be observed at 1d (P<0.01), then gradually decreased. A less number and an age-related decline of apoptosis in pituitary could be found. In adrenal gland, a significant apoptosis peak appeared at 45d (P<0.01), then reduced at 90d. The positive signals of GABA could be detected in HPA axis, with the expression increased with age growing of ostrich chicks. However, the average optical density of positive signals presented various regular change in different organs. The expression of GABA positive products in hypothalamus was stronger, and higher average optical density (P<0.01) could be found at 45d. In pituitary, the expression of GABA positive products was relatively weaker, and an age-related drop of average optical density could be detected. The positive signals in adrenal gland gradually increased along with the increasing of age, and the average optical density reached a peak at 90d (P<0.01). The levels of ACTH and Cor in serum changed with ages of ostrich chicks. 1d ostrich showed higher serum ACTH level, gradually increased with age growing which reached maximum levels at 45d (P<0.01), then dropped to lower than that of 1d (P<0.01). While, the levels of Cor in serum ostrich chicks appeared a decreasing trend from 1 d to 45d, come to the lowest point at 45d (P<0.01), then gradually recovered to the levels at 1d. These results demonstrate that the structure and function of HPA axis in ostrich chicks is under continuous perfection and development, especially in early postnatal period.
     3. The stress-mediated mechanism of ostrich chicks' HPA axis with challenged with NDV
     The experimental animals were divided into challenge and control groups at random. The methods of HE staining, TEM, RIA, SABC and TUNEL were used to study the stress-mediated mechanism of ostrich chicks' HPA axis with challenged with NDV. The results are as follows: NDV could cause obvious pathological change of ostrich chicks' HPA axis in which the adrenal gland was relatively serious than that of the hypothalamus and pituitary, and the pathological degree can demonstrate the damaged degree of HPA axis' function. After artificially infected with NDV, the apoptosis in HPA axis of challenge group obviously increased, which indicated that NDV can induce the apoptosis of HPA axis of ostrich chicks. In adrenal gland the number of apoptosis increased significantly at 1 day after challenged, and reached maximum at 5 days (P<0.01), then delined. The dynamic changes of apoptosis in adrenal gland indicate that the adapting and regulating of HPA axis in the pathological stress reaction. The