用户名: 密码: 验证码:
三株鱼类细胞系的建立和十二株鱼类细胞系对重金属毒性的敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境污染是全球关注的热点问题之一。全球每年都有大量的毒物通过各种途径进入水环境中,包括重金属在内的众多污染物对生物体都具有潜在的毒性。如果不能及时地发现毒物、检测其毒性以及对其潜在危害做出预测,那么极有可能造成严重的生态危机。因此建立灵敏、快速的生物检测体系对污染物的毒性进行早期预警和生态风险评估就显得极其重要。利用体外培养的细胞系作为体外模型进行污染物毒性检测的体外检测系统具有细胞均一性好、遗传相似、反应速度快、经济、方便等众多优点,使得其在毒理学中的应用越来越广泛。由于现在建立的鱼类细胞系的种类和数量繁多,而每种细胞系对毒物的反应又存在较大差异,因此,需要通过检测不同的污染物对不同细胞系的毒性,以确立敏感的、适合的细胞体外模型应用于其毒性早期预警的研究。
     本文主要研究鱼类细胞体外模型对检测我国水体中常见的四种重金属——镉(Cd)、铬(Cr)、锌(Zn)、铜(Cu)的毒性敏感性和适用性。通过比较不同培养代数、不同物种、不同组织来源的早期传代细胞系和永生性细胞系对重金属的毒性敏感性,确立每种重金属的相对敏感细胞系,然后以毒性敏感细胞系为体外模型检测重金属的细胞毒性、氧化损伤和基因毒性,探讨敏感的、适用的鱼类细胞体外模型在重金属毒性检测中的应用前景,主要研究结果如下:
     1、三株鱼类细胞系的建立
     利用组织块贴壁法新建了胭脂鱼(Myxocyprinus asiaticu)肌肉细胞系CSM与吻端组织细胞系CSSN以及稀有鮈鲫(Gobiocypris rarus)鳍条细胞系RMF三株细胞系,并通过细胞计数研究其最适生长条件和冻存复苏能力,通过染色体分析和线粒体基因分析鉴定其遗传种质。结果表明新建的三株细胞系均为成纤维贴壁型细胞,形态较均一;三株细胞系均能在含10%FBS的L-15培养液及25℃的培养条件下具有连续传代能力,其中CSM的最适培养液为M199;冻存的5~(th)、10~(th)、15~(th)细胞的复苏能力较强,其复苏后存活率均在90%以上,贴壁率在50%-80%之间;染色体分析表明新建细胞系虽然存在染色体缺失与增多现象,但仍为正常四倍体细胞(染色体条数100,CSM和CSSN细胞系)和二倍体细胞(染色体条数为50,RMF细胞系);线粒体基因(12s rRNMl8s rRNA、cytb)分析表明PCR扩增的基因片段序列与其来源鱼类的发表序列完全一致。可见,新建的三株鱼类细胞系具有体外连续传代能力且未发生遗传突变,可作为早期培养细胞模型应用于水环境污染物的毒性检测。
     2、十二株鱼类细胞系对检测重金属毒性的敏感性研究
     (1)首先,利用MTT法(以IC50值为指标)和细胞总蛋白含量测定法(CB法)(以IC50值为指标)检测氯化镉(CdCl_2·2.5H_2O)、重铬酸钾(K_2Cr_2O_7)、氯化锌(ZnCl_2)、硫酸铜(CuSO_4·5H_2O)对草鱼CIK细胞的细胞毒性,利用彗星实验法(SCGE法)(以DNA损伤率为指标)以及PI染色流式细胞仪法(FCM法)(以细胞凋亡率为指标)检测镉、铬(Ⅵ)、锌、铜对草鱼CIK细胞的基因毒性。结果表明四种体外检测方法均能通过不同的指标定性比较重金属对草鱼CIK细胞的毒性大小,其检测出重金属的毒性大小均为Cd>Cr>Cu>Zn;两种重金属细胞毒性检测方法——MTT法和CB法得到的四种重金属的IC50值无显著性差异;综合比较这四种方法的优缺点,确定了MTT法为简单、快速、重复性好的重金属毒性敏感细胞系体外检测方法。
     (2)其次,利用MTT法,以IC50值为指标,比较了三株不同物种、不同组织来源、不同培养代数的新建细胞系,以及来源于不同组织、不同物种的九株永生性鱼类细胞系对重金属毒性的敏感性。结果表明随着培养代数的增加,三株新建细胞系对重金属的毒性敏感性有所下降,但在20代之内未见显著性差异;同一物种不同组织来源的鱼类细胞系对重金属的毒性敏感性是不同的;同一组织来源的不同物种的鱼类细胞系对重金属的毒性敏感性也是不同的,且早期传代细胞系不一定比永生性细胞系对重金属的毒性更敏感;确定了氯化镉的毒性敏感细胞系为斑点叉尾鮰卵巢细胞系CCO,重铬酸钾和氯化锌的毒性敏感细胞系均为鲤上皮瘤细胞系EPC,硫酸铜的毒性敏感细胞系为草鱼肾脏组织细胞系CIK。
     3、毒性敏感细胞系在重金属毒性检测中的应用
     以上述研究确定的毒性敏感细胞系作为体外模型,通过细胞形态观察,MTT法和CB法检测重金属的细胞毒性,采用脂质过氧化水平、GPX和SOD酶活性的测定检测重金属造成的氧化损伤,利用彗星实验法检测DNA的损伤,使用流式细胞法检测细胞凋亡和细胞周期的变化。结果表明重金属能引起细胞发生变圆、崩解、脱落,并抑制细胞生长,显著降低细胞存活率,引起细胞脂质过氧化物水平增加,造成细胞GPX和SOD酶活性下降,总抗氧化能力减弱,导致细胞发生氧化损伤;使细胞DNA单链发生断裂,发生DNA损伤;并引起细胞凋亡和细胞周期时相改变,且这些作用均呈浓度依赖关系。可见,确定重金属毒性敏感细胞系进行其毒性早期预警是可行的,并且可以较为准确地预测重金属的毒性作用。
Aquatic environmental pollution is one of the major issues of global concern. A large number of chemical pollutants enter the aquatic environment each year from various sources. These pollutants, which include some heavy metals, are known to be potentially cytotoxic to biota and present a health threat to the public. If the prevalence of toxicants is not discovered and their toxicity monitored timely to forecast the potential threat, these pollutants may be at the bottom of severe ecological crisis. Thus, establishment of a sensitive biological monitoring system for early detection and ecotoxicological evaluation is required. Applying cell cultures as in vitro biological model to ecotoxicological assessment offers a number of well-described advantages as compared to in vivo animal tests. Culturing established fish cells in vitro is relatively rapid, cost-effective, readily reproducible, and can be easily adapted to automated high-throughput screening technologies. Establishment of more and more cell cultures from marine and mammalian species has promoted the rapid development of cell cultures as sensitive acute bioassays for the assessment of toxicological risks associated with chemical pollutants worldwide. In the near future, it is anticipated that the utilization of fish cell lines as a biological model for evaluating the cytotoxicity of pollutant chemicals in environmental samples will become a standard practice. To facilitate the use of established in vitro fish cell lines as valuable biological tools to monitor and detect environmental pollutant chemicals, it is necessary to test more cell lines comparatively to identify the more sensitive cell cultures as bio-indicators to common toxic chemicals.
