用户名: 密码: 验证码:
水滑石向复合金属氧化物的转晶机制及相关产物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由层状双羟基复合金属氧化物材料(layered double hydroxides,简称LDHs,又叫类水滑石)在高温氧化条件下转化所得复合金属氧化物材料(Mixed Metal Oxides,简称MMO)在催化、磁学、光学等领域有着广泛的应用前景。在由LDHs向MMO转化过程中,材料的微观结构、物相组成及宏观形貌等发生一系列规律变化;同时,材料的最终性能也是与上述结构及物相变化密切相关的。本论文围绕LDHs材料高温转晶机制及所形成MMO材料的相界面处相互耦合作用导致性能的(?)系列变化开展基础研究。针对目前该领域中的科学问题,首先选取ZnAl-LDHs为前驱体,系统研究了其在高温转晶过程中的微观结构及物相变化,并提出相关LDHs向MMO的转晶机制。在此基础上,分别研究了MMO材料中不同物相界面处的耦合作用对最终性能的影响。此外,针对LDHs材料在光催化领域的争议,探讨了其去除有机染料分子中的真实原因。本研究工作可望为深入理解LDHs高温转晶过程及基于实际需要对MMO材料进行构筑并对最终性能进行调控奠定一定理论和实验基础。
     本论文的创新点和研究结果如下:
     首先,针对LDHs在高温氧化条件下的转晶机制这一关键科学问题,以ZnAl-LDHs为前驱体,采用包括高分辨投射电镜在内的多种表征手段对其向最终ZnO/ZnAl2O4纳米复合材料的转化过程进行研究。结果证实,ZnAl-LDHs分别经历了水滑石结构破坏与ZnO成核、ZnO的取向生长与ZnO/ZnAl2O4复合材料形成的三个阶段。在此基础上,提出了相关的LDHs向MMO的转晶机制,同时,该机制被证明具有良好的普适性。
     其次,基于LDHs向MMO转化过程中的结构特征,研究了ZnO/ZnAl2O4复合纳米材料的光催化性能。经高温转化后,在ZnAl2O4和ZnO相界面处形成了纳米异质结的结构;因此两种半导体物相间存在较强耦合作用,有利于分离光生电子—空穴对,从而与单相ZnO材料相比,所得ZnO/ZnAl2O4复合纳米材料具有更高的光催化活性。
     第三,针对纳米磁性粒子存在的“超顺磁限制”问题,以NiFe-LDHs为前体,在高温条件下利用LDHs的拓扑效应制备得到NiO/NiFe2O4纳米复合材料。NiO和NiFe2O4相界面处较强的铁磁/反铁磁相互耦合作用有效提高了NiFe2O4纳米粒子的磁热稳定性。与相同粒径的NiFe2O4粒子相比,NiO/NiFe2O4纳米复合材料中的NiFe2O4的截止温度(TB)提高了200K以上。
     本论文最后针对LDHs材料在去除有机染料分子领域的广泛应用,深入探讨了该反应本质。选取代表性MgAl-LDHs和ZnCr-LDHs为研究对象,基于一系列光照/暗处条件的去除不同染料分子实验及密度泛函计算结果,讨论了MgAl-LDHs和ZnCr-LDHs去除有机染料分子及ZnCr-LDHs不具备光催化活性的真实原因。
The mixted metal oxides (MMO) material, derived from Layered double hydroxides (LDHs) precursor after thermal treatment under high temperature, has potentially been used in many fields such as catalysis, magnetic, opticals and so on. The properties preformed by the MMO material are closely related with the microstructure, the composition and the morphology transformation from LDHs precursor. In the present thesis, we discuss the transformation mechanism of LDHs precursors under high temperature, and then focous on the relationship between the properties and the coupling interaction on the interface of different phases of the MMO material. Firstly, ZnAl-LDHs were chosed and studied the microstructure as well as composition transformation during the transformation process, and the transformation mechanism was proposed based on the experimental results. Then coupling effects on the properties of the MMO material, including the photocatalytic and magnetic properties were studied respectively. Moreover, considering the controversy about LDHs material in the photocatalytic field, we discuss the real cause of the removal of organic dye molecules using pristine LDHs materal. We believe that our work can be regarded as theorical and experimental basis for the understanding of the transformation mechanism from LDHs precursors to MMO material, and it also can provide some information for the structural design as well as the property regulation of the MMO material according to the actural requirments.
     The innovation of this thesis and results are as follows:
     Fristly, aiming at the point about the transformation mechanism under high temperature, the ZnAl-LDHs precursors were firstly chosed, and the transformation process to the ZnO/ZnAl2O4 nanocomposites were studied based on the various characterization methods including high resolution transmission electron microscope (HRTEM). The final results indicated that, the ZnAl-LDHs underwent three stages under different thermal treatment condition, includingⅰ) the destruction of the LDHs precursors and the formation of ZnO crystal nucleus;ⅱ) the orientional growth of ZnO andⅲ) the formation of ZnO/ZnAl2O4 nanocomposites. The transformation mechanism was proposed and it also has been proved to show good university.
     Secondly, based on the structural feature of the ZnO/ZnAl2O4 nanocomposites derived from ZnAl-LDHs precursors, the photocatalytic properties of the ZnO/ZnAl2O4 were discussed. After the thermal treatment, the nanoheterjunction structure was formed on the interface between the ZnO and ZnAl2O4 phases, and the strong coupling interaction between the two semiconductors made for the separation of photo-induced electron-hole pairs. Therefore, compared with single phase ZnO or similar ZnO/ZnAl2O4 fabricated by other physiochemical methods, the ZnO/ZnAl2O4 derived from ZnAL-LDHs precursors showed higher photocatalytic activity.