expression of GABA positive cells in HPA axis of ostrich chicks in challenge group reduced significantly compared with control group. The amount of GABA positive cells in adrenal gland decreased sharply at 1 day after challenged (P<0.01), reached minimum at 3 days (P<0.01), then increased again. The changes of GABA positive cells in adrenal gland indicate that GABA participate HPA axis' stress reaction in NDV pathological conditions. The level of ACTH in serum slightly increased at 1 day after challenged, reached its maximum at 5 days (P<0.01), then came back. Whenas, the level of serum Cor always increased until 7 days after challenged, then gradually became normal at 9 days. These results demonstrate that the variation of ACTH and Cor in serum of challenge group correlates closely with the damage and restoration process of HPA axis.
引文
1.Moberg G P,Mench J A,卢订萍,张宏福.动物应激生物学:动物福利的本质和基本原理.北京:中国农业出版社,2005:1-184
    2.Saif Y M,苏敬良,高福,索勋.禽病学.北京:中国农业出版社,2005:66-75
    3.博强.p53与神经细胞凋亡.国外医学.骨科学分册,2000,21(8):150-152
    4.曹殿军,刘培欣,闫丽辉,孙建宏.鸡新城疫病毒强弱毒RT-PCR鉴别诊断方法.中国预防兽医学报,2000,22(3):415-417
    5.陈嘉,王福庄.下丘脑的分泌功能与调控.国外医学.内分泌学分册,1990,2:60-63
    6.陈丽华,张远强.肾上腺内神经肽的分布及功能.解剖科学进展,1995,1(3):241-245
    7.陈龙,黄光照,张益鹄.下丘脑-垂体-肾上腺轴及其调节.国外医学,1997,17(3):137-140
    8.陈伟杰.毒鼠强中毒大鼠脑GABA及GABAAR-al的实验研究.[硕士论文].四川大学,2005
    9.陈文钦,刘华珍,罗冠中,彭克美.非洲鸵鸟延髓5个神经核的细胞构筑.华中农业大学学报,2005,24(2):185-188
    10.陈志宏,颜勇,马卫军,刘胜.D-半乳糖衰老大鼠下丘脑弓状核超微结构的观察.承德医学院学报,2005,22(1):6-8
    11.成令忠,钟翠平,蔡文琴.现代组织学.上海:上海科学技术文献出版社,2003:521-572
    12.程治平.内分泌生理学.北京:人民卫生出版社,1984.42-479
    13.迟素敏.内分泌生理学.西安:第四军医大学出版社,2005,20-348
    14.崔希云,于龙川.促肾上腺皮质激素释放激素及其受体在痛觉调节中作用的研究进展,生理科学进展,2003,34(3):263-265
    15.刁有祥,王春璈,王本平,王增修,范承祥.鸵鸟新城疫的诊断与防制.中国兽医科技,1997,27(8):34
    16.杜卓民.实用组织学技术.北京:人民卫生出版社,1998
    17.冯征.褪黑素抗神经细胞凋亡、抗老年痴呆的作用及其机制研究.[博士论文].中国协和医科大学,2001
    18.葛年丰,钱国祯.大鼠下丘脑室旁核神经元的超微结构特征.解剖学杂志,1988,11(3):151.
    19.郭芳彬.鸵鸟的生活习性和饲养技术.养禽和疾病防治,1995,87(2):39-40
    20.郭晓娜.朱永义.朱科学.生物体内γ-氨基丁酸的研究.氨基酸和生物资源,2003,25(2):70-72
    21.韩正康,毛鑫智,家禽生理学.南京:江苏科学技术出版社,1986,113-115
    22.何宝霞,傅业全,徐世文.镉中毒对鸡垂体氧化应激和凋亡的影响.毒理学杂志,2007,21(2):124-126
    23.胡家澄,邹晓庭,董金格.γ-氨基丁酸对生长肥育猪抗氧化性能及HPA、HPT轴激素分泌的影响.浙江大学饲料科学研究所中国饲料,2008,23:27-29
    24.胡江平,张蕴琨.GABA与GABA受体及其在运动中变化的研究现状.南京体育学院学报(自然科学版),2004,3(3):4-8
    25.黄建华,沈自尹,刘小雨,陈伟华.淫羊藿总黄酮拮抗皮质酮大鼠肾上腺皮质细胞凋亡的研究.中医药学刊,2006a,24(9):1664-1666
    26.黄建华.淫羊蕾总黄酮调控轴受抑大鼠肾上腺皮质细胞凋亡和再生的研究.[博士论文].复旦大学,2006b
    27.黄奕生.畜禽组织学与胚胎学.成都:成都科技大学出版社,1990:162-171
    28.靳二辉,彭克美,宋卉,王岩,李升和,位兰,唐丽,杜安娜,王家乡.非洲雏鸵鸟呼吸器官的形态学研究.中国兽医学报,2008,28(5):553-556
    29.黎洪棉,梁自乾,罗佐杰.严重烧伤后下丘脑-垂体-肾上腺皮质轴激素改变的临床观察.中华烧伤杂志,2003,19(3):169-171