     In this paper, the sensitivity and applicability of twelve fish cell lines to detect the toxicity of the four common heavy metals cadmium (Cd), chromium (Cr), zinc (Zn) and copper (Cu), which prevail in aquatic environment of China, were investigated. The toxicity and sensitivity of each heavy metal to the different passages, species and tissues of early passaging and permanent fish cell lines were compared to ascertain the relatively sensitive fish cell line against each heavy metal. Then the heavy metal induced cytotoxicity, oxidative damage and genotoxicity on the relatively sensitive fish cell line against each heavy metal were investigated to discuss the foreground of sensitive and applicable in vitro models to investigate the toxicity of heavy metals. The main results are as follows:
     1 Establishment of three new fish cell lines
     The Chinese sucker muscle cell line (CSM), Chinese sucker snout cell line (CSSN) derived from Chinese sucker (Myxocyprinus asiaticu) and the rare minnow fin cell line (RMF) derived from rare minnow (Gobiocypris rarus) were established and their biological characterizations including the optimal growth conditions (temperature, the content of serum and media), the ability of cryopreservation resuscitation, chromosome and genes from ribosome (12s rRNA/18s rRNA) and cytochrome b were identified. The results are as follows: three newly established cell lines were all fibrillose, homogeneous cells; the new cell lines had the ability of continuum passage in L-15 (CSM in M199 medium) with 10% FBS at 25℃; the new cell lines had the strong ability of cryopreservation resuscitation at the passage 5~(th), 10~(th), 15~(th) the viability and the adherent ratio after cryopreservation resuscitation were > 90% and 50% - 80%, respectively; chromosome analysis indicated these cell lines shared a major chromosomal peak of 100 (tetraploid number for CSM and CSSN) and 50 (diploid number for RMF), only small proportion of heteroploidy and aneuploidy; mitochondrial gene analysis indicated the identified sequences from the cells DNA were identical to the respective sequences reported from their fish species. Therefore, the three newly established fish cell lines had the ability of continuum in vitro and no mutation, they could be to detect the toxicity of environmental pollutions as early cell cultures.
     2 Comparison of the toxical sensitivity to heavy metal among twelve fish cell lines
     (1) Firstly, the cytotoxicity of cadmium chloride (CdCl_2·2.5H_2O), potassium dichromate (K_2C_2O_7), zinc chloride (ZnCl_2) and copper sulfate (CuSO_4·5H_2O) to grass carp (Ctenopharyngodon idellus) kidney cell line (CIK) was as Cd > Cr > Cu > Zn determined by MTT assay (IC50) and CB assay (IC50). Despite some minor variations, the IC50 - values obtained from MTT assay and CB assay appeared very similar, and no significant difference between these two methods. The genotoxicity of these four heavy metals were also in the aforementioned order determined by SCGE assay (the ratio of DNA damage) and FCM assay (the ratio of cell apoptosis). Comparatively, the MTT assay was relatively rapid, cost-effective, readily reproducible, and could be easily applied to investigate the relatively sensitive fish cell line of each heavy metal.
     (2) Secondly, to establish the potential use of cell cultures as a simple and sensitive biological tool to detect toxicity of heavy metals, the different passages, species, and tissues of three newly established cell lines and nine permanent cell lines established from different fish species and tissues were tested and compared for their cytotoxic sensitivity by MTT assay. The results indicated that the cytotoxic sensitivity decreased along with the increase of cell passages, but no significant difference amongst 20 passages; the cytotoxic sensitivity were different among the different tissues from the same species; the cytotoxic sensitivity were also different among the different species from the same tissue origin, and the early passaging cell lines were not always more sensitive than the permanent cell lines invariably; CCO cells derived ovary of channel catfish (Ictalurus punctatus) were the most sensitive one to CdCl_2·2.5H_2O, EPC cells derived from epithelioma of common carp (Ctenopharyngodon cyprini) were more sensitive than other cells to K_2Cr_2O_7 and ZnCl_2, while CIK cells derived from kidney of grass carp were the most sensitive cell line to CuSO_4ˉ5H_2O.
     3 The application of toxically sensitive fish cell line in detecting heavy metal toxicity
     The cellular damage including the configuration under inverted microscope, cytotoxicity by MTT and CB assays, oxidative damage by determination the content of MDA and the activities of GPX, SOD and T-AOC, the DNA damage by SCGE, the cell apoptosis and cell cycle by FCM assay of heavy metals on their each toxical sensitive cells were investigated. After the treatment of heavy metals, signicant increases of round, collapsed and desquamated cells, significant decreases in survival, significant decrease in activities of GPX, SOD, T-AOC, an increase in the content of MDA, increases the ratio of DNA damage and apoptosis and the change of cell cycle were observed in a dose-dependent manner. Shortly, it was feasible to confirm the relative sensitive fish cell line to each heavy metal for early detection and ecotoxicological evaluation because of the different sensitivity level of different fish cell lines to the same heavy metal.
引文
1.边兴艳,陈洁.MTT比色法中五种甲瓒溶解液的比较.临床检验杂志,1998,16(1):34-35
    2.柏世军.水环境镉对罗非鱼的毒性作用和机理探讨.[博士学位论文].杭州:浙江大学图书馆,2006
    3.陈家长,瞿建宏,胡庚东.铬对鲤鱼非特异性免疫功能的影响.浙江海洋学院学报(自然科学版),2002,21(1):13-15,29
    4.陈松林.鱼类胚胎干细胞研究进展.中国水产科学,2001,7(4):95-98
