用户名: 密码: 验证码:
利用铝型材厂工业废渣制备多孔陶瓷及稀土催化剂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷广泛应用于汽车尾气净化器、催化剂载体、消声材料和隔热材料等行业。堇青石多孔陶瓷具有几何表面积大、热膨胀系数小、耐热冲击性好和成本低等特点,作为汽车尾气催化剂载体,具有其它材料不可替代的效果。稀土复合氧化物催化剂因其综合性能佳,催化能力强,而引起了人们广泛的关注。
     本文利用铝型材厂的工业废渣代替传统的工业氧化铝,与片状结构的高岭土、滑石合成了片状结构堇青石陶瓷,开发了技术路线简单易行,烧成温度低,高定向排列,高纯度的堇青石制备工艺。采用同步热分析仪、X射线衍射仪、扫描电子显微镜、热膨胀系数仪等手段,对片状结构堇青石陶瓷的制备工艺、显微结构和热膨胀系数进行了系统地研究,详细分析了原料的种类、配方、烧成制度以及晶核剂等对合成堇青石的影响。铝型材厂工业废渣预烧后Al_2O_3的含量达到90%以上,完全可取代工业氧化铝作为合成堇青石的主要原料。堇青石的理论组成点并不是合成堇青石的最佳配方,当Al_2O_3和MgO的含量略高于理论组成点,SiO_2的含量略低于理论组成点时,对合成堇青石有利。烧成温度能够显著影响堇青石的合成、晶相结构以及热膨胀系数等性能,烧成温度为1380℃时,片状堇青石生长最完全,热膨胀系数达1.82×10-6℃-1。保温时间的长短显著的影响晶体发育及反应程度,保温时间为4 h时,合成的片状堇青石大小均匀,热膨胀系数达到1.73×10-6℃-1。以堇青石熟料作为晶核剂,可以在一定程度上解决堇青石成核困难的问题,能明显促使高温下堇青石的形成和发育,且晶粒发育较好,同时还有利于降低堇青石的热膨胀系数。
     首次以水溶性高分子材料为添加剂,以自制片状堇青石粉为主要原料,采用挤出成型技术,创新性地制备了多孔堇青石蜂窝陶瓷载体。对载体的制备工艺、形貌、物相组成、孔密度、热膨胀系数、抗热震性等进行了表征分析。以片状堇青石为原料,采用挤出成型方法有利于堇青石晶体的定向排列,使载体热膨胀系数各向异性,降低热膨胀系数,提高抗热震性。采用水溶性粘结剂替代传统桐油等油性粘结剂,可大大改善泥料的润滑性及可塑性,杜绝有害废气的产生。本实验制得的堇青石蜂窝陶瓷载体以片状结构为主,沿壁面方向呈现一定的定向排列,载体热膨胀系数仅为8.565×10-7℃-1(30-800℃),室温到650℃的急热急冷循环次数达5次以上,抗热震好;孔密度达90.6孔/cm2(±2.5%),壁厚为0.16 mm。
     同时,为研究La-Sr-Co-O系列催化剂的催化性能,首次选用多孔莫来石纤维陶瓷为催化剂载体,采用真空浸渍法分别制备了负载型La_(1-x)Sr_xCoO_(3-δ)(x=0.2,0.4,0.6和0.8)和La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ)(x=0.2,0.4,0.6和0.8)钙钛矿氧化物催化剂。采用同步热分析仪、X射线衍射、扫描电子显微镜、比表面积分析仪、烟气分析仪等手段,对催化剂的物相组成、显微结构和催化性能进行了系统地研究,研究A位和B位取代对催化剂催化活性的影响,评估了各催化剂对NO+CO气体的催化性能,并分析Pd掺入对催化剂NO+CO催化活性的影响。
     催化剂能较好地与多孔莫来石纤维陶瓷结合并具有较好的分散性,以多孔莫来石纤维陶瓷作为La-Sr-Co-O和La-Sr-Co-Pd-O系列催化剂的载体,抑制了钙钛矿结构形成过程中SrCO3的生成;贵金属Pd掺入La-Sr-Co-O催化剂中可抑制La(OH)3杂相的生成,Sr2+对La3+的A位取代大大增加了催化剂的氧格空位。
     催化测试结果表明,多孔莫来石陶瓷载体负载La_(1-x)Sr_xCoO_(3-δ)催化剂和La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ)催化剂对CO+NO均有较好的催化氧化还原特性,Pd的掺入明显增加了La-Sr-Co-O催化剂的催化活性。La_(1-x)Sr_xCoO_(3-δ)系列催化剂中,La0.6Sr0.4CoO3-δ的CO催化氧化能力最强,La_(0.4)Sr_(0.6)CoO_(3-δ)的NO催化还原能力最强,La_(0.8)Sr_(0.2)CoO_(3-δ)单位表面积的CO催化氧化和NO催化还原活性都最强。La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ)系列催化剂中,La_(0.6)Sr_(0.4)Co_(0.9)Pd_(0.1O3-δ)的CO整体催化氧化和NO整体催化还原活性都较高,La_(0.4)Sr_(0.6)Co_(0.9)Pd_(0.1O3-δ)对CO单位表面催化氧化活性最高,各催化剂对NO单位表面催化还原活性则随着温度的不同而变化,温度对La_(0.4)Sr_(0.6)Co_(0.9)Pd_(0.1O3-δ)钙钛矿氧化物催化剂的催化还原活性影响最为显著。
Porous ceramics are widely used in automobile exhaust purifications, catalyst supports, sound-deadening insulation and furnace insulation materials. Cordierite ceramics have wonderful effects as a catalyst carrier and the high temperature flue gas filters because of great surface area, low thermal expansion coefficient, good thermal shock resistance and low cost, which other materials can not be replaced. Rare earth oxides have aroused widespread concern for their excellent comprehensive properties and good catalytic ability.