    30.李爱学.γ-氨基丁酸和氟安定对产蛋高峰期母鸡摄食行为及有关内分泌的影响.[硕士论文].南京农业大学,2003
    31.李春霖.细胞因子于下丘脑-垂体-肾上腺轴.军医进修学院学报.1994,15(1):58-60
    32.李德雪,栾维民,岳占碰.动物组织学与胚胎学.长春:吉林人民出版社,2003
    33.李琳芸,王柳燕.糖皮质激素受体及其检测方法的研究进展.微循环学杂志,2005,15(3):68-71
    34.李升和.微量元素硼对大鼠营养和毒性作用及作用机理的研究.[博士论文].华中农业大学,2008
    35.李盛芳,李伯勤,郭雨车,张保华,朱传菊,张向红,郁普军.生后不同发育阶段的小鼠下丘脑大细胞神经元的超微结构.解剖学杂志,2003,26(2):139-142
    36.李雪,李福来.鸵鸟的饲养与繁殖.生物学通报,1997,32(9):45-47
    37.李玉谷,张媛,孔小明,程树军,黄韧.比格犬脑垂体远侧部细胞的电镜观察.畜牧兽医学报,2003,34(5):468-470.
    38.连晓媛,张均田,包天桐.海马与下丘脑-垂体-肾上腺轴功能调节.国外医学,1998,18(4):169-171
    39.林大诚.北京鸭解剖.北京:北京农业大学出版社,1994:174
    40.刘福辰.鸵鸟新城疫病毒分子演化规律及鸵鸟新城疫诊断防控研究.冀农杯2008“绿色奥运”科技论文集,2008:23-27
    41.刘皓,陈雪娴,赵文德.切除甲状腺后胎羊垂体前叶细胞的免疫组化观察.中国地方病学杂志,2001,20(5):325-327
    42.刘华珍,彭克美,陈文钦.非洲鸵鸟延髓网状结构细胞构筑研究.畜牧兽医报,2005,36(8):851-854
    43.刘济五,颜水泉,李良玉.北京鸭脑立体定位图谱.北京:科学出版社.2002
    44.刘民航.运动病时神经内分泌变化的研究进展.海军医学杂志,2004,25(4):369-376
    45.刘映娴,安立龙,许英梅,冯业,王喜波.热应激对鸡生理机能的影响.饲料工业,2007,28(13):17-19
    46.龙梦晴.γ-氨基丁酸对动物生理性能的影响.华北煤炭医学院学报,2008,10(1):39-41
    47.路翠艳,潘芳.应激反应中HPA轴的中枢调控和免疫调节.中国行为医学科学,2003,12(3):353-355
    48.罗克.家禽解剖学与组织学.福州:福建科学技术出版社,1983
    49.孟云霄.ACTH,ACTH-R与神经免疫内分泌网络.国外医学·生理、病理科学与临床分册,2002,22(4):89-391
    50.潘堂峰.摩杂一代水牛与广西本地水牛下丘脑神经核团形态学及细胞构筑比较研究.[硕士论文].广西大学,2007
    51.庞晓静,马建伟,颜勇,陈龙,高福禄.亚急性衰老大鼠垂体前叶细胞增殖和凋亡与天年饮的干预效应,中国临床康复,2005(27):112-113
    52.彭克美,张维民,冯悦平.非洲鸵鸟脑的解剖学研究.华中农业大学学报,1998,17(4):373-377
    53.彭克美.畜禽解剖学.北京:高等教育出版社,2005:99-201
    54.彭永德.细胞因子与肾上腺功能的调控.国外医学内分泌学分册,2001,21(3):155-159
    55.阮怀珍,蔡文琴.医学神经生物学基础.两安:第四军医大学出版社,2006
    56.邵珩,舒衡生,刘津平,杨振芳.生后早期大鼠下丘脑神经核团的形态分析.天津医科大学学报.2002a,8(3):302-303
    57.邵珩,舒衡生,刘津平,杨振芳.生后早期大鼠下丘脑核团发育的形态学变化.解剖学研究,2002b,24(3):187-190
    58.宋长绪,刘福安.用PCR检测鸡NDV的初步试验.中国兽医科技,1995,25(10):20-22
    59.宋卉,彭克美,李升和,王岩,位兰,唐丽,靳二辉,王家乡.雏鸵鸟中枢淋巴器官的形态学观察.中国兽医学报,2008,28(3):291-295
    60.宋卉.雏鸵鸟免疫器官的形态学特点及鸡源NDV对雏鸵鸟致病机理的研究.[博士论文].华中农业大学,2007
    61.檀志宗,王人卫,黄雅君,郭仕达,张洪海,高晓嶙.递增负荷训练诱导的动情周期抑制大鼠肾上腺结构与功能变化.中国运动医学杂志,2006,25(3):276-281
    62.唐丽,彭克美,宋卉,位兰,王岩,李升和,杜安娜,靳二辉,王家乡.非洲雏鸵鸟泌尿系统的解剖学研究,野生动物,2006,27(5):35-37
    63.唐竹吾.中枢神经系统解剖学.上海:上海科学技术初版社,1986
    64.田静.垂体发育不良的MRI与垂体相关激素的相关性研究.[硕士论文].山东大学,2007
    65.佟琳.应激对神经-内分泌-免疫调节网络的影响.医学综述,2003,9(11):686-688
    66.汪华侨.唐延勇.大鼠下丘脑弓状核神经胶质细胞的年龄性变化.广东解剖学通报,1995,17(2):89-93
    67.汪艳,刘华雷,伏小平,郑东霞,徐天刚,王志亮.一株鸵鸟源新城疫病毒的分离及其
    68.王蔼明.神经内分泌讲座(六)——促肾上腺皮质激素释放激素.生物学通报,1999,34(8):28-30
    69.王凤鸣,夏威.鸵鸟的养殖和常见病防治.北京:中国农业出版社,1999
    70.王家乡,彭克美,杜安娜,唐丽,位兰,王岩,李升和,宋卉,靳二辉.非洲雏鸵鸟十二指肠发育的形态学研究.中国兽医学报,2008,28(12):1419-1422
    71.王珏,朱玲玲.金光明.皖西白鹅肾上腺组织结构的研究.安徽农业技术师范学院学报,1999,13(2):1-4
    72.王凌燕,王树迎,侯衍猛,谭雷涛.哺乳动物下丘脑-垂体-卵巢轴的研究进展.动物医学进展,2005,26(7):8-11
    73.王琦.特禽养殖鸵鸟养殖.北京:科学技术文献出版社,2004:1-10
    74.王岩.硼对雏鸵鸟下丘脑-垂体-卵巢轴的作用机理研究.[博士论文].华中农业大学,2008