     Thirdly, in order to beat "superparamagnetic limit" of ferromagnetic nanoparticles, the NiO/NiFe2O4 nanocomposites were fabricated from NiFe-LDHs precursors after the topotactic transformation under high temperature. The strong ferromagnetic (FM)-antiferromagnetic (AFM) coupling interaction between the NiO and NiFe2O4 phases leads to the obvious improvement of the magnetic stability of the NiFe2O4 nanoparticles. The blocking temperature of NiFe2O4 nanoparticles in NiO/NiFe2O4 nanocomposite film increased more than 200 K than that for pure NiFe2O4 nanoparticles with similar size.
     Finally, considering the extensive use of LDHs in the field of removal of organic dye molecules in the solution, the reaction essence was discussed. Representative MgAl-LDHs and ZnCr-LDHs were chosed; then series of experiments under/without visible light irradiation and density functional computation have been done. The real reason for the removal of different organic dye molecoules from the solution with the MgAl-LDHs and ZnCr-LDHs were discussed.
引文
[1]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007
    [2]Bone J. S. Development and Characterisation of the Interlayer Chemistry of Layered Double Hydroxides, University of Exter, June.,1995.
    [3]沈家骢,超分子层状结构—组装与功能,北京,科学出版社,2003:125-185.
    [4]Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications [J]. Catal. Today.,1991,11:173-301.
    Rives V. Layered Doubble Hydroxides:Present and Future, New York:Nova Science Publishers.,2001.
    [6]Zelinskii N. D., Kommarevskii V. Catalytic action of nickelated Al2O3 hydrates [J]. Chem. Ber.,1924,57B:667-669.
    [7]Allmann R., Jepsen H. P. Structure of hydrotalcite, Neues Jahrb Mineral [J]. Monasth., 1966,12:544-551.
    [8]Taylor H. F. W. Crystal structures of some double hydroxide minerals [J]. Mineral. Mag., 1973,39:377-389.
    [9]Evans D. G, Slade R. C. T. Structural Aspects of Layered Double Hydroxides [J]. Struct. Bond.,2006,119:1-87.
    [10]Basile F., Fornasari G., Gazano M., Vaccari A. Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals [J]. Appl. Clay Sci.,2000,16:185.
    [11]Basile F., Basini L., Fornasari G., Gazzano M., Trifiro F., Vaccari A. New hydrotalcite-type anionic clays containing noble metals [J]. Chem. Commun.,1996:2436-2437
    [12]Velu S., Ramaswamy V., Sivasanker S. New hydrotalcite-like anionic containing Zr4+ in the layers [J]. Chem. Commun.,1997:2107-2108.
    [13]Shiozaki R., Hayakawa T., Liu Y. Y., Ishii T., Kumagai M., Hamakawa S., Suzuki K., Itoh T., Shishido T., Takehira K. Methanol decomposition to synthesis gas over supported Pd catalysts prepared from synthetic anionic clays [J]. Catal. Lett.,1999,58:131.
    [14]Velu S., Suzuki K., Okazaki M., Osaki T., Tomura S., Ohashi F. Synthesis of New Sn-Incorporated Layered Double Hydroxides and Their Thermal Evolution to Mixed Oxides [J]. Chem. Mater.,1999,11:2163-2172.
    [15]Vaccari A. Preparation and catalytic properties of cationic and anionic clays [J]. Catal Today.,1998,41:53-71.
    [16]Fornasari G, Gazzano M, Matteuzzi D, Trifro F, Vaccari A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides [J]. Appl. Clay Sci.,1995,10:69-82.
    [17]Yun S. K., Pinnavaia T. J. Water Content and Particle Texture of Synthetic Hydrotalcite-like Layered Double Hydroxides [J]. Chem. Mater.,1995,7:348-354.
    [18]Zhao Y., Li F., Zhang R., Evans D. G., Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14:4286-4291.