     In this research, plate-shaped cordierite was successfully synthesized by aluminium industrial residues with talcum powder and kaolin. The preparation process, microstructure and thermal expansion coefficient of the compounds were systematically investigated by thermogravimetric differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, hermal expansion coefficient instrument etc.
     The Al_2O_3 content of the burn aluminium industrial residues is over 90%, which can completely replace industrial alumina as the main raw material of cordierite. The theoretical composition of cordierite cordierite is not the best formula of synthesis. It is benefit to fabricate cordierite when the contents of Al_2O_3 and MgO are higher than the theoretical compositions, and the SiO2 content is below the theoretical composition. Sintering temperature can significantly affect the synthesis of cordierite, crystal structure, thermal expansion coefficient and other properties. The pure sheet cordierite was obtained at thermal expansion coefficient of 1.82×10-6℃-1 when the sintering temperature was 1380℃.
     Holding time significantly affected the crystal growth and the degree of reaction. When the holding time was 4 h, the prepared cordierites were uniform size and the thermal expansion coefficient was 1.73×10-6℃-1. Cordierite clinker as a nucleating agent can significantly promote the formation and development of cordierite and as well as help to reduce the thermal expansion coefficient of cordierite, which can solve the difficult problem of cordierite nucleation in a certain extent.
     Porous cordierite honeycomb ceramic supports were prepared by extrusion technology using self-made sheet cordierite powder as main raw material and water-soluble polymers as additives for the first time. The preparation process, microstructure, phase composition, cell density, thermal expansion coefficient and thermal shock resistance of the samples were systematically investigated.
     The sheet cordierite powder as raw material and extrusion methods are conducive to cordierite crystal oriented arrangement, which due to the anisotropy of thermal expansion coefficient vector, lower thermal expansion coefficient, and high thermal shock resistance. With water-soluble adhesive binder to instead of tung oil can improve the lubricity and plastic of the mud significantly, and prevent the generation of harmful emissions during the process. In this study, the obtained cordierite honeycomb ceramic supports with mainly of sheet structure show a certain alignment along the wall. The carrier thermal expansion coefficient, cell density and wall thickness are 8.565×10-6℃-1 (30-800℃), 90.6 holes/cm2, 0.16 mm, respectively.