    75.王尧,杜子威.神经生物化学与分子生物学.北京:人民卫生出版社,1997:87-98
    76.王舟.ACTH在神经免疫内分泌网络中的作用.济宁医学院学报,2002,25(4):59-60
    77.王子梅.ACTH激素分泌调节新进展.《国外医学》内分泌学手册,1994,14(4):171-174
    78.位兰,彭克美,罗来强,宋卉,王岩,李升和,唐丽,杜安娜,靳二辉,王家乡.雄性雏鸵鸟生殖器官的形态学研究.畜牧兽医学报,2007,38(8):851-855
    79.位兰.育雏期鸵鸟睾丸的发育及其下丘脑-垂体-睾丸轴的影响研究.[博士论文].华中农业大学,2008
    80.魏青,杨杏芬,朱伟,林忠宁,郑树生,赵敏.镉致腺垂体-肾上腺皮质凋亡机制研究.中国公共卫生,2007,23(2):195-196
    81.夏凌.褪黑素和通络方剂对糖尿病大鼠糖、脂肪代谢及下丘脑-垂体-肾上腺轴影响研究.[硕士论文].第二军医大学,2008
    82.肖传斌,刘忠虎,梁宏德,党静,高春生,王平利.非洲鸵鸟食管组织学观察.河南农业大学学报,2005,39(1):102-105
    83.谢启文.现代神经内分泌学.上海:上海医科大学出版社,1999
    84.邢文英,史学义,丁一,扬继要,张娓,朱晓燕.大鼠垂体细胞动力学研究.河南医学研究,2002a,11(2):406-408
    85.邢文英,张娓,史学义,丁一,金辉.成年大鼠肾上腺皮质细胞动力学观察.郑州大学学报(医学版),2002b,37(5):582-584
    86.徐会厂,李松奎.bcl-2基因与神经细胞凋亡.医学综述,1998,4(12):632-634
    87.徐科.神经生物学纲要.北京:科学出版社,2000:1-415
    88.徐亚平,肖传斌,李奎,李亚浩.非洲鸵鸟主要消化器官的观测.畜牧与兽医,2005,37(7):44-46
    89.许绍芬.神经生物学.上海:复旦大学出版社,1999:422-444
    90.杨胜远,陆兆新,吕风霞,别小妹.γ-氨基丁酸的生理功能和研究开发进展.食品科学,2005,26(9):546-551
    91.尹燕博,蔡丽娟,孙淑芳,李葳,徐瑞.鸵鸟新城疫的临床诊断病毒分离和鉴定.中国兽医杂志,1998,2(7):17-18
    92.尹燕博,崔尚金.鸵鸟新城疫研究进展(上).畜牧兽医科技信息,2004,10:6-7
    93.于永霞,王淑华,蔡朔.不同月龄长爪沙鼠视上核加压素分泌的实验.动物学杂志,2003,38(3):80-82
    94.张常印,和文龙.鸵鸟疾病防治.北京:中国农业科技出版,1998,113-121
    95.张殿明,徐隆绍.神经内分泌学.北京:中国医药科技出版社,1991
    96.张峰,王国恩.日本海马脑垂体的组织学观察.大连水产学院学报,1992,6(3-4):28-34
    97.张辉,徐满英.γ-氨基丁酸作用的研究进展.哈尔滨医科大学学报,2006,40(3):267-268
    98.张孟闻.脊椎动物比较解剖学(中册).北京:高等教育出版社,1988
    99.张鹏,云阿娅,张俊丽,张淑霞,杨增岐.鸵鸟新城疫病毒和大肠埃希菌感染的诊断.动物医学进展,2007,28(6):109-111
    100.张涛,田黎明,田丽华,白书阁,白晶.雌性大鼠下丘脑、垂体中γ-氨基丁酸含量的增龄性变化.中国老年学杂志,1998,18:289-290
    101.张岫竹.应激过程中糖皮质激素受体对促肾上腺皮质激素释放激素的调节作用.国外医学外科学分册,2002,29(5):261-263
    102.赵敏,杨杏芬,魏青,陈雯,卢次勇,陈铁江.氯化镉诱发肾上腺皮质细胞凋亡与应激活化蛋白激酶活性的研究.中华预防医学杂志,2000,34(6):342-344
    103.赵显玲,郝利铭,高元奇.法国鹌鹑脑垂体神经叶的超微结构研究.东北师大学报自然科学版,2000,32(4):59-62.
    104.织田敏彦.应激与神经内分泌系统.日本医学介绍,2001,22(12):541-543
    105.朱道立.应激与神经内分泌及免疫的研究.北京实验动物科学与管理,1994(2):32-35
    106.朱玲玲,尾仲逮史,祝世功.催产素和加压素与应激的关系.生理科学进展,2002,33(4):332-335
    107.朱述琳,侯栋梁,薛现霞,邢佑敏.细胞凋亡调控基因bcl-2和bax在肾上腺髓质增生大鼠肾上腺组织中的表达与意义.西部医学,2005,17(5):424-425
    108.朱伟,杨杏芬,魏青,林忠宁,郑树声,赵敏.镉诱导腺垂体细胞凋亡与半胱天冬酶信号变化初探.中华预防医学杂志,2005,39(2):115-118
    109.朱元招,吴学祥,祝寿康.四季鹅产蛋前后腺垂体远侧部细胞的超微结构比较.中国兽医学报,1998,18(4):390-393
    110.Adele R.Thomas,Hatizivi Gondoza,Louwrens C.Hoffman,et al.The roles of the proteasome,and cathepsins B,L,H and D,in ostrich meat tenderization.Meat Science,2004,67:113-120.
    111.Aguilera,G.Regulation of pituitary ACTH secretion during chronic stress.Frontiers in Neuroendocrinology,1994,15(4):321-350
    112. Allsopp T E, Wyatt S. Paterson H F, Davies A M. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell, 1993, 73(2) : 295-307
    