    [19]Abello S., Perez-Ramirez J. Tuning Nanomaterials'Characteristics by a Miniaturized In-Line Dispersion-Precipitation Method:Application to Hydrotalcite Synthesis [J]. Adv. Mater.,2006,18:2436-2439
    [20]Drezdzon M. A. Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors [J]. Inorg. Chem.,1988,27:4628-4632
    [21]Rocha J., Del Arco M., Rives V., Ulibarri M. A. Reconstruction of layered double hydroxides from calcined precursors:a powder XRD and A127 MAS NMR study [J]. J. Mater. Chem.,1999,9:2499-2503
    [22]Ogawa M., Asai S. Hydrothermal Synthesis of Layered Double Hydroxide Deoxycholate Intercalation Compounds [J]. Chem. Mater.,2000,12:3253-3255
    [23]Newman S. P., Jones W., O'Connor P., Stamires D. N. Synthesis of the 3R2 polytype of a hydrotalcite-like mineral [J]. J. Mater. Chem.2002,12:153-155
    [24]Adachi-Pagano M., Forano C., Besse J. P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology [J]. J. Mater. Chem.,2003,13:1988-1993
    [25]Oh J. M., Hwang S. H., Choy J. H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles [J]. Solid State Ionics,2002,151:285-291
    [26]杨飘萍,宿美平,杨胥微,等.尿素法合成高结晶度类水滑石[J].无机化学学报,2003,19(005):485-490
    [27]Kagunya W., Hassan Z., Jones W. Catalytic Properties of Layered Double Hydroxides and Their Calcined Derivatives [J]. Inorg. Chem.,1996,35:5970-5974
    [28]Li F., Duan X. Applications of layered double hydroxides [J]. Struct. Bond.,2006,119: 193-223
    [29]Monte R. D., Kaspar J. Towards understanding, control and application of layered double hydroxide chemistry [J]. J. Mater. Chem.,2005,15:633-648
    [30]Leroux F., Taviot-Gueho C. Fine tuning between organic and inorganic host structure:new trends in layered double hydroxide hybrid assemblies [J]. J. Mater. Chem.,2005,15: 3628-3642
    [31]Evans D. G., Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Commun.,2006:485-496
    [32]Katsuomi T., Tetsuya S., Peng W. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg/Al hydrotalcite-like anionic clay [J]. J. Catal.,2004,221: 43-54
    [33]Dubey A., Kannan S., Velu S. Catalytic hydroxylation of phenol over CuM(Ⅱ)M(Ⅲ) ternaryhydrotalcites, where M(Ⅱ)= Ni or Co and M(Ⅲ)=Al, Cr or Fe [J]. Appl. Catal. A: Gen.,2003,238:319-326
    [34]Miyata S, Purifying agent for cooling water used in nuclear reactors, and method for purification of thecooling water[P]. EP Patent,152010.1985
    [35]Constantino V R L, Pinnavaia T J. Basic Properties of Mg2+1-xAl3+x Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions[J]. Inorg. Chem.,1995,34:883-892
    [36]许国志,郭灿雄.PE膜中层状双羟丛复合氢氧化物的红外吸收性能[J].应用化学,1999,16(003):45-48
    [37]Leroux F., Taviot-Gueho C. Fine tuning between organic and inorganic host structure:new trends in layered double hydroxide hybrid assemblies [J]. J. Mater. Chem.,2005,15: 3628-3642.
    [38]Carr S. W., Franklin K. R., Nunn C. C., Pasternak J. J., Scott I. R. Sunscreen compounds based on UV absorber introduced into layered double hydroxides [P], US Patent.,5474762. 1995.
    [39]Lin Y. J., Wang J. R. David G. E., Li D. Q. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin [J]. J. Phys. Chem. Solids.,2006,67: 998-1001
    [40]黄宝晟,李峰,张慧,矫庆泽,段雪,郝建薇.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19:71-75
    [41]戴冬坡.银锌基防霉杀菌材料的制备和性能研究[D].北京:北京化工大学,2002
    [42]Khan A. I., Lei L. X., Norquist A. J., O'Hare D. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide [J]. Chem. Commun.,2001,2342-2343
    [43]Ogawa M., Kuroda K. Photofunctions of Intercalation Compounds [J]. Chem. Rev.,1995, 95:399-438
    [44]Mousty C, Therias S, Forano C, Besse J P. Anion-exchanging clay-modified electrodes: synthetic layered double hydroxides intercalated with electroactive organic anions[J]. J. Electroanal. Chem.,1994,374:63-69
    [45]Liu J. J., Li F., Evans D. G., Duan X. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor [J]. Chem. Commun.,2003: 542-543
    [46]Li F., Liu J. J., Evans D. G., Duan X. Stoichiometric Synthesis of Pure MFe2O4 (M) Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors [J]. Chem. Mater.,2004,16:1597-1602
    [47]刘俊杰,李峰.由Mg—Fe(Ⅱ)—Fe(Ⅲ) LDH层状前体制备MgFe2O4尖晶石的研究[J].化学学报,2003,61(001):51-57
    [48]Millange F., Walton R.I., O'Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J. Mater. Chem.2000,10:1713-1720.
    [49]杨修春,刘维学,M. Dubiel, D. Ehrt,徐政。X射线吸收精细结构谱在材料科学中的应用[J]。功能材料,2005,1146-1150
    [50]del Acro M., Malet, P., Trujillano, R., Rives V. Synthesis and characterization of hydrotalcites containing Ni(Ⅱ) and Fe (Ⅲ) and their calcination products [J]. Chem. Mater. 1999,11:624-633.
    [51]Weir M. R., Kydd R. A. Synthesis of heteroployoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via LDH-Hydroxide precursors [J]. Inorg. Chem.1998, 37,5619-5624.
    [52]Zou L., Xiang X., Evans D. G., Duan X. Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor [J]. Chem. Mater.2006,18:5852-5859.
    [53]Suzuki S. V. K., Okazaki M., Osaki T., Tomura S., Ohashi F. Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides [J]. Chem.. Mater.1999,11:2163-2172.
    [54]Xu Z. P., Zeng H. C. Thermal evolution of cobalt hydroxides:a comparative study of their various structural phases [J]. J. Mater. Chem.1998,8:2499-2506.
    [55]Lombardo G. M., Pappalardo G. C. Thermal effects on mixed metal (Zn/Al) layered double hydroxides:direct modeling of the X-ray powder diffraction line shape through molecular dynamics simulations [J]. Chem. Mater.2008,20:5585-5592.
    [56]Markov L., Petrov K., Lyubchova A. Topotactic preparation of copper-cobalt oxide spinels by thermal decomposition of double-layered oxide hydroxide nitrate mixed crystals [J]. Solid State Ionics,1990,39:187-193.
    [57]Li C., Wang L. Y., Wei M., Evans D. G., Duan X. Large oriented mesoporous self-supporting Ni-Al oxide films derived from layered double hydroxide precursors [J]. J. Mater. Chem.2008,18:2666-2672.