     The porous mullite fiber ceramics were used as catalytic supports for the first time. Supported La_(1-x)Sr_xCoO_(3-δ) and La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ) (x=0.2, 0.4, 0.6, and 0.8) perovskite-type oxide catalysts were prepared by vacuum impregnation method. The phase composition, microstructure and catalytic properties of the catalysts were systematically investigated by thermogravimetric differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, specific surface area analyzer and flue gas analyzing apparatus etc. The affect of the element substituent on the catalytic activity was discussed deeply, and the catalytic properties of the catalyst on NO + CO gas were assessed.
     The catalyst particles can bind with the porous mullite fiber ceramics and disperse uniformly on the surface of the supports. SrCO3 phase was not found in porous mullite fiber ceramic supported La_(1-x)Sr_xCoO_(3-δ) catalysts, which indicated that the supports depressed the growth of SrCO3 phase. La(OH)3 peaks were not observed in supported La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ) perovsite-type catalysts, which showed that Pd-doped perovskite oxide catalysts was helpful to inhibit the growth of La(OH)3 crystal phase. The Sr-doping to the La-position is benefit to increase the oxygen vacancies of the perovsite-type catalysts.
     The investigation of catalytic activity showed that La_(1-x)Sr_xCoO_(3-δ) and La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ) perovskite-type catalysts supported on porous mullite fiber ceramics exhibited significant catalytic redox activity. The catalytic activity of La-Sr-Co-O catalysts was improved notably due to the Pd doping. For all supported La_(1-x)Sr_xCoO_(3-δ) perovskite-type catalysts, supported La0.6Sr0.4CoO3-δcatalysts showed the highest CO integral oxidizability, while supported La_(0.4)Sr_(0.6)CoO_(3-δ) perovskite-type catalysts exhibited the highest NO integral reducibility. And supported La_(0.8)Sr_(0.2)CoO_(3-δ) perovskite-type catalysts presented the best redox activity of the unit surface area. The integral redox of supported La_(0.6)Sr_(0.4)Co_(0.9)Pd_(0.1O3-δ) perovskite-type catalysts for CO+NO was higher than the rest of supported La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ) perovskite-type oxide catalysts. Supported La_(0.4)Sr_(0.6)Co_(0.9)Pd_(0.1O3-δ) perovskite-type catalysts showed the highest CO oxidizability of unit surface area among supported La_(1-x)Sr)xCo_(0.9)Pd_(0.1O3-δ) perovskite-type catalysts. Meanwhile the best dramatic effect by catalytic temperature was observed on supported La_(0.4)Sr_(0.6)Co_(0.9)Pd_(0.1O3-δ) perovskite-type catalyst.