    5.丛宁,袁莉民,沈伯平,颜慧,姜增华.硫酸铜对金鱼急性毒性及肝细胞超微结构的影响.扬州大学学报(农业生命科学版),2005,26(2):89-92
    6.丁磊,吴萍,宋学宏,蔡春芳,吴康.镉对鲫脏器系数的影响.水利渔业,2002a,22(4):18-19
    7.丁磊,蔡春芳,吴萍,吴康,宋学红.镉对鲫血红蛋白的影响.水利渔业,2002b,22(3):10-11
    8.窦贻俭,李春华.环境与科学原理.南京:南京大学出版社,2001
    9.耿龙武,蔺玉华,王海涛,刘永.铬对鲤嗜多染红细胞微核的诱变效应.水产学杂志,2003,16(2):63-67
    10.郭永灿,周青山.镉对白鲢肾组织、细胞的显微结构及超微结构损伤的影响.中国环境科学,1989,9(2):117-122
    11.韩莉,郭斌,Bhattachary H.亚致死剂量铜对文昌鱼和玫瑰无须鲃的组织病理学影响.中国海洋大学学报,2008,38(1):95-102
    12.何斌,何利君,杜军,龙治海,陈先均.4种重金属离子对淡水石斑胚胎及仔鱼急性毒性的研究.水利渔业,2006,26(4):94-95,105
    13.洪锡钧,王明权.南方鲶SME-Ⅰ细胞系的建立及其生物学特性的研究.西南农业大学学报,1995,17(5):419-422
    14.惠秀娟.环境毒理学.北京:化学工业出版社,2003
    15.霍静,洪锡钧,王志坚,刘小红,王咏梅.南方鲇肾细胞系(SMK-I)的建立及其细胞骨架的研究.西南农业大学学报,2007,29(12):128-133
    16.侯林,辛萍,石秉霞.脑卒中病人Na~+/K~+-ATPase活性及SOD水平检测.青岛医学院学报,1996,32:239-240
    17.胡金朝.重金属污染对不同生境水生植物的毒害机理研究.[博士学位论文].南京:南京师范大学图书馆,2006
    18.贾方钧,魏芸.稀有(?)鲫的染色体核型初报.水生生物学报,2001,25(4):425-426
    19.贾秀英.四种重金属对泥鳅幼鱼呼吸强度的影响.浙江大学学报,2001,27(5):556-558
    20.贾秀英,陈志伟.Cu,Cd对鲫鱼组织Na~+-K~+-ATPase酶活性的影响.科技通报,2003,19(1):50-53
    21.凌善锋,唐光辉,李亚南.铜对鲫鱼脾细胞超微结构的影响.生物技术,2002,12(5):16-17
    22.李红岩.有机磷农药对牙鲆鳃细胞系的体外细胞毒性效应.[博士学位论文].青岛:中国海洋大学图书馆,2002
    23.李军,王铁辉,陆人后,徐怀恕.鱼类病毒检测技术.海洋湖沼通报,1996,2:58-63
    24.李树深,王蕊芳,刘光佐,王应祥,李崇云.中国胭脂鱼的核型研究.动物学研究,1983,4(2):182
    25.李志勇.细胞工程.北京:科学出版社,2003
    26.刘冰.镉和苯并[α]芘对长江河口弹涂鱼(Periophthalmus modestus)毒性效应的研究.[硕士学位论文].上海:华东师范大学图书馆,2007
    27.刘慧,王晓蓉,王为木,沈骅.低浓度锌及其EDTA配合物长期暴露对鲫鱼肝脏锌富集及抗氧化系统的影响.环境科学,2005,26(1):173-176
    28.柳敏海,罗海忠,陈波,彭志兰,傅荣兵.铜、镉对(?)鱼幼鱼鳃丝Na~+-K~+-ATPase 和肝脏SOD酶活性的影响.安全与环境学报,2007,7(4):5-8
    29.柳学周,徐永江,兰功刚.几种重金属离子对半滑舌鳎胚胎发育和仔稚鱼的毒性效应.海洋水产研究,2006,27(2):33-42
    30.刘永懋,宿华.松花江甲基汞在鱼体中的富集及影响因素研究.水电站设计,2004,20(1):63-66
    31.鲁双庆,刘少军,刘红玉.Cu~(2+)对黄鳝肝脏保护酶SOD、CAT、GPX活性的影响.中国水产科学,2002,(2):138-141
    32.罗红雨,杨旭,雷建华,田沂.CuSO_4对2.2.15细胞的影响.世界华人消化杂志,2005,13(10):1225-1227
    33.南旭阳.铬离子对鲫鱼红细胞核、血细胞数和血红蛋白量影响的研究.浙江师范大学学报(自然科学版),2002,25(3):303-307
    34.庞月华,张新平,冯义伯,何善述.细胞周期及其调控研究进展.新疆医科大学学报,2005,28(6):596-598
    35.彭智发,龚艳清,陈信忠.鱼类神经坏死病毒的检测与细胞培养技术研究进展.福建水产,2007,3(1):32-36
    36.任国诚.几种重要海水鱼类细胞系的建立、鉴定及应用.[博士学位论文].青岛:中国海洋大学图书馆,2007
    37.司徒镇强,吴军正.细胞培养.西安:世界图书出版公司西安分公司,1996
    38.宿烽.有机锡化合物和烟碱类杀虫剂对牙鲆鱼鳃细胞株(系)的毒性效应与作用机理研究.[博士学位论文].青岛:中国海洋大学图书馆,2005
    39.孙存普,张建中,段绍瑾.自由基生成学导论.合肥:中国科学技术大学出版社,1999
    40.田云,卢向阳,易克,何小解,黄成江,许亮.单细胞凝胶电泳技术.生命的化学,2004,24(1):77-78
    41.童裳亮,李宏.鲈鱼和真鲷的四个永生性细胞系的建立.生物工程进展,1997,17(3):3-4
    42.王凡,赵元凤,吕景才,刘长发.铜对牙鲆CAT、SOD和GPX活性的影响.华中农业大学学报,2007,26(6):836-838
    43.王桂燕,胡筱敏,周启星,孙学奇.镉对草鱼的急性毒性效应及SOD的影响.东北大学学报(自然科学版),2007,28(1):1758-1761
    44.王焕校.污染生态学.北京:高等教育出版社,2002
    45.王晓峰,傅文宇,朱欣,徐立红.六价铬对大鼠肝细胞体外的毒作用.癌变.畸变.突变,2005,17(5):343-345
    46.魏彦章,陆仁后.草鱼尾鳍组织二倍体细胞系GCCF-2的建立及部分生物学特性分析.水生生物学报,1986,10(3):293-2940
    47.吴鼎勋,洪万树.四种重金属对娩状黄姑鱼胚胎和仔鱼的毒性.台湾海峡,1999,18(2):186-190
    48.项黎新,邵健忠,孟真.六种重金属离子胁迫诱导鱼类细胞凋亡的研究.生物化学与生物物理进展,2001,28(6):866-869
    49.肖经纬,钟才高,李斌.六价铬诱导L202肝细胞凋亡与线粒体功能损伤的关系研究.卫生研究,2006,35(4):416-418
    50.肖勤.壬基酚对玫瑰无须鲃及牙鲆鳃细胞系的毒性效应.[博士学位论文].青岛:中国海洋大学,2006
    51.徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171-185
    52.徐瑞成,陈小义,陈莉.四种检测细胞凋亡方法的比较.上海医学检验杂志,2001,16(5):296
    53.徐永江,柳学周,马爱军.重金属对鱼类毒性效应及其分子机理的研究概况.海洋科学,2004,28(10):67-70
    54.许玉艳.阿维菌素类药物对玫瑰无须囟巴及牙鲆鳃细胞系的毒性效应.[博士学位论文].青岛:中国海洋大学图书馆,2006
    55.薛庆善.体外培养的原理与技术.北京:科学出版社,2001
    56.薛淑群,尹洪滨.鱼类细胞培养技术的发展动态及其动物克隆技术研究进展.水产学杂志,2005,18(1):75-79
    57.杨美兰,贾晓平.北部湾主要经济鱼类体中的重金属.海洋通报,1990,(5):39-45
    58.杨再福,印惠君.重金属Hg和Co对草鱼卵子孵化的影响.农业环境保护,2002,21(1):79-80
    59.叶记林,毛伟平,吴爱莲,赵洁明,张超,张娜娜,姜平,田婷.镉诱导HEK293细胞凋亡及其线粒体凋亡途径.分子细胞学报,2007,40(1):7-16
    60.于淼,管华诗,郭华荣,张士璀.鱼类细胞培养及其应用.海洋科学,2003,27(3):4-8
    61.余文斌,李谷,王学会.镉对几种淡水鱼类外周血红细胞微核率的影响.湖北农学院学报,2000,20(4):354-357
    62.张贵生,傅荣恕.稀土与铜对鲹鲦鱼红细胞微核及核异常的影响.四川动物,2007,26(3):644-646
    63.张洪霞,钟才高,徐顺清,李华文.Cr(Ⅵ)诱导肝细胞凋亡与氧化损伤、p53和半胱氨酸天冬氨酸蛋白酶3表达的关系.中国药理学与毒理学杂志,2006,20(2):144-151
    64.张念慈,杨广智.草鱼吻端组织细胞株ZC-7901及其亚株ZC-7901S1的建立和特性观察.水产学报,1981,5(2):111-119
    65.张念慈,尹文林.团头鲂尾鳍细胞系TQ-8801的建立.科学通报,1991,7:87-89
    66.张迎梅,王叶菁,虞闰六,张晟,吴振斌.重金属氯化镉、Pb~(2+)和Zn~(2+)对泥鳅DNA损伤的研究.水生生物学报,2006,30(4):399-403
    67.郑春静,张铭.鱼类细胞体外培养及应用.广西水产科技,2003,1:18-25
    68.周新文,朱国念,孙锦荷,葛才林.Cu、Zn、Pb、Cd对鲫鱼(Carassius auratus)组织DNA毒性的研究.核农学报,2001,15(3):167-173
    69.朱广香,马恒东.环境激素的危害及研究进展简介.黑龙江畜牧兽医,2004,1:61-62
    70.朱毅,张永江.镉、铬、铜及其协同作用对鲤鱼嗜多染红细胞微核的诱发效应.南京师大学报(自然科学版),1999,22(3):60-63
    71.左文功,钱华鑫,许映方.草鱼肾组织细胞系CIK的建立及其生物学特性.水产学报,1986,10(1):11-17
    72.Abd-Allah A T,Moustafa M A.Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis,chemical analysis,light and electron microscopy.Environ Pollut,2002,116:185-191
    73.Abd-Allah A R,Al-Majed A A,Al-Yahya A A,Fouda S I,Al-Shabana O A.L:-Carnitine halts apoptosis and myelosuppression induced by carboplatin in rat bone marrow cell cultures(BMC).Arch Toxicol,2005,79:406-413
    74.Anderson S,SadinskiW,Shugart L,Brussard P,Depledge M,Ford T,Hose J,Stegeman J,Suk W,Wirgin I,Wogan G.Genetic and molecular ecotoxicology: A research framework. Environ Health Perspect, 1994, 102: 3-8
    75. Almeida J A, Novelli E L B, Silva M D P, Junior R A. Environmental cadmium exposure and metabolic responses of the Nile tilapia , Oreochromis niloticus. Environ Pollut, 2001, (114): 169-175
    76. Almeida J A, Dinis Y S, Marques S Y F. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ Int, 2002, 27(8): 673-679
    77. Araujo C S, Marques S A, Carrondo M J, Goncalves L M. In vitro response of the brown bulckhead catfish (BB) and rainbow trout (RTG-2) cell line to benzo[a]pyrene. Sci Total Environ, 2000, 247(2-3): 127-135
    78. Asatiani N, Sapojnikova N, Abuladze M, Kartvelishvili T, Kulikova N, Kiziria E, Namchevadze E, Holman H Y. Effects of Cr (VI) long-term and low-dose action on mammalian antioxidant enzymes (an in vitro study). J Inorganic Biochem, 2004, 98: 490-496