    113. Almeida H de, Magalhaes M C, Magalhaes MM. Age-related changes in the inner zone of the adrenal cortex of the rat-a morphologic and biochemical study. Mechanisms of Ageing and Development, 1998, 105: 1-18
    
    114. Altunay H, Kozlu T. The Fine Structure of the Harderian Gland in the Ostrich (Struthio camelus). Anatomia, Histologia, Embryologia, 2004, 33 (3) : 141-145
    
    115. Asok G, Stephen W C, Monisha M. Avian adrenal medull: cytomorphology and function. Acta Biol Szeged, 2001, 45: 1-11
    
    116. Barden N. Regulation of corticosteroid receptor gene expression in depression and antidepressant action. J Psychiatry Neurosci, 1999, 24(1) : 25-39
    
    117. Basha SH, Vijayaragavan C, Ramesh G. Light and electron microscopic studies on the interrenal tissue of the adrenal gland in Japanese quail (Coturnix coturnix japonica). Indian Journal of Animal Sciences, 2004, 74(10) : 1021-1023
    
    118. Bazhanova E D, Teplyi D L, Effect of Interferon - Alpha on Mouse Hypothalamic - Pituitary-Adrenocortical System in Aging . Journal of Evolutionary Biochemistry and Physiology, 2003, 39(5) : 600-607
    
    119. Bezuidenhout A J, Groenewald H B, Soley J T. An anatomical study of the respiratory air sacs in ostriches. The Onderstepoort Journal of Veterinary Research, 1999, 66(4) : 317-325
    
    120. Bhattacharyya TK. Fine structure of the interrenal cell in the quail and the pigeon. Anat Embryol (Berl) , 1975, 46(3) : 301-302.
    