    [58]Mintova S., Olson N. H., Valtchev V., Bein T. Mechanism of zeolite A nanocrystal growth from colloids at room temperature [J].1999,283:958-960.
    [59]Zhao N. N.,. Pan D. C, Nie W., Ji X. L. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization[J]. J. Am. Chem. Soc.2006,128: 10118-10124.
    [60]Sickafus K. E., Wills J. M., Structure of spinel [J]. J. Am. Ceram. Soc.,1999,82: 3279-3292.
    [61]周志刚铁氧体磁性材料[M].北京:科学出版社,1981
    [62]向勇,谢道华,尖晶石结构功能材料的新进展[J].磁性材料及器件,2001,3,21-25.
    [63]Evans R C, A introduction to crystal chemistry [M]. Cambridge University Press,1976.
    [64]Wang L., Li F. S. Mossbauer study of nanocrystalline Ni-Zn ferrite [J]. J. Magn. Magn. Mater.,2001,223:233-237
    [65]丁子文,翁文剑.溶胶—凝胶技术制备材料的进展[J].硅酸盐通报,1993.21:443-450
    [66]Bowen C R, Derby B. Self-propagating High Temperature Synthesis of Ceramic Transactions [J]. British Ceramic Transactions,1997,96:25-27
    [67]Poddar, Srikanth H., Morrison S. A. Inter-particle interactions and magnetism in manganese-zinc ferrite nanoparticles [J]. J. Magn. Magn. Mater.,2005,288:443-451
    [68]陈志君.铁氧体材料研究进展[J]. Ceramics Scicence & Art,2003,3:31-35
    [69]李东风,贾振斌,魏雨.尖晶石型软磁铁氧体纳米材料的制备研究进展[J].电子元件与材料,2003,22(6):37-40
    [70]Liu J. J., Li F., Evans D. G., Duan X. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor [J]. Chem. Commun.,2003: 542-543
    [71]Li F., Liu J. J., Evans D. G., Duan X. Stoichiometric Synthesis of Pure MFe2O4 (M) Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors [J]. Chem. Mater.,2004,16:1597-1602
    [72]刘俊杰,李峰.由Mg—Fe(Ⅱ)—Fe(Ⅲ) LDH层状前体制备MgFe2O4尖晶石的研究[J].化学学报,2003,61(001):51-57
    [73]周东祥,张绪礼,李标荣,半导体陶瓷及应用[M].武汉:华中理工大学出版社,1991.
    [74]李标荣,张绪礼,电子传感器[M].北京:国防工业出版社,1993.
    [75]Mcginnis R. N., Drehamn L. E., Pitzer E. W. European Patent Appl.,83104.904.4.1983.
    Zhang C. L., Liu Z. Q., Wu T. H., Yang H. M., Jiang Y. Z., Peng S. Y., Complete reduction of carbon dioxide to carbon and indirect conversion to O2 using cation-excess magnetite [J]. Mater. Chem. Phys.,1996,44,194-198.
    [77]姜瑞霞,谢在库,张成芳,陈庆龄,镁铝尖晶石的制备及在催化反应中的应用[J].催化剂与载体制备,2003,11(1),47-51.
    [78]刁春丽,娄广辉.铁氧体磁性材料的研究现状与展望[J].山东陶瓷,2006,1:18-21
    [79]Hamdeh H. H., Xia Z., Foehrweiser R., McCormick B. J., Willey R. J., Busca G. Mossbauer spectrometry study of magnesioferrite particles [J]. J. Appl. Phys.,1994, 76(2):1135-1140
    [80]关小蓉,张剑光,朱春城,郝晓东,周善东.锰锌、镍锌铁氧体的研究现状及最新进展[J].材料导报,2006,20:109-112
    [81]都有为.磁性材料进展[J].物理学报,2000,6:323-332
    [82]Meisen U., Eiling A., Temperature dependence of magnetic properties and site occupation of various barium-ferrites [J]. IEEE Trans. Magn.,1990,26:21-23
    [83]蒋仁培,魏克珠.微波铁氧体理论与技术[M].北京:科学出版社,1984,240-260
    [84]李俊,冷观武,彭虎.旋磁铁氧体材料的微波烧结及其在环行器中的应用研究[J].磁性材料及器件,2006,5:47-49
    [85]Pardavi-Horvath M., Microwave applications of soft ferrites [J]. J. Magn. Magn. Mater., 2000,215:171-183
    [86]Jeong U., Teng X. W., Wang Y., Yang H., Xia Y. N. Superparamagnetic colloids:controlled synthesis and nich applications [J]. Adv. Mater.,2007,19:33-60
    [87]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2008
    [88]Hsieh C. T., Liu J. Q., Lue J. T. Magnetic force microscopy studies of domain walls in nickel and cobalt films [J]. Appl. Surf. Sci,2005,252:1899-1909
    [89]Yang T., Hirohata A., Kimura T., Otani A. Spin-transfer-induced magnetic domain formation [J]. J. Appl. Phys.,2006,100:0739061-0739064
    [90]Xuan S. H., Wang Y. X., Yu J. C., Leung K. C. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles [J]. Chem. Mater.,200921:5079-5087
    [91]Ge J. P., Hu Y. X., Zhang T. R., Yin Y. D. Superparamagnetic composite colloids with anisotropic structures [J]. J. Am. chem. Soc.,2007,29:8974-8975
    [92]Berkowitz A. E., Takano K. Exchange anisotropy [J]. J. Magn. Magn. Mater.,1999,200: 552-570
    [93]Nogues J., Sort J., Langlais V. Exchange bias in nanostructures [J]. Phys. Rep,2005,422: 65-117
    [94]Nogues J. Exchange bias in ferromagnetic nanoparticles embedded in an antiferromagnetic matrix [J]. Int. J. Nanotechnol.,2005,2:23-42
    [95]Darling S. B., Bader S. D. A materials chemistry perspective on nanomagnetism [J]. J Mater. Chem.,2005,15:4189-4195
    [96]Kodama R. H. Magnetic nanoparticles [J]. J. Magn. Magn. Mater.,1999,200:359-372
    [97]Martin J. I., Nogues J., Liu K., Vicent J. L., Schuller I. K. Ordered magnetic nanostructures:fabrication and properties [J]. J. Magn. Magn. Mater.,2003,256:449-501
    [98]李琳.多项光催化在水污染治理中的应用[J].环境科学进展,1994,2(6):23-28
    [99]张金龙,陈锋,何斌,光催化[M]。 上海:华东理工大学出版社,2004,10
    [100]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003,5
    [101]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002,12
    [102]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Jr. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.1995,95,735-758.