    79. Asensio L, Gonzalez I, Fernandez A, Cespedes A, Hernandez P E, Garcia T, Martin R. Identification of Nile perch (Lates niloticus), grouper (Epinephelus guaza) , and wreck fish (Polyprion americanus) by polymerase chain reaction-restriction fragment length polymorphism of a 12S rRNA gene fragment. J Food Prot, 2000, 63(9): 1248-1252
    80. Atli G, Alptekin O, Tukel S, Canli M. Response of catalase activity to Ag~+, Cd~(2+), Cr~(6+), Cu~(2+) and Zn~(2+) in five tissues of freshwater fish Oreochromis niloticus. Comp Biochem Physiol, Part C, 2006, 143: 218-224
    81. Babich H, Puener J A, Borenfreund E. In vitro cytotoxicity of metals to bluegill (BF-2) cells. Arch Environ Contam Toxicol, 1986a, 15: 31-37
    82. Babich H, Shopsis C, Borenfreund E. In vitro cytotoxicity testing of aquatic pollutants (cadmium, copper, zinc , nickel) using established fish cell lines. Ecotoxicol Environ Saf, 1986b, 1: 91-99
    83. Babich H, Borenfreund E. In vitro cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. Environ Res, 1987, 42: 229-237
    84. Babich H, Martin-Alguacil N, Borenfreund E. Use of the rainbow trout hepatoma cell line RTH-149 in a cytotoxicity assay. ATLA, 1989, 17: 67-71
    85. Babich H, Goldstein S H, Borenfreund E. In vtro cyto- and genotoxicity of organomercurials to cells in culture. Toxicol Lett, 1990, 50: 143-149
    86. Bagchi D, Stohs S J, Downs B W, Bagchi M, Preuss H G. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology, 2002, 180 (1): 5-22
    87. Balitzki-Korte B, Anslinger K, Bartsch C, Rolf B. Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Leg Med, 2005, 119(5): 291-294
    88. Baruthio F. Toxic effects of chromium and its compounds. Biol Trace Elem Res, 1992, 32: 145-153
    89. Blankenship L M, Manning F C, Orenstein J M, Patierno S R. Apoptosis is the mode of cell death caused by carcinogenic chromium. Toxicol Appl Pharmacol, 1994, 126: 75-83
    90. Banerjee S K. Cell division cycles of snake-head fish. Cytibios, 1992, 70: 191-198
    91. Barker C J, Rackham B D. The induction of sister chromatid exchanges in cultured fish (Ameca splendens) by carcinogenic mutagens. Mutat Res, 1979, 68: 381-387
    92. Bejar J, Borrego J J, Alvarez M C. A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata L.). Aquaculture, 1997, 150: 143-153
    93. Bieberstein U, Braunbech T. Light and scanning election microscopic cytopathology of 3, 5 - dichlorophenol in the permanent fish cell line RTG-2. Ecotoxicol Environ Saf, 1998, 41: 298-306
    94. Borovansky J, Blasko M, Sirack y J, Schothorst A A, Smit N P M, Pavel S. Cytotoxic interactions of Zn~(2+) in vitro: melanomacells are more susceptible than melanocytes. Melanoma Res, 1997, 7: 449-453
    95. Bourne E W, Jones R W. Effects of 7,2 - dimethylbenz (A) anthracene (DMBA) in fish cells in vitro. Trans Am Mivrosc Soc, 1973, 92(1): 140-2
    96. Bowser P R, Plumb J A. Channel catfish virus: comparative replication and sensitivity of cell lines from channel catfish ovary and the brown bullhead. J Wildlife Diseases, 1980, 16: 451-454
    97. Braunbeck T, Neumuller D. The comet assay in permanent and primary fish cell cultures- a novel system of detect genotoxicity. In Vitro Cell Dev Biol, 1996, 32: 61A
    98. Bruschweiler B J, Wurgler F E, Fent K. Cytotoxicity in vitro of organotin compounds to fish hepatoma cells PLHC-1 (Poeciliopsis lucida). Aquat Toxicol, 1995, 32: 143-160
    99. Bucioa L, Souzaa V, Alboresb A, Sierra A, Chavez E, Barabze A, Gutierrez-Ruiz M C. Cadmium and mercury toxicity in a human fetal hepatic cell line (WRL-68 cells). Toxicology, 1995, 102: 285-299
    100. Caminada D, Escher C, Fen K. Cytotoxicity of pharmaceuticals found in aquatic systems: Comparison of PLHC-1 and RTG-2 fish cell lines. Aquat Toxicol, 2006, 79: 114-123
    101. Carriquiriborde P, Ronco A E. Distinctive accumulation patterns of Cd (II), Cu (II), and Cr (VI) in tissue of the South American teleost, pejerrey (Odontesthes bonariensis). Aquat Toxicol, 2008, 86: 313-322
    102.Castano A, Vega M M, Tarazona J V. Acute toxicity of selected metals and phenols on RTG-2 and CHSE-214 fish cell lines. Bull Envir Contain, 1995, 55: 222-229
    103.Castano A, Cantarino M J, Castillo P, Tarazona J V. Correlations between the RTG-2 cytotoxicity test IC50 and in vivo LC50 rainbow trout bioassay. Chemosphere, 1996, 2: 2141-2157
    104.Castano A, Bols N, Braunbeck T, Dierickx P, Haider M, Isomaa B, Kawahara K, Lee L E J, Mothersill P, Part P, Repetto G, Sintes J R, Wood C, Segner H. The use of fish cell in ecotoxicology. ATLA, 2003, 31: 317-351
    105.Castano A, Gomez-Lechon M J. Comparison of basal cytotoxicity data between mammalian and fish cell lines: a literature survey. Toxicol In Vitro, 2005, 19: 695-705
    106.Chan K M. Metallothionein: Potential biomarker for monitoring heavy metal pollution in fish around Hong Kong. Marine Pollut Bulletin, 1995, 31: 411-415
    107.Chan K M, Ku L L, Chan P C Y, Cheuka W K. Metallothionein gene expression in zebrafish embryo-larvae and ZFL cell-line exposed to heavy metal ions. Marine Environ Res, 2006, 62: S83-S87
    108.Chang S F, Ngoh G H, Kueh L F S, Qin Q M, Chen C L, Lam T J, Sin Y M. Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture, 2001, 192: 133-145
    109.Chen S L, Sha Z X, Ye H Q. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryos. Aquaculture, 2003, 218: 141-151
    
    110. Chen S L, Rena G C, Sha Z X, Shi C Y. Establishment of a continuous embryonic cell line from Japanese flounder for virus isolation. Dis Aquatic Org, 2004, 60: 241-246
    
    111 .Chen S L, Rena G C, Sha Z X, Hong Y H. Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture, 2005, 249: 63-68
    
    112.Chukhlovin A B, Tokalov S V, Yagunov A S, Westendorf J, Reincke H, Karbe L. In vitro suppression of thymocyte apoptosis by metal rich complex environmental mixtures: potential role of zinc and cadmium excess. Sci Tot Environ, 2001, 281: 153-163