    121. Bhattacharyya TK, Ghosh A. Cellular modification of interrenal tissue induced by corticoid therapy and stress in three avian species. Am J Anat, 1972, 133(4) : 483-493
    
    122. Carsia RV, Weber H, Perez FM Jr. Corticotropin-releasing factor stimulates the release of adrenocorticotropin from domestic fowl pituitary cells. Endocrinology, 1986, 118(1): 143-148
    
    123. Carsia RV, Scanes CG, Malamed S. Polyhormonal regulation of avian and mammalian corticosteroidogenesis in vitro. Comp Biochem Physiol A, 1987, 88(1): 131-40
    
    124. Chen J, Graham SH, Nakayama M, Zhu R L, Jin K, Stetler RA, Simon RP. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab, 1997, 17(1) : 2-10
    125. Coupland RE. Electron microscopic observations on the structure of the rat adrenal medulla. J. Anat, 1965, 99(2) : 231-254
    
    126. Cronshaw J, Holmes WN, Loeb SL. Fine structure of the adrenal gland in the duck (Anas platyrhynchos. Anat Rec, 1974, 180(2) : 385-405
    
    127. Dallman MF, Akana SF, Levin N. Corticosteroids and the control of function in the hypothalamopituitary-adrenal(HPA)axis. Ann N Y Acad Sci, 1994, 746: 22-31
    
    128. Dawson A, Deeming DC, Dick ACK, Sharp PJ. Plasma Thyroxine Concentrations in Farmed Ostriches in Relation to Age, Body Weight, and Growth Hormone. General and Comparative Endocrinology, 1996, 103(3) : 308-315
    
    129. Elias MZ, Bezuidenhout AJ, Groenewald HB. Macroscopic blood supply to the hypophysis and hypothalamus of the ostrich (Struthio camelus). Onderstepoort J Vet Res, 1996, 63 (3) :245-252.
    
    130. Errol B, De Souza. Corticotropin-releasing factor receptors: Physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology, 1995: 20(8) : 789-819
    
    131. Fernandez LJ, Jimenez S, Sayas BE. Quality characteristics of ostrich (Stnithio camelus) burgers. Meat Science, 2006, 73: 295-303
    
    132. Filippa V, Mohamed F. ACTH cells of pituitary pars distalis of viscacha (Lagostomus maximus maximus): immunohistochemical study in relation to season, sex, and growth. General and Comparative Endocrinology, 2006, 146(3) : 217-225
    
    133. Garcia I, Martinou I, Tsujimoto Y, Martinou JC. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene, Science, 1992, 258(5080): 302-304
    
    134. Gesing A, Bilang-Bleuel A, Droste SK. Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. J Neurosci, 2001, 21(13) : 4822-4829
    
    135. Gonzalo A, Carrasco and Louis D, Van de Kar. Neuroendocrine pharmacology of stress, European Journal of Pharmacology, 2003, 463(1-3) : 235-272
    
    136. Greti Aguilera, Cristina RD, Maria Nikodemova. Regulation of pituitary corticotropin releasing hormone receptors. Brain Research, 2000a, 858: 181-190
    137. Greti Aguilera, Cristina RD. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regulatory Peptides, 2000b, 96: 23-29
    
    138. Gulmez N, Kocamis H, Liman N, Kukner A. Interrenal Cell Zonation in the Adrenal Gland of the Goose (Anser Anser). growth, development and aging, 2004, 68: 11-18
    
    139. Habib KE, Gold PW, Chrousos GP. Neuroendocrinology of stress. Endocrinology & Metabolism Clinics of North America, 2001, 33(3) : 695-728
    
    140. Hayashi H, Imai K, Imai K. Characterization of chicken ACTH is more similar to Xenopus ACTH than to other avian ACTH. Gen Comp Endocrinol, 1991, 82(3) : 434-443
    
    141. Hoffman LC, Mellett FD. Quality characteristics of low fat ostrich meat patties formulated with either pork lard or modified corn starch, soya isolate and water. Meat Science, 2003, 65: 869-875
    
    142. Holmes RL. The adrenal glands of Macaca mulatta , with special reference to the cortico-medullary zone. J. Anat, 1968, 103(3) : 471-477
    
    143. Jenkins SA, Porter TE. Ontogeny of the hypothalamo-pituitary-adrenocortical axis in the chicken embryo: a review, Domestic Animal Endocrinology, 2004, 26: 267-275
    