    [103]Abdullah M. Effects of common inorganic anions on rates of photocatalysts for solar energy conversion [J]. Sol. Energ.,1990,44:83-98
    [104]Hsiao C. Y., Lee C. L., Ollis D. F. Heterogeneous photocatalysis:degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CHCl4), with illuminated photocatalyst [J]. J. Catal.,1983,82:418-423
    [105 Lazzeri M., Vittadini A., Sellon A. Structure and energetics of stoichiometric TIO2 anatase surfaces [J]. Phys. Rev. B,2001,63:1-8.
    [106]Mclaren A., Valdes-Solis T., Li G. Q., Tsang S. H. Shape and size effects of ZnO nanocrystals on photocatalytic activity [J]. J. Am. Chem. Soc.2009,131:12540-12541.
    [107]Zhang H. J., Chen G. H., Bahnemann D. W. Photoelectrocatalytic materials for environmental applications [J]. J. Mater. Chem.2009,19:5089-5121.
    [108]Zheng Y. H., Che C. Q., Zhan Y. Y., Lin X. Y., Zheng Q., Wei K. M., Zhu J. F. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst:correlation between structure and property [J].
    [109]Choi W., Termin A., Hoffmann M. R. The role of metal-ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge-carrier recombination dynamics [J]. J. Phys. Chem.,1994,98:13669-13679
    [110]Borgarello E., Kiwi J., Gratzel M., Pelizzetti E., Visca M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles [J]. J. Am. Chem. Soc.,1982,104:2996-3002
    [111]Wilker K., Breuer H. D. The influence on transition metal doping on the physical and photocatalytic properties of titania [J]. J. Photochem. Photobio. A,1999,121:49-53
    [112]Anpo M., Takeuchi M. The design and development of highly reactive titamium oxide photocatalysts operating under visible light irradiation [J]. J. Catal.,2003,216:505-516.
    [113]Izumi Y., Kiyotaki F., Yoshitake H., Aika K., Sugihara T, Tatsumi T., Tanizawa Y., Shidod T., Iwasawad Y. Structure of low concentration of vanadium on TiO2 determined by XANES and abinitio calculations [J]. CHem. Commun.,2002:2402-2403
    [114]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. chem.. Phys. Lett.,1986,123:126-131
    [115]Asahi R, Morikawa T, Ohwaki T, Aoki K, Tage Y. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271
    [116]Diwald O., Thompson T. L., Goralski E. G.,Walck S. D., Yates J. T. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals [J]. J. Phys. Chem., B, 2004,108:52-57
    [117]Irie H., Washizuka S., Yoshino N., Shimoto K. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films [J]. Chem. Commun.,2003:1298-1299
    [118]Sideris P. J., Nielsen, U. G., Gan Z. H., Grey C. P. Hydroxides revealed by multinuclear NMR spectroscopy [J]. Science,2008,321,113-117.
    [119]Liu J. P., Li Y. Y., Huang X. T., Li G. Y., Li Z. K. Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes [J]. Adv. Funct. Mater.2008,18:1448-1458.
    [120]Zink N., Therese H. A., Pansiot J., Yella Aswani, Banhart F., Tremel W. In situ heating TEM study of onion-like WS2 and MoS2 nanostructures obtained via MOCVD [J]. Chem. Mater.2008,20:65-71.
    [121]Wang Z. L. Zinc oxide nanostructures:growth, properties and applications [J]. J. Phys.: Condens. Matter,2004,16:829-858.
    [122]Wu J. J., Liu S. C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Adv. Mater.2002,14:215-218
    [123]Yang P., Yan H., Mao S., Russo R., Johnson J., Saykally R., Morris N., Pham J., He R., Choi H.-J. Controlled growth fo ZnO nanowires and their optical properties [J]. Adv. Func. Mater.2002,12:323-331
    [124]Pan Z. W., Wang Z. L. Nanobelts of semiconducting oxides [J]. Science,2001,291: 1947-1949
    [125]Shinagawa T., Lzaki M., Inui H., Murase K., Awakura Y. Microstructure and Electronic Structure of Transparent Ferromagnetic ZnO-Spinel Iron Oxide Composite Films [J]. Chem. Mater.,2006,18:763-770.