引文
[1]蔡俊修,陈笃慧.控制大气污染用的蜂窝陶瓷材料[J].硅酸盐学报, 1994, 22(5): 458-468
    [2]李建勇.堇青石质蜂窝陶瓷[J].陶瓷工程,1995, 29(3): 25-29
    [3] I. M. Lachman, R. D. McNally. Monolithic honeycomb supports for catalysis [J]. Chem. Eng. Prog., 1985, 81(1): 29-33
    [4] K. Sumi, Y. Kobayashi, E. Kato. Low-Temperature Fabrication of Cordieri-Te Ceramics from Kaolinite and Magnesium Hydroxide Mixtures with Boron Oxide Add-itions [J]. Am .Ceram. Soc., 1999, 82(3): 45-52
    [5] D.K.Agrawal, V.S.Stubican. Germanium-Modified Cordierite Ceramics with Low Thermal Expansion [J]. Journal of the American Ceramic Society, 1986: 31-38
    [6] J. F. Moulder, W. F. Sticle, P. E. Sobol, et al. Handbook of X-Ray Photoelectron Spect Roscopy [J].Eden Prairie: Perkin-Elmer, 1992: 7-12
    [7] O. Yoshio, W. Takashii, A. B. Huitc, et al. Bactericidal allophonic materials prepar-ed from allophone soi1: Preparation and characterization of silver/ Phosphorus-silver loaded allophonic soecimens [J]. APPI Clay Sci., 2001, 18(3): 123-134
    [8] M. Lachman, R. D. Bagley. Thermal Expansion of Extruded Cordierite Ceramics [J]. Ceramic Bulletin, 1981, 60(2): 202-205
    [9] P. Crosjean. Cordierite ceramies [J]. Interceram, 1993, 42(1):11-15
    [10] X. F. Zhang, J. Bo, X. G. Peng. Technical research on synthesis of high Purity cordieRite [J]. Naihuo Cailiao, 1998, 32(6): 341-343
    [11] Morozewize. ExPerimental Investigations of the Formation of Minerals in Magma [J]. Mine-Ral. Peteogr. Mitt., 1899, 18: 1-9
    [12] A. Putnis and D. L. Bish. The Mechanism and Kinetics of Al,Si Ordering in Mg-Cordierite [J]. Am. Mineral., 1983, 68(3): 60-65
    [13] J. R. Gonzalez-Velasco, M. A. Gutierrez-ortizand, R. Ferret, Suthesis of Cordierite Mono-Lithic honeycomb by solid state reaction of preoursor oxides [J]. Mat. Sci., 1999, 34: 1999-2002
    [14] J. Tartai, G. L. Messing. AnisotoPic grain growth inα-Fe2O3 doped alumina [J]. EuropCeram. Soc., 1997, 17: 31-38
    [15] R. F. Geller, H. B. Insley. [J]. Standards J.Research,1932, 9(1):35
    [16] F. V. Kondrachev. [J].Glass and Ceramic.1970, 27(1):41
    [17] S. M. Naga, et al., Low thermal expansion honeycomb cordieritecontaining rice husk ash [J]. Industrial Ceramics, 1994, 14(3): 117-118
    [18]姚治才,王文堂,苗金山.堇青石-钛酸铝蜂窝陶瓷的研制[J].陶瓷,1993, (2):12-13
    [19]李家驹,李景苏,林绍贤.海城绿泥石合成堇青石的研究[J].中国陶瓷, 1990, (5): 1-6
    [20]田惠英,郭海珠.高性能堇青石-莫来石棚板的研究[J].硅酸盐通报, 1997, (1): 37-41
    [21]张效峰,薄均,彭西高.高纯堇青石合成技术研究[J].耐火材料,1998, 32(6): 341-344
    [22]田雨霖.低温合成堇青石[J].耐火材料, 1995, 29(4): 199-201, 206
    [23]薛群虎,刘民生,徐维忠.叶蜡石合成堇青石工艺研究[J].耐火材料, 1999, 33(5): 265-267
    [24]尹洪峰.堇青石质原料合成中的致密化[J].陶瓷, 1996, 121(3) :35-37
    [25]黄万钦.新型高热稳定性堇青石质耐火材料[J].耐火材料, 1991(4): 236-239
    [26]彭超.利用累托石合成堇青石的研究[C].武汉理工大学硕士学位论文, 2003
    [27]刘永杰,孙杰燝,王英姿.堇青石材料的应用[J].山东冶金, 2002,24(3): 34-36
    [28]杨力.铝型材表面处理废液及治理[J].轻合金加工技术, 1997, 25(6):31-34.