    144. Jezova D, Ochedalski T, Glickman M. Central corticotrophin-releasing hormone receptors modulate hypothalamic-pituitary-adrenocortical and sympatho adrenal activity during stress. Neuroscience, 1999, 94(3) : 797-802
    
    145. Joseph AM. Corticotropin-releasing hormone physiology. European Journal of Endocrinology, 2006, 155: 71-76
    
    146. Kant AG, Koch DJ, Van RF, Balk TA, Hurne. Differentiation of virulent and non-virulent strains of Newcastle disease virus within 24 hours by polymerase chain reaction. Avian Pathol, 1997, 26: 837-849
    
    147. Klingbeil CK, Holmes WN, Pearce RB, Cronshaw J. Functional significance of interrenal cell zonation in the adrenal gland of the duck (Anas platyrhynchos) . Cell Tissue Res, 1979, 201 (1) : 23-36.
    
    148. KoideY, PapkoffH, Complete amino acid sequences of follitropin and lutropin in the ostrich, Struthio camelus. Eur J Biochem, 1996, 240(1) : 262-267
    149. Lesniewska B, Nowak KW, Malendowicz LK. Dexamethasone-induced adrenal cortex atrophy and recovery of the gland from partial steroid- induced atrophy. Exp Clin Endocrinol, 1992, 100(3) : 133
    
    150. Linnik MD, Zahos P, Geschwind MD, Federoff H J. Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke, 1995, 26(9) : 1670-1675
    
    151. Ludwik K, Malendowicz, Anna S. Belloni, Gastone G. Nussdorfer. Arginine-vasopressin and CorticotropinreleasingHormone are Sequentially Involved in the Endothelin-1-induced Acute Stimulation of Rat Pituitary-adrenocortical Axis. J Steroid Biochem. Molec. Biol, 1998, 66 (1-2) : 45-49
    
    152. Madekurozwa MC. A Study of the Immunohistochemical Localization of the Progesterone and Oestrogen Receptors in the Magnum of the Immature Ostrich, Struthio camelus. Anatomia, Histologia, Embryologia, 2002, 31(5) : 317-320
    
    153. Marri CL. Regulation of Corticotropin Receptor Number and Messenger RNA in Cultured Human Adrenocortical Cells by Corticotropin and Angiotension II. J Clin Invest, 1994, 93:1828-1833
    
    154. Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 1994,13(4) : 1017-1030
    
    155. Mathew W, James K, Bowmaker. Retinal photoreceptors of paleognathous birds: the ostrich (Struthio camelus) and thea (Rhea Americana) . Vision Research, 2001, 41(1) : 1-12.
    
    156. Meaney M J, Bhatnagar S, Larocque S. Individual differences in the hypothalamic-pituitary- adrenal stress response and the hypothalamic CRF system. Ann N Y Acad Sci, 1993, 697:70-85
    
    157. Michael J, Meaney, Moshe Szyf, Jonathan R, Seckl. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends in Molecular Medicine, 2007, 13(7) : 269-277
    
    158. Mikami S, Takagi T, Farner DS. Cytological differentiation of the interrenal tissue of the Japanese quail, Coturnix coturnix. Cell Tissue Res, 1980, 208(3) : 353-370
    159. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA . Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci, 1996, 16(4) : 1337-1345
    
    160. Naude RJ, Oelofsen W. Isolation and characterization of beta-lipotropin from the pituitary gland of the ostrich Struthio camelus. Int J Pept Protein Res, 1981, 18(2) : 135-137
    
    161. Ozeghe PC, Aire TA, Soley JT. The morphology of the efferent ducts of the testis of the ostrich a primitive bird. Anat Embryol(Berl) , 2006, 211(5) : 559-565.
    
    162. Pearce RB, Cronshaw J, Holmes WN. The fine structure of the interrenal cells of the duck (Anas platyrhynchos) with evidence for possible exocytotic release of steroids. Cell Tissue Res, 1977, 183(2) : 203-220.
    