    113.Clements K D, Alfaro M E, Fessler J L, Westneat M W. Relationships of the temperate Australasian labrid fish tribe Odacini (Perciformes; Teleostei). Mol Phylogenet Evol, 2003, 32: 575-587
    114.Couture P, Rajotte J W. Morphometric and metabolicindicators of metal stress in wild yellow perch (Percaf lavescens) from Sudbury, Ontario: a review. J Environ Monit, 2003, 5(2): 216-221
    115.Dallas C E, Lingenfelser S F, Lingenfelser J T, Holloman K, Jagoe C H, Kind J A, Chesser R K, Smith M H. Flow cytometric analysis of erythrocyte and lerkocyte DNA in fish from Chernobyl-containing ponds in the Ukraine. Ecotoxicol, 1998, 7: 211-219
    116.Das R C. Cadmium toxicity to gonad in freshwater fish, Labeo bata (Hamilton). Archives Hydrobiol, 1988, 112: 467-474
    117.Davoren M, Ni'Shu'illeabha'in S, Haiti M G J, Sheehan D, O'Brien N M, O'Halloran J, Van Pelt F N A M, Mothersill C. Assessing the potential of fish cell lines as tools for the cytotoxicity testing of estuarine sediment aqueous elutriates. Toxicol in Vitro, 2005, 19: 421-431
    118.Dayeh V R, Lynn D H, Bols N C. Cytotoxicity of metals common in mining effluent to rainbow trout cell lines and to the ciliated protozoan, Tetrahymena thermophila. Toxicol in Vitro, 2005, 19: 399-410
    119.Douzery E, Catzeflies F M. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia). J Mol Evol, 1995, 41(5): 622-636
    120.Eisler R. Zinc hazards to fish wildlife and invertebrates: a synoptic review. Biological Report 10. Contaminant Hazard Reviews, Report 26. US Department of the Interior, Fish and Wildlife Service, Washington, D C. 1993
    121.Emerson G L, Kilpatrick C W, McNiff B E, Ottenwalder J, Allard M W. Phylogenetic relationships of the order Insectivora based on complete 12S rRNA sequences from mitochondria. Cladistics, 1999, 15(3): 221-230
    122.Farag A M, May T, Marty G D, Easton M, Harper D D, Little E E, Cleveland L. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol, 2006, 76: 246-257
    123.Fariasl I P, Orti G, Sampaio I, Schneider H, Meyer A. The cytochrome b gene as a phylogenetic marker: The limits of resolution for analyzing relationships among Cichlid fishes. JMolEvol, 2001, 53: 89-103
    124.Fent K. Fish cell lines as versatile tools in ecotoxicology: Assessment of cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol In Vitro, 2001, 15: 477-488
    125.Ferrero M, Castano A, Gonzalez A, Sanz F, Becerril C. Characterzation of RTG-2 fish cell line by Randomly amplified polymorphic DNA. Ecotoxicol Environ Saf, 1998, 40: 56-64
    126.Freshney I R. Culture of animal cells, a manual of basic technique. New York: Wiley-Liss, 2000, 486
    127.Fryer J L, Lannan C N. Three decades of fish cell culture: a current listing of cell lines derived from fishes. J Tissue Culture Methods, 1994, 16: 87-94
    128.Giari L, Manera M, Simoni E, Dezfuli B S. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere, 2007, 67(6): 1171-1181
    129.Gomot A. Toxic effects of cadmium on reproduction, development and hatching in the freshwater snail Lymnea stagnalis for water quality monitoring. Ecotoxicol Environ Safety, 1998, 41: 288-297
    130.Goncalves L, Sousa A, Lopez T, Carrondo M. In vitro testing of aquatic pollutants with established fish cell lines. Ecotoxicol Environ Restor, 1998, 1: 55-60
    131.Gravell M., Malsberger R G. A permanent cell line from the fathead minnow (Pimephales promelas). Ann N Y Academic Science, 1965, 126: 555-565
    132.Hamilton S J, Mehrle P M. Metallothothionein in fish: review of its important in assessing stress from metal contaminants. Transactions American Fisheries Society, 1986, 115: 596-609
    133.Handy R D. Dietary exposure to toxic metals in fish. In: Taylor E W (Eds), Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches. Cambridge, England: Cambridge University Press, 1996, 29-60
    134.Hansen M B, Nielsen S E, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methids, 1989, 119: 203-211
    135.Harrison, R G. Observations on the living developing nerve fiber. Proc Soc Exp Biol, 1907, 4: 140
    136.Hatakeyama S, Yasuno M. Chronic effects of Cd on the reproduction of the guppy (Poecilia reticulate) through Cd-accumulated midge larvae (Chironomus yoshimatsui). Ecotoxicol Environ Safety, 1987, 14: 191-207
    137.Hemalatha S, Banerjee T K. Estimation of sublethal toxicity of zinc chloride by histopathological analysis of fish (Heteropneustes fossilis, Bloch) epidermis. Curr Sci, 1997, 73(7): 614-621
    138.Hogstrand C, Wilson R W, Polgar D, Wood C M. Effects of zinc on the kinetics of branchial calcium uptakein freshwater rainbow trout during adaptation to waterbornezinc. JExpBiol, 1994, 186: 55-73
    139.Hogstrand C, Reid S D, Wood C M. Ca~(2+) versus Zn~(2+) transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn~(2+). J Exp Biol, 1995, 198: 337-348
    140.Hogstrand C, Verbost P M, Bonga S E, Wood C M. Mechanisms of zinc uptake in gills of freshwater rainbow trout: interplay with calcium transport. Am J Physiol, 1996, 270: R1141-R1147
    141.Hogstrand C, Webb N, Wood C M. Covariation in regulation of affinity for branchial zinc and calcium uptake in freshwater rainbow trout. J Exp Biol, 1998, 201: 1809-1815
    142.Hutter K H, Stohr M. Rapid detection of mutagen induced micronucleated erythrocytes by flow cytometry. Histochemistry, 1982, 75(3): 353-362
    143.Huuskonen S E, Ristola T E, Tuvikene A, Hahn M E, Kukkonen J V K, Lindstrom-Seppa P. Comparison of two bioassays, a fish liver cell line (PLHC-1) and a midge (Chironomus riparius), in monitoring freshwater sediments. Aquat Toxicol, 1998, 44: 47-67
    144.Kamer L, Rinkevich B. In vitro application of the comet assay for aquatic genotoxicity: considering a primary culture versus a cell line. Toxicol in Vitro, 2002, 16: 177-184