    Dumeignil F, Rigole M, Guelton M, Grimblot J, Characterization of boria-alumina mixed oxides prepared by a sol-gel method.1. NMR characterization of the xerogels [J]. Chem. Mater.,2005,17:2361-2368.
    Meyer F, Hempelmann R, Mathur S, Veith M, Microemulsion mediated sol-gel synthesis of nano-scaled MAl2O4(M=Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors [J]. J. Mater. Chem.,1999,9:1755-1763.
    [128]Morey O, Goeuriot P, "MgAlON" spinel structure:A new crystallographic model of solid solution as suggested by 27Al solid state NMR [J]. J. Eur. Ceram. Soc.,2005,25:501-507.
    [129]Van der Laag N J, Snel M D, Magusin P C M M, de With G, Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4) [J]. J. Eur. Ceram. Soc.,2004,24(8),2417-2424.
    [130]Lizama C., Freer J., Baeza J., Mansilla H. D. Ibero-Amerian workshop on photocatalysis, Seville, Spain; Elsevier Science BV:Seville, Spain,2002:p 235-246
    [131]Wan Q.,Li Q. H., Chen Y. J., Wang T. H., He X. L., Li J. P., Lin C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl. Phys. Lett.2004, 84:3654-3656.
    [132]Keis K., Vayssieres L., Lindquist S. E., Hagfeldt A. Nanostructured ZnO electrodes for photovoltaic applications, proceddings of the fourth internationanl conference on nanostructured materials, Stokholm, Sweden, June 14-19,1998:pp487-490
    [133]Wang Y., Wu K. As a whole:crystalline zinc aluminate nanotube array-nanonet [J]. J. Am. Chem. Soc.2005,127:9686-9687
    [134]Sampath S. K., Cordaro J. F. Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels [J]. J. Am. Ceram. Soc.1998,81:649-654
    [135]Goya G F, Berquo T S, Fonseca F C, Morales M P, Static and dynamic magnetic properties of spherical magnetite nanoparticles [J]. J. Appl. Phys.2003,94:3520-3528.
    [136]Fujishima A, Honda K. Electrochemical phtoocatalyssi of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [137]Zhang H J, Chen G H, Bahnemann D W. Photoelectrocatalytic materials for environmental applications [J].J. Mater. Chem.,2009,19:5089-5121.
    [138]Mclaren A, Valdes-Solis T, Li G Q, Tsang S C. Shape and size effects of ZnO nanocrystals on photocatalytic activity [J]. J. Am. Chem. Soc.2009,131:12540-12541.
    [139]Grazel M. Photoelectrochemical cells. Nature,2001,414,338-344.
    [140]Wang J C, Liu P, Fu X Z, Li Z H, Han W, Wang X X. Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes [J]. Langmuir 2009,25:1218-1223.
    [141]Zhang L. W., Fu H. B., Zhu Y. F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon [J]. Adv. Funct. Mater.2008,18:2180-2189
    [142]Agrawal M., Gupta S., Pich A., Zafeiropoulos N. E., Stamm M. A facile approach to fabrication of ZnO-TiO2 hollow spheres [J]. Chem. Mater.2009,21:5343-5348
    [143]Tak Y. J. Kim H. Y, Lee D. W., Yong K. J. Type-Ⅱ CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process:enhanced photocatalytic activity [J]. Chem. Comm.2008:4585-4587
    [144]Jang J. S., Yu C.-J., Choi S. H., Ji S. M., Kim E. S., Lee J. S. Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity [J]. Journal of Catalysis,2008,254:144-155
    [145]Wang Z. Y, Huang B. B., Dai Y, Qin X. Y, Zhang X. Y, Wang P., Liu H. X., Yu J. X. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method [J]. J. Phys. Chem. C 2009,113:4612-4617
    [146]Zheng L. R., Zheng Y. H., Chen C. Q., Zhan Y. Y., Lin X. Y., Zheng Q., Wei K. M., Zhu J. F. Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity [J]. Inorg. Chem.2009,48:1819-1825
    [147]Hameed A., Montini T., Gombac V., Fornasiero P. Photocatalytic decolourization of dyes on NiO-ZnO nano-composites [J]. Photochem. Photobiol. Sci.2009,8:677-682
    [148]Li Y. J., Li X. D., Li J. W., Yin J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study [J]. Water Res.2006,40:1119-1126
    [149]Matos J., Laine J., Herrmann J.-M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]. Appl. Catal. B:Environ. 1998,18:281-291
    [150]Shi W. S., Zeng H., Sahoo Y.,Ohulchanskyy T. Y., Ding Y., Wang Z. L., Swihart M., Prasad P. N. A general approach to binary and ternary hybrid nanocrystals [J]. Nano Lett.2006,6: 875-881.
    [151]Sousa M H, Tourinho F A. New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures [J]. J. Phys. Chem. B.,2001,105:1168-1175
    [152]Sugimoto M. The past, present, and future of ferrites [J]. J. Am Ceram. Soc.,1999,82: 269-280
    [153]Corr S. A., Rakovich Y. P., Gunko Y. K. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications [J]. Nanoscale. Res. Lett.,2008,3:87-104
    [154]Hodes G. When small is different:some recent adcances in concepts and applications of nanoscale phenomena [J]. Adv. Mater.,2007,19:639-655
    [155]Wang L. Y, Luo J., Fan Q., Suzuki, M., Suzuki I. S., Engelhard M. H., Lin Y. H., Wang J. Q., Zhong C. J. Monodispersed core-shell Fe3O4@Au nanoparticles [J]. J. Phys. Chem. B 2005,109:21953-21601.