    [29]张效峰,司全京.堇青石-莫来石窑具材料的研究[J].耐火材料, 1998, 32(4): 204-206
    [30]楼敦祥等.温度对合成堇青石-莫来石复相材料的影响[J].陶瓷工程,1999(2): 29-30
    [31]范春阳,常亮.轻质低蓄热窑具的研究[J].建筑材料耐火技术, 2001(2): 21-23
    [32]张欣卉,方延平.红外技术的物理基础及其军事应用[J].工科物理, 2000(2): 47-55
    [33]陈玉清,吴皆正等.堇青石的合成及应用[J].中国陶瓷, 1992(5): 38-43
    [34]王自寿.中国铝型材工业的发展与现状[J].轻合金加工技术, 2002, 30(2): 11-15
    [35] M. D. Karkhanavala, F. A. Hummel. The polyporphism of cordierite [J]. J. Am. Ceram. Soc., 1953, 36(12): 389-392
    [36]倪文,陈娜娜.堇青石矿物学研究的进展矿物岩石-Ⅱ人工合成堇青石的物理性质[J].矿物岩石, 1997(2): 110-119
    [37]史志铭.元素掺杂对堇青石晶体结构及热膨胀系数的作用[J].现代技术陶瓷, 2000(2): 2-5
    [38] D. K. Agrawal and V. S. Stubican. Germanium-Modified Cordierite Ceramics with Low Thermal Expansion [J]. J.Am.Ceram.Soc., 1986: 847-851
    [39]陆佩文等编.硅酸盐物理化学[M].南京:东南大学出版社, 1991.1
    [40] D. L. Evans, G. R. Fischer, J. E. Geiger et al.Thermal expansions and chemical modification of cordierite [J]. J. Am. Ceram. Soc.,1980, 63: 629-634
    [41]张振禹,刘蔚玲,耿建刚.堇青石低热膨胀机理研究[J].地质科学, 1997(3): 308-312
    [42] I. M. Lachman, R. D. Baley, R. M. Lewis. Thermal expansion of extrude cordierite ceramic [J]. Ceramic Bulletin, 1981, 60(2): 202-206
    [43] M. Breysse, P. Afanasiev, C. Geantet, M. Vrinat. Overview of support effects in hydrotreating catalysts [J]. Catal Today, 2003, 86 (1-4): 5-16
    [44]何雨,杨民,杜鸿章等.载体制备方法对贵金属催化剂Ru/ZrO2催化湿式氧化性能的影响[J].环境化学, 2004, 23(6): 621-625
    [45] V. N. Kalevaru, A. Benhmid, J. Radnik, et al. Marked influence of support on the catalytic performance of PdSb acetoxylation catalysts: Effects of Pd particle size, valence states, and acidity characteristics [J]. J. Catal., 2007, 246(2): 399-412
    [46]陈英,李雪辉,徐建昌等.催化剂载体γ-Al2O3上NO对SO2的氧化吸附[J].华南理工大学学报(自然科学版), 2004, 32(1): 1-5
    [47] S. Andonova, Ch. Vladov, B. Kunev, et al. Study of the effect of mechanical–chemical activation of Co–Mo/γ-Al2O3 and Ni-Mo/γ-Al2O3 catalysts for hydrodesulfurization [J]. Appl. Catal. A: Gen, 2006, 298 (1): 94-102
    [48]薛屏,蔡超.载体对L a0.8Sr0.2CoO3燃烧催化剂性能的影响[J].稀土, 2002, 23(6): 13-16
    [49] E. K. Lee, K. D. Jung, O. S. Joo, et al. Support effects in catalytic wet oxidation of H2S to sulfur on supported iron oxide catalysts [J]. Appl. Catal. A: Gen, 2005, 284(1-2): 1-4
    [50]魏伟,史庆南.汽车催化净化器载体材料的研究进展[J].云南冶金, 2002, 31(1): 46-48
    [51]宋婧,曾令可.汽车尾气净化器用催化剂载体的研究现状[J].陶瓷, 2007, (9): 13-15
    [52]王全荣.汽车尾气净化技术的发展趋势及建议[J].石油炼制与化工, 1994, 25: 58-61