    163. Pearce RB, Cronshaw J, Holmes WN. Evidence for the zonation of interrenal tissue in the adrenal gland of the duck (Anas platyrhynchos) . Cell Tissue Res, 1978, 192(3) : 363-379
    
    164. Pignatelli D, Pinto P, Magalhaes MM, Magalhaes MC. The development of the adrenal gland zona glomerulosa in the rat. A morphological, immunohistochemical and biochemical study. Molecular and Cellular Endocrinology, 1998, 140: 163-168
    
    165. Reincke M, Beuschlein F, Menig G. Localization and expression of adrenocorticotropic hormone receptor mRNA in normal and neoplastic human adrenal cortex. J Endocrinol, 1998, 156(3) : 415-423
    
    166. ReulJM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 1985, 117(6) : 2505-2511
    
    167. Rich EL, Romero LM. Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol Regul Integr Comp Physiol, 2005, 288(6) : 1628-1636
    
    168. Romero LM, Rich EL. Photoperiodically-induced changes in hypothalamic-pituitary-adrenal axis sensitivity in captive house sparrows (Passer domesticus) . Comp Biochem Physiol A Mol Integr Physiol, 2007, 147(2) : 562-568
    
    169. Romero LM. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol, 2004, 19(5) : 249-255
    
    170. Saayman HS, Naude FJ, Oelofsen W. Mesotocin, vasotocin, two neurohypophysial hormones in the ostrich, Struthio camelus. Int J Pept Protein Res, 1986, 28(4) : 398-402
    171. Samberg Y, Hadash D, Perelman B, Meroz M. Newcastle disease in ostrich (Struthio camelus) : field case and experimental infection. Avian Pathology, 1989, 18: 221-226
    
    172. Schalkwyk VSJ, Hoffman LC, Cloete S W P, Mellett F D. The effect of feed withdrawal during lairage on meat quality characteristics in ostriches. Meat Science, 2005, 69: 647-651
    
    173. Seth KA, Majzoub JA. Repressor element silencing transcription factor/neuron-restrictiye silencing factor (REST/NRSF) can act as an enhancer as well as a repressor of corticotropin-releasing hormone gene transcription. Journal of Biological Chemistry, 2001, 276 : 13917-13923
    
    174. Sinclair M, Brückner GK, Kotze JJ. Avian influenza in ostriches: epidemiological investigation in the Western Cape Province of South Africa, Vet. Ital, 2006(42) : 69-76
    
    175. Snodgrass SR, White WF, BialesB, DichterM. Biochemical correlates of GABA function in rat cortical neurous in culture. Brain Res, 1980, 190: 123
    
    176. Speirs HJ , Seckl JR , Brown RW . Ontogeny of glucocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol, 2004, 181(1): 105-116
    
    177. Stefan T, Melinda A, Novak, Lucinda M, Marinus. Altered hypothalamic-pituitary -adrenocorticalfunction in rhesus monkeys (Macaca mulatta) with self-injurious behavior. Psychoneuroendocrinology, 2004, 29: 501-515
    
    178. Stephan J, Schoech, Reed Bowman, Eli S, Bridge. Corticosterone administration does not affect timing of breeding in Florida scrub-jays (Aphelocoma coerulescens). Hormones and Behavior, 2007, 52(2) : 191-196
    
    179. Stratakis CA, Gold PW, Chrousos GP. Neuroendocrinology of stress: implications for growth and development. Horm Res, 1995, 43(4) : 162-167
    
    180. Susan M, Tanimura, Alan G, Watts. Corticosterone modulation of ACTH secretogogue gene expression in the paraventricular nucleus. Peptides, 2001, 22 : 775-783
    
    181. Tanaka S, Kurosumi K. Differential subcellular localization of ACTH and alpha-MSH in corticotropes of the rat anterior pituitary. Cell Tissue Res, 1986,243 (2) : 229-238
    
    182. Viera C, Martin Z, Katarina H. Effect of long-term experimental hypodyamy on the adrenal glands of Japanese quails: an ultrastructural study. Bull Vet Inst Pulawy, 2005, 49: 449-453
    183. Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci, 1995, 15(8) : 5851-5857
    
    184. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. Evidence for p53-mediated modulation of neuronal viability. J Neurosci, 1996, 16(21) : 6753-6765
    
    185. Yamashiro D, Hammonds RG Jr, Li CH, Beta E. Synthesis and radioreceptor-binding activity of the ostrich hormone. Int J Pept Protein Res, 1982, 19(3) : 251-253
    
    186. Zajicek G , Ariel I , Arber N . The streaming adrenal cortex : direct evidence of centripetalmigration of adrenocytesby estimation of cell turnover rate. JEndocrinol, 1986, 111(3) : 477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700