    [156]Casu A., Casula M. F., Corrias, A., Falqui A., Loche D., Marras S. Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels [J]. J. Phys. Chem. C 2007,111:916-922.
    [157]Lu X. G., Liang G. Y., Zhang, Y. M., Zhang W. Synthesis of FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite and its high frequency complex permeability [J]. Nanotechnology 2007, 18:0150701-1-0150701-5.
    [158]Skumryev V., Stoyanov S., Zhang Y., Hadjipanayis G., Glvord D., Nogues J. Beating the superparamagnetic limit with exchange bias [J].Nature.,2003,423:850-853
    [159]Weller D., Moser A. Thermal effect limits in ultrahigh-density magnetic recording [J]. IEEE Trans. Magn.,1999,35:4423-4437
    [160]Bellotto M, Rebours B, Clause O, Lynch J. Hydrotalcite decomposition mechanism:a clue to the structure and reactivity of spinel-like mixed oxides [J]. J.Phys Chem,1999,100: 8535-8542
    [161]Sideris P J, Nielsen U G, Gan Z H, Grey C P, Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy [J]. Science,2008,321:113-117
    [162]Tian Z. M., Yuan S. L., Liu L., Yin S. Y., Jia L. C., Li P., Huo S. X., Li J. Q. Exchang bias training effect in NiFe2O4/NiO nanocomposites [J]. J. Phys. D:Appl. Phys.2009,42: 035008-035011
    [163]Evans D. G., Slade R. C. T. Structural Aspects of Layered Double Hydroxides [J]. Struct. Bond.,2006,119:1-87.
    [164]Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications [J]. Catal. Today.,1991,11:173-301.
    [165]Labajos F. M., Rives V., Ulibarri M. A. Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg2Al hydrotalcite2like Materials [J]. J. Mater. Sci., 1992,27:1546-1552.
    [166]Xu Z. P., Zeng H. C. Abrupt Structural Transformation in Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions [J]. J. Phys. Chem. B,2001,105:1743-1749.
    [167 Wu G. Q., Wang L. Y., Yang L., Yang J. J. Factors affecting the interlayer arrangement of transition metal-ethylenediaminetetraacetate complexes intercalated in Mg/Al layered double hydroxides [J]. Eur. J. Inorg. Chem.,2007:799-808.
    Xu Z. P., Zeng H. C. Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds [J]. Chem. Mater.,1999,11:67-74.
    [169]Kannan S., Naraynan A., Swamy C. S. Effect of composition on the physicochemical properties of nickel aluminium hydrotalcites [J]. J. Mater. Sci.,1996:2353-2360.
    [170]Li L. P., Li G. S., Smith Jr. R. L., Inmata H. Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica [J]. Chem. Mater.2000, 12,3705-3714.
    [171]Ishii M., Nakahira M., Yamanaka, T. Infrared absorption spectra and cation distribution in (Mn, Fe)3O4 [J]. Solid State Commun.1972,11:209-212.
    [172]Horanyi T. S. Investigation of the effects of heat treatment on the β-Ni(OH)2-β-NiOOH system using IR spectroscopy [J]. Thermochim. Acta 1989,142:143-150.
    Morup, S. In Mossbauer Spectroscopy Applied to Inorganic Chemistry; Long, G. J., Ed.; Plenum Press:New York,1987; Vol.2, p 89.
    [174]Sawatzky, G. A.; Van Der Woude, F.; Morrish, A. H. Recoilless-fraction ratios for Fe57 n octahedral and tetrahedral sties of a spinel and a garnet [J]. Phys. Rev.1969,183:383-386.
    [175]Liu C., Zou B. S., Rondinone A. J., Zhang Z. J. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings [J]. J. Am. Chem. Soc.2000,122:6263-6267
    [176]Machala L., Zboril R., gedanken A. Amorphous Iron(Ⅲ) oxide-A review [J]. J. Phys. Chem. B 2007,111:4003-4018.
    [177]Sepelak V., Bergmann I., Feldhoff A., Heitjans P., Krumeich F., Menzel D., Litterst F. J., Campbell S. J., Becker K. D. Nanocrystalline nickel ferrite, NiFe2O4:mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior [J]. J. Phys. Chem. C 2007,111:5026-5033.
    [178]Pettigrew K. A., Long J. W., Carpenter E. E., Baker C. C., Lytle J. C., Chervin C. N., Logan M. S., Stroud R. M., Rolison D. R. Nickel ferrite aerogels with monodisperse nanoscale building blocks-the importance of processing temperature and atmosphere [J]. ACS Nano.2008,4:784-790.
    [179]Trohidou K. N., Vasilakaki M., Del Bianco L., Fiorani D., Testa A. M. Exchange bias in a magnetic ordered/disordered nanoparticle system:a monte carlo simulation study [J]. J. Magn. Magn. Mater.2007,316:82-85.
    [180]Artus M., Ammar S., Sicard L., Piquemal J.-Y., Herbst F., Vaulay M.-J., Fievet F., Richard V. Synthesis and magnetic properties of ferromagnetic CoFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix [J]. Chem. Mater.2008,20:4861-4872
    [181]Tian Z. M., Yuan S. L., Yin S. Y., Liu, L., He J. H., Duan H. N., Li P., Wang, C. H. Exchange bias effect in a granular system of NiFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix [J]. Appl. Phys. Lett.2008,93,222505-222508
    [182]Jensen P J. Magnetic recording medium with improved temporal stability [J]. Appl. Phys. Lett.,2001,78:2190-2192
    [183]Markov L., Petrov K., Lyubchova A. Topotactic preparation of copper-cobalt oxide spinels by thermal decomposition of double-layered oxide hydroxide nitrate mixed crystals [J]. Solid State Ionics,1990,39:187-193.