    [53] S. Oabe, M. Kohno, et al. Oxidation resistence of rapidly solidified Fe-Cr-AI ribbons at high temperature [J]. Materials Science and Engineering, 1991, A181-A182: 1104-1108
    [54]郑柏存,汪仁. TiO2、Al2O3基燃烧催化剂的固态化学研究[J].华东化工学院学报,1992, 18(5): 683-687
    [55]张新杰,敬怡.负载型氧化镍催化剂上的乙烷氧化脱氢[J].催化学报, 2000, 21(1): 82-84
    [56] J. Ramirezj, R. L. Ruiz, L. Cedeno, et al. Titania-Alumina Mixed Oxides as Supports for Molybdenum Hydrotreating Catalyst [J]. Appl. Catal. A: Gen, 1993, 93(2): 163-180
    [57]张晟,卢冠忠,毛东森等.钛铝复合氧化物载体的制备及应用[J].工业催化, 2001, 9(6): 49-52
    [58]刘佳,杨锡尧,庞礼. CuO-ZnO/Al2O3-TiO2催化剂中TiO2的结构和电子效应[J].分子催化, 1993, 7(6): 418-423
    [59]施岩,崔国静,王海彦等.纳米TiO2/Al2O3复合载体的制备与表征[J].石油学报(石油加工), 2005, 21(6): 12-18
    [60] E. Y. Kaneko, S. H. Pulcinelli, V.Teixeira, et al. Prepare nanosize titanium/alumina by sol-gel method chemical engenrring science [J]. Appl. Catal. A: Gen, 2002, 24 (3): 71-78
    [61]李军,周晓奇,宋志安等.水热法制备镁铝尖晶石载体[J].工业催化, 2003, 11(10): 44-49
    [62]韦以,刘新香. Al2O3-TiO2复合载体的制备与表征[J].石油化工, 2006, 35(2): 173-177
    [63]刘水刚,高伟.新型多孔碳化硅催化剂载体的制备与应用[J].工业催化, 2005, 13(7): 60-64
    [64]施岩,崔国静,王海彦等.纳米TiO2/Al2O3复合载体的制备与表征[J].石油学报(石油加工), 2005, 21(6): 12-18
    [65]切斯特斯(Chesters J.H.)著.耐火材料生产和性能[M].北京:冶金工业出版社, 1982
    [66]任国斌等编. Al2O3·SiO2系实用耐火材料[M].北京:冶金工业出版社, 1988
    [67]钦征骑主编.新型陶瓷材料手册[M].南京:江苏科技出版社, 1996
    [68]余继红,江东亮.碳化硅陶瓷的发展与应用[J].硅酸盐学报, 1998, 132(3): 3~11
    [69]江东亮.精细陶瓷材料[M].北京:中国物质出版社, 2000
    [70]李艳丽.新型蜂窝陶瓷的制备与性能研究[D].武汉:华中科技大学, 2007
    [71] W. A. Cutler. Overview of Ceramic Materials for Diesel Particulate Filter Applications [J]. Ceram. Eng. Sci. Proc., 2004, 25(3): 421~430
    [72]高娃.汽车尾气净化催化剂及其金属载体的研究进展[J].兵器材料科学与工程, 2000, 23(4): 67-71
    [73]肖霞,何新秀.我国汽车尾气污染的催化净化[J].环境科学研究, 1998, 11(5): 26-29
    [74] M. C. Kung, D. W. Park, D. W. Kim. Lean NOx Catalysis over Sn/A12O3 Catalysts [J]. J. Catal., 1999, 181: 1-5
    [75]陈天蛋,施剑林等.硼掺杂的Y-AlzO,催化膜的制备及其热稳定性的研究[J].无机材料学报, 2001, (3): 510
    [76] C. B. Xu, S. L. Wu. Experimental Study on Purification of NOx in Automobile Exhaust Using a New Type of Complex Metal-oxide Catalyst [J]. J Environmental Science, 1998, 19(3): 3
    [77] R. Burch, T. C. Watling. Kinetics and Mechanism of the Reduction of NO by C3H8 over Pt/Al2O3 under Lean-burn Conditions [J]. J. Catal., 1997, 169(1): 45
    [78] P. Loof, B. Kasemo, S. Andorsson. Influence of Ceria on the Interraction of CO and NO with Highly Dispersed Pt and Rh [J]. J. Cata1.,1991, 130(1): 181