    145.Kammann U, Rigger J C, Theobald N, Steinhart H. Genotoxic potential of marine sediments from the North Sea. Mutat Res, 2000, 467: 161-168
    146.Kammann U, Bunke M, Steinhart H, Theobald N. A permanent fish cell line (EPC) for genotoxicity testing of marine sediments with the comet assay. Mutat Res, 2001, 498: 67-77
    147.Keddy C J, Greene J C, Bonnell M A. Review of whole organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol Environ Safety, 1995, 30: 221-251
    148.Khangarot B S, Rathore R S, Tripathi D M. Effects of Chromium on Humoral and Cell-Mediated Immune Responses and Host Resistance to Disease in a Freshwater Catfish, Saccobranchus fossilis (Bloch). Ecotoxicol Environ Safety, 1999, 43: 11-20
    149.Kocan R M , Landolt M L, Sabo K M. In vitro toxicity of eight mutagens/carcinogens for three fish cell lines. Bull Environ Contain Toxico, 1979, 23: 269-274
    150.Kocan R M, Landolt M L, Bond J, Benditt E P. In vitro effect of some Mutagens/carcinogens on cultured fish cells. Arch environ contain toxicol, 1981, 10: 663-671
    151.Kocan R M, Sabo K M, Landolt M L. Cytotoxicity/Genotoxicity: The application of cell culture techniques to the measurement of marine sediment pollution. Aquat Toxicol, 1985, 6: 165-177
    152.Kohlpoth M, Rusche B, Nusse M. Flow cytometric measurement of micronuclei induced in a permanent fish cell line as a possible screening test for the genotoxicity of industrial waste waters. Mutagenesis, 1999, 14: 397-402
    153.Kolman A. New achievements in human cell toxicology: the 20th annual workshop on in vitro toxicology. Altern Lab Anim, 2003, 3: 241-243
    154.Kraemer L D, Campbell P G C, Hare L. Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut, 2005, 138: 324-337
    155.Lai Y S, John J A C, Lin C H, Guo I C, Chen S C, Fang K, Lin C H, Chang C Y. Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck & Schlegel), and their susceptibility to grouper irido- and nodaviruses. J fish diseases, 2003, 26: 31-42
    156.Lakra W S, Bhonde R R, Sivakumar N, Ayyappan S. A new fibroblast like cell line from the fry of golden mahseer Tor putitora (Ham). Aquaculture, 2006, 253: 238-243
    157.Lannan C N, Winton J R, Fryer J L. Fish cell lines: Establishment and characterization of nine cell lines from salmonids CHSE-214. In Vitro Cell & Develop Bio-Plant, 1984, 20(9): 671-676
    158.Laville N, Ait-Aissa S, Gomez E, Casellas C, Porcher J M. Effects of human Pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology, 2004, 196: 41-55
    159.Lavoue S, Bigorne R, Lecointre G, Agnese J F. Phylogenetic relationships of mormyrid electric fishes (Mormyridae: Teleostei) inferred from cytochrome b sequences. Mol Phylogene Evol, 2000, 14(1): 1-10
    160.Leblond V S, Hontelal A. Effects of in Vitro Exposures to Cadmium, Mercury, Zinc , and 1-(2-Chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane on Steroidogenesis by Dispersed Interrenal Cells of Rainbow Trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol, 1999, 157: 16-22
    161.Lee L L E J, Clemons J H, Bechtel D G, Caldwell S J, Han K B, Pasitschniak-Arts M, Mosser D D, Bols N C. Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Bio Toxicol, 1993, 9(3): 279-294
    162.Lemaire-Gony S, lemaire P, Pulsfor A L. Effects of cadmium and benzo(α)pyrene on the innune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax. Aquat Toxicol, 1995, 31: 297-313
    163.Levesque H M, Dorval J, Hontela A, Van Der Kraak G, Campbell P. Hormonal, morphological, and physiological responses of yellow perch (Perca flavescens) to chronic environmental metal exposures. J Toxicol Environ Health, Part A, 2003, 66(7): 657-67
    164.Li H, Zhang S C. In vitro cytotoxicity of the organophosphorus pesticide parathion to FG-9307 cells. Toxicol In Vitro, 2001, 15: 643-647
    165.Liu K J, Shi X L. In vivo reduction of chromium (VI) and its related free radical generation. Mol Cellular Biochem, 2001, 222: 41-47
    166.Lloyd D R, Phillips D H, Carmichael P L. Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem Res Toxicol, 1997, 10: 393-400
    167 .Lloyd D R, Carmichael P L, Phillips D H. Comparison of the formation of 8-hydroxy-2'-deoxyguanosine and singleand double-strand breaks in DNA mediated by fenton reactions. Chem Res Toxicol, 1998, 11: 420-427
    168.Lopes P A, Pinheiro T, Santos M C, da Luz Mathias M, Maria Collares-Pereira J, Viegas-Crespo A M. Response of antioxidant enzymes in freshwater fish populationsz Leuciscus alburnoides complex/to inorganic pollutants exposure. Sci Total Environ, 2001, 280: 153-163
    169.Lu Y, Lannan C, Roveck J, Fryer J L. Fish cell lines: Establishment and characterization of three new cell lines from grass carp (Ctenopharyngodon idella). In Vitro Cell Dev Bio, 1990, 26: 275-279
    170.Lyons-Alcantara M, Mooney R, Lyng F, Cottell D, Mothersill C. The effects of cadmium exposure on the cytology and function of primary cultures from rainbow trout. Cell Biochem Funct, 1998, 16: 1-13
    171.Martin-Alguacil N, Babich H, Rosenberg D, Borenfreud W. In vitro response of the brown bullhead catfish cell line, BB, to aquatic pollutants. Arch Environ Contam Toxicol, 1991, 20: 113-117
    172.Maracine M, Segner H. Cytotoxicity of metals in isolated fish cells: Importance of the cellular glutathione status. Com Biochem Physiol, Part A, 1998, 20: 83-88
    173.Matlova L, Machala M, Nezveda K, Granatova M, Nevorankova Z. Biochemical screening of highly toxic aromatic contaminants in river sediment and comparison of sensitivity of biological model systems. Chemosphere, 1995, 30: 1363-1371
    174.Michele R, Yves S, Ze anbou S, Gnassia-Barelli M. Heavy metal distribution in different fish species from the Mauritania coast. Sci Total Environ, 1999, 232: 169-175