    [184]Ozkaya, B. Adsorption and desorption of phenol on activated carbon and a comparison of isoparson of isotherm models [J]. J. Hazard. Mater. B 2006,129,158-163.
    Ozdemir, O.; Armagan, B.; Turan, M.; Celik, M. S. Comparison of the adsorption characterization of azo-reactive dyes on mezoporous minerals [J]. Dyes Pigments,2004, 62,49-60.
    Cantu, M.; Lopez-Salinas. E.; Valente, J. S.; Montiel, R. SOX removal by calcined MgAlFe Hydrotalcite-like materials:effects of the chemical composition and the cerium incorporation method [J]. Environ. Sci. Technol.2005,39,9715-9720.
    Panan, P. C.; Gomes, G. A.; Valim, J. B. Adsorption of sodium dodecyl sulfate on layered double hydroxides [J]. Micropor. Mesopor. Mater.1998,21,659-665.
    Orthman, J.; Zhu, H. Y.; Lu, G. Q. Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions [J]. Sep. Purif. Technol.2003,31,53-59.
    [189]Cardoso, L.P.; Valim, J. B. Study of acids herbicides removal by calcined Mg-Al-CO3-LDH [J]. J. Phys. Chem. Solids 2006,67,987-993.
    Legrouri, A.; Lakraimi, M.; Barroug, A.; De Roy, A. Besse, J. P. Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides [J]. Water Res.2005,39,3441-3448.
    [191]You, Y. W.; Zhao, H. T.; Vance, G. F. Adsorption of dicamba (3,6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined-layered double hydroxide [J]. Appl. Clay Sci.2002,21,217-226.
    [192]S. N. Frank, A. J. Bard, Semiconductor electrodes. Ⅱ. Eletrochemistry at n-type titanium dioxide electrodes in acetonitrile solutions [J]. J. Am. Soc.,1975,97,7427-7433.
    [193]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces:principles, mechanisms, and selcted results [J]. Chem. Rev.,1995,95,735-758.
    [194]J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, C. Li, Important of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angew. Chem. Int. Ed.2008,47,1766-1769.
    [195]O. Seven, B. Dindar, S. Aydemir, D. Metin, M. A. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and aqueous suspensions with TiO2, ZnO and sahara desert dust [J]. J. Photochem. Photobiol. A-Gen.,2004,165,103-107.
    [196]A. Mclaren, T. Valdes-Solis, G. Q. Li, S. C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity [J]. J. Am. Chem. Soc.,2009,131,12540-12541.
    [197]F. Lu, W. P. Cai, Y. G. Zhang, ZnO hierarchical micro/nanoarchitectures:solvothermal synthesis and structurally enhanced photocatalytic performance [J]. Adv. Func. Mater., 2008,18,1047-1056.
    [198]D. Meissner, R. Memming, B. Kastening, Photoelectrochemistry of cadmium sulfide.1. Reanalysis of photocorrosion and flat-band potential [J]. J. Phys. Chem.,1988,92, 3476-3483.
    [199]R. Baron, C. H. Huang, D. M. Bassani, A. Onopriyenko, M. Zayats, I. Willner, Hydrogen-bonded CdS nanoparticle assemblies on electrodes for photoelectrochemical applications [J]. Angew. Chem. Int. Ed.,2005,44,4010-4015.
    [200]X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation [J]. J. Am. Chem. Soc.,2008,130,7176-7177.
    Y. F. Zhao, M. Wei, J. Lu, Z. L. Wang, X. Duan, Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance [J]. ACS Nano, 2009,3,4009-4016.
    [202]X. Shu, J. He, D. Chen, Tailoring of phase composition and photoresponsive properties of Ti-containing nanocomposites from layered precursor [J]. J. Phys. Chem. C,2008,112, 4151-4158.
    [203]X. F. Zhao, L. Wang, X. Xu, X. D. Lei, S. L. Xu, and F. Z. Zhang. Fabrication and Photocatalytic Properties of Novel ZnO/ZnAl2O4 Nanocomposite with ZnAl2O4 Dispersed inside ZnO Network. AICHE Journal, DOI:10.1002/aic.12597
    A. Mantilla, F. Tzompantzi, J. L. Fernandez, J. A. I. Diaz Gogora, G. Mendoza, R. Gomez. Photodegradation of 2,4-dichlorophenoxyacetic acid using ZnAlFe layered double hydroxides as photocatalysts. Catalysis Today 2009,148,119-123.
    [205]C. G. Silva, Y. Bouizi, V. Fornes, H. Garcia, Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water [J]. J. Am. Chem. Soc.2009, 131,13833-13839.
    J. S. Valente, F. Tzompantzi, J. Prince, J. G. H. Cortez, R. Gomez, Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides [J]. Applied Catalysis B:Environmental 2009,90,330-338.
    [207]温福宇,杨金辉,宗旭,马艺,徐倩,马保军,李灿,太阳能光催化制氢研究进展[J].化学进展,2009,21,2285-2302.
    [208]K. Y. Foo, B. H. Hameed, A short reviews of activated carbon assisted eletrosorption process:An overview, current stage and future prospects [J]. Journal of Hazardous Materials,2009,170,552-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700