    [79] T. Morikuchi, H. Nishikawa, et al. Three-Way Catalysts for Treatment of Exhaust Gases [P]. J. P, 10-85604, 1998-04-07
    [80]崔梅生,郭耘.汽车尾气净化技术发展现状[J].化工进展, 2000, (6):9
    [81]王亚军,冯长根等.稀土在汽车排气催化净化中的应用[J].工业催化, 2000, 8(9): 3
    [82] J. Kaspar, P. Fornasiero, N. Hickey. Automotive catalytic converters: Current status and some perspectives [J]. Catalysis Today, 2003, 177 (4): 419-449
    [83] C. J. Howard. R. J. Withers, B.J. Kennedy. Space Group and Structure for the Perovskite Ca0.5Sr0.5TiO3 [J]. J.Solid State Chem, 2001, 160 (1): 8-12
    [84] L. Simonot, F. Garin, G. Maire, A comparative study of LaCoO3, Co3O4 and LaCaO3-Co3O4 preparation, characterization and catalytic properties for the oxidation of CO [J]. Applied Catalysis B: Enviroment, 1997, 11 (2): 167-179
    [85] P. Ciambelli, S. Cimno, S.De. Rossi, et al. AFeO3(A=La, Nd, Sm) and LaFe1-xMgxO3 perovskites as methane combusion and CO oxidation catalysts: structural,redox andcalatytic properties [J]. Applied Catalysis B: Enviroment, 2001, 29 (4): 239-250
    [86] R. Leanza, I. Rossetti, L. Fabbrini, et al. Perovskite catalysts for the catalytic flameless combustion of methane: Preparation by flame-hydrolysis and characterization by TPD-TPR-MS and EPR [J]. Applied Catalysis B: Enviroment, 2000, 28 (1): 55-64
    [87] A. A. Leontiou, A. K. Ladvos, P. J. Pomonis. Catalytic NO rduction with CO on La1-xSrx(Fe3+/4+)O3±δperovskite-type mixed oxides (x=0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90) [J]. Applied Catalysis A: General, 2003, 241 (1-2): 133-141
    [88] T. Nakamura, M. Misono, and Y. Yoneda. Catalytic Properties of perovskite-type mixed oxides La1-xSrxCoO3 [J]. Bull.Chem.Soc.Jpn. 1982, 55: 394-399
    [89] S. Irusta, M. P. Pina, M. Menendez, and J. Santamaria. Catalytic Combustion of Volatile Organic Compounds over La-Based Perovskites [J]. J. Catal., 1998, 179 (2): 400-412
    [90] K. Jung-Min, H. Gab-Jin, L. Sang-Ho, P. Chu-Sik, K. Jong-Won, K. Young-Ho. Properties of oxygen permeation and partial oxidation of methane in La0.6Sr0.4CoO3-δ(LSC)-La0.7Sr0.3Ga0.6Fe0.4O3-δ(LSGF) membrane [J]. J. Membr. Sci., 2005, 250 (1-2): 11-16
    [91] A. Gonzalez, E. M. Tamayo, A. B. Porter, et al. Synthesis of high surface area perovskite catalysts by non-conventional routes [J]. Catal Today, 1997, 33(1-3): 361-369
    [92] K. S. Songa, H. X. Cuib, S. D. Kimc, S. K. Kang. Catalytic combustion of CH4 and CO on La1-xMxMnO3 perovskites [J]. Catal Today, 1999