    175.Miura T, Muraoka S, Ogiso T. Antioxidant activity of metallothionein compared with reduced glutathione. Life Sci, 1997, 60: 301-309
    176.Miya M, Nishida M. Molecular systematics of the deep-sea fish genus gonostoma (Stomiiformes: Gonostomatidae): Two paraphyletic clades and resurrection of Sigmops. Copeia, 2000, 2: 378-389
    177.Mothersill C, Lyng F, Lyons M, Cottell D. Growth and differentiation of epidermal cells from the rainbow trout established as explants and maintained in various media. J Fish Biol, 1995, 46: 1011-1025
    178.Neumann K, Michaux J, Lebedev V, Yigit N, Colak E, Ivanova N, Poltoraus A, Surov A, Markov G, Maak S, Neumann S, Gattermann R. Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene. Mol Phylogenet Evol, 2006, 39(1): 135-148
    179.Ni Shuilleabhain S, Mothersill C, Sheehan D, O'Brien N M, O'Halloran J, Van Pelt F N A M, Davoren M. In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines. Toxicol in Vitro, 2004, 18: 365-376
    180.Ni Shuilleabhain S, Mothersill C, Sheehan D, Sheehanc D, O'Brien N M, O'Halloranc J, van Peltc F N A M, Kilemadec M, Davorena M. Cellular responses in primary epidermal cultures from rainbow trout exposed to zinc chloride. Ecotoxicol Environ Safety, 2006, 65: 332-341
    181. Okamura H, Watanabe T, Aoyama I, Hasobe M. Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere, 2002, 46: 945-951
    182.Olabarrieta I, Azou B L, Yuric S, Cambar J, Cajaraville M P. In vitro effects of cadmium on two different animal cell models. Toxicol in Vitro, 2001, 15: 511-517
    183.Olive P L, Banath J P, Durand R E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat Res, 1990, 122: 86-94
    184.Ostling O, Johanson K J. Microeletrophoretic study of radiation-induced DNA damage in individual mammalian cells. Biochem Biophys Res Commun, 1984, 123: 291-298
    185.Papagiannisa I, Kagaloub I, Leonardosc J, Petridisd D, Kalfakakoua V. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Inter, 2004, 30: 357-362
    186.Parameswaran V, Shukla R, Bhondeb R, Sahul Hameeda A S. Establishment of embryonic cell line from sea bass (Lates calcarifer) for virus isolation. J Virol Meth, 2006a, 137: 309-316
    187.Parameswaran V, Shukla R, Bhonde R R, Sahul Hameed A S. Splenic cell line from sea bass, Lates calcarifer: Establishment and characterization. Aquaculture, 2006b, 261: 43-53
    188.Pepe T, Trotta M, di Marco I, Cennanmo P, Anastasio A, Cortesi M L. Mitochondrial cytochrome b DNA sequence variations: an approach to fish species identification in processed fish products. J Food Prot, 2005, 68(2): 421-425
    189.Pereira J J, Mercaldo-Allen R, Kuropat C. Effect of cadmium accumulation on serum vitellogenin levels and hepatosomatic and gonadosomatic indices of winter flounder (Pleurinectes americanus). Archives Environ Contain Toxicol, 1993, 24: 427-431
    190.Philips D H. Detection of DNA modifications by the super ~(32)P-post labeling assay. Mutat Res, 1997, 378: 1-12
    191.Pourahmada J, Rabieia M, Jokara F, O'Brienb P J. A comparison of hepatocyte cytotoxic mechanisms for chromate and arsenite. Toxicology, 2005, 206:449-460
    192.Prabakarana M, Binuramesha C, Steinhagenb D, Michaela R D. Immune response in the tilapia, Oreochromis mossambicus on exposure to tannery effluent. Ecotoxicol Environ Safety, 2007, 68: 372-378
    193.Qin Q W, Wu T H, Jia T L, Hegdec A, Zhang R Q. Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. J Virol Meth, 2006, 131: 58-64
    194.Quesada A, Byrnes RW, Krszoski S O, Petering D H. Direct reaction of H_2O_2 with sulfhydryl groups in HL-60 cells : zinc-metallothionein and other sites. Archiochem Biophys, 1996, 334: 241-250
    195.Rachlin J W, Perlmutter A. Fish cells in culture for study of aquatic toxicants. Water Res, 1968, 2: 409-414
    196.Repetto G, Sanz P. Neutral red uptake, cellular growth and lysosomal function: in vitro effects of 24 metals. ATLA, 1993, 501-507
    197.Roesijadi G. Metallothionein and its role in toxic metal regulatio. Com Biochem Physiol, Part C, 1996, 113(2): 117-123
    198.Ryan J A, Hightower L E. Evaluation of heavy metal ion toxicity in fish cells using a combined stress and cytotoxicity assay. Environ Toxicol Chem, 1994, 13: 1231-1240
    199.Sahul Hameed A S, Parameswaran V, Shukla R, Bright Singh I S, Thirunayukkarasu A R, Bhonde R R. Establishment and characterization of India's first marine fish cell line (SISK) from the kidney of sea bass (Lates calcarifer). Aquaculture, 2006, 257: 92-103
    200.Sanchez P, Llorente M T, Castarno A. Flow cytometric detection of micronuclei and cell cycle alterations in fish-derived cells after exposure to three model genotoxic agents: mitomycin C, vincristine sulfate and benzo(a)pyrene. Mutat Res, 2000, 465: 113-122
    201.Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J M, Ait-Aissaa S. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol, 2007, 19: 177-183
    202.Segner H. Fish cell lines as a tool in aquatic toxicology. In: Braunbeck T, Hinton D E, Streit B (Eds). Fish Ecotoxicology. Basel: Birkhauser Verlag, 1998, 1-38
    203.Schirmer K, Dixon D G, Greenberg B M, Bols N G. Ability of 16 priority PAHs to be directively cytotoxic to a cell line from the rainbow trout gill. Toxicology, 1998, 127(1-3): 129-141
    204.Schlenk D, Rice C D. Effect of zinc and cadmium treatment on hydrogen peroxide-induced mortality and expression of glutathione and metallothionein in a teleost hepatoma cell line. Aquat Toxicol, 1998, 43: 121-129
    205.Schultz N, Norrgren L, Grawe J, Johannisson A, Medhage O. Micronulei frequency in circulating erythrocytes from rainbow trout (Oncorhynchus mykiss) subjected to radiation, an image analysis and flow cytometric study. Comp Biochem Physiol, Part C, 1993, 105: 207-211
    206.Scott G R, Sloman K A, Rouleau C, Wood C M. Cadmium disrupts behavioral and physiological responses to alarm substance in juvenile rainbow trout (Oncorhynchus mykiss). J Exp Biol, 2003, 206(11): 1779-1791
    207.Shopsis C, Eng B. Rapid cytotoxicity testing using a semi- automated protein determination on cultured cells. Toxicol Letters, 1985, 26: 1-8
    208.Simon H U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5): 415-418, 3
    209.Singh N P, McCoy M T, Tice R R, Schneider E L. A simple technique quantization of low levels DNA damage in individual cells. Exp Cell Res, 1988, 175: 184-191
    210.Siraj B P, Usha R A. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotox Environ Safety, 2003, (56): 218-221
    211.Sloman K A, Baker D W, Ho C G, McDonald D G, Wood C M. The effects of trace metal exposure on agonistic encounters in juvenile rainbow trout, Oncorhynchus mykiss. Aquat toxicol, 2003a, 63(2): 187-196
    212.Sloman K A, Scott G R, Diao Z, Rouleau C, Wood C M, McDonald D G. Cadmium affects the social behaviour of rainbow trout, Oncorhynchus mykiss. Aquat toxicol, 2003b, 65(2): 171-85
    213.Souza V, Bucio L, Gutierrez-Ruiz M C. Cadmium uptake by a human hepatic cell line (WRL-68 cells). Toxicology, 1997, 120: 215-220
    214.Stebbing A R D. Hormesis the stitulation of growth by low levels of inhibitions. Sci Tol Environ, 1982, 22(1): 213-234
    215.Stosh SJ, Bagchi D, Hassoun E, Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol, 2001, 20(2): 77-88
    216.Sugiyama M, Tsuzuki K. Effect of GSH depletion on formation of paramagnetic chromium in Chinese hamster V-79 cells. FEBS Lett, 1994, 341: 273-276
    217.Tagliari K Cristina, Vargas V M F, Zimiani K, Cecchini R. Oxidative stress damage in the liver of fish and rats receiving an intraperitoneal injection of hexavalent chromium as evaluated by chemiluminescence. Environ Toxicol Pharmacol, 2004, 17: 149-157
    218.Telford W G, Fraker P J. Zinc induced apoptosis in bone marrow and splenic b-lineage lymphocytes of the mouse. Nutr Res, 1998, 18(2): 319-326
    219.Thaker J, Chhaya J, Nuzhat S, Mittal R, Mansuri A P, Kundu R. Effects of chromium(VI) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus Apes. Toxicology, 1996, 112: 237-244
    220.Theodorakis C M, Bickman J M, Elbi T, Shugart L R, Chesser R K. Genetics of radionuclide-contaminated mosquitofish populations and homology between Ganbusia affinis and G. holbrooki. Environ Toxicol Chem, 1998, 17: 1992-1998
    221.Thophon S, Kruatrachue M, Upatham E S, Pokethitiyook P, Sahaphong S, Jaritkhuan S. Histopathological alterations of white sea bass, Lates calcarifer, in acute and subehronic cadmium exposure. Environ Pollut, 2003, 121: 307-320
    222.Tong S L, Miao H Z. Attempts to initiate cell cultures from Penaeus chinensis tissues. Aquaculture, 1996, 147: 151-157
    223.Tong S L, Li H, Miao H Z. The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture, 1997, 56: 327-333
    224.Towel D W. Role of Na~+ -K~+ -ATPase in ionic regulation by marine and estuarine animals, Mar Biol Lett, 1981, 2(1): 107-122
    225.Urania C, Melchiorettoa P, Morazzonib F, Canevalib C, Camatinia. Copper and zinc uptake and hsp70 expression in HepG2 cells. Toxicol in Vitro, 2001, 15: 497-502
    226.Van der Kuyl A C, Gennep D R O, Dekker J T, Godsmit J. Routine DNA analysis based on 12S rRNA gene sequencing as a tool in the management of captive primates. J Med Primatol, 2000, 29(5): 307-315
    227.Verbost PM, Flik G, Lock R A C. Cadmium inhibition of Ca~(2+) uptake in rainbow trout gills. American J Physisol, 1987, 253: 216-221
    228.Verbost P M, Flik G, Lock R A C, Wendelaar Bonga S E. Cadmium inhibits plasma membrane calcium transport. J Membrane Biol, 1988, 102: 97-104
    229.Wang H, Lee S. Secondary structure of mitochondrial 12S rRNA among fish and its phylogenetic applications. Mol Biol Evol, 2002, 19: 138-148
    230.Wang C, Kuo C, Mok H, Lee S. Molecular phylogeny of elopomorph fishes inferred from mitochondrial 12S ribosomal RNA sequences. Zool Scripta, 2003a 32(3): 231-241
    231.Wang G, LaPatra S, Zeng L, Zhao Z, Lu Y. Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon, Acipenser transmontanus. Methds Cell Sci, 2003b, 25: 211-220
    232.Watanabe T, Kiron V, Satoh, S. Trace minerals in fish nutrition. Aquaculture, 1997, 151: 185-207
    233.Wharton J H, Ellender R D, Middlebmoks B L, Stocks P K, Lawler A R, Howse D. Fish Cell Culture: Characteristics of a Cell line from the Silver Perch, BairdiellaThrysura. In Vito Cell Dev Biol, 1977, 13(6): 389-397
    234.Wolf K, Quimby M C. Established eurythermic line of fish cells in vitro. Science, 1962, 135: 1065-1066
    235.Wong C K C, Chan D K O. Isolation of variable cell types from the gill epithelium of Japanses eel Anguilla Japonica. American J Physisol, 1999, 276: 363-372
    236. Wood C M. Toxic responses of the gill. In: Schlenk D, Benson WH (Eds), Target Organ Toxicity in Marine and Freshwater Teleosts. London, UK: Taylor and Francis, 2001, 1-89
    237.Yilmaz A B. Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay , Turkey. Environ Res, 2003, 92: 277-281
    238.Zauke G, Savinow V, Ritterhoff J, Savinova T. Heavymetals in fish from the Barents Sea (summer 1994). Sci Total Environ, 1999, 227: 161-173
    239.Zhao L H . Embryonic development of Chinese sucker (Myxocyprinus asiaticus). Reserv Fisheries, 2006, 26(1): 34-35
    240.Zhao Z, Montgomery-Brock D, Lee C S, Lu Y. Establishment, characterization and viral susceptibility of 3 new cell lines from snakehead, Channa striatus (Blooch). Methds Cell Sci, 2003, 2: 155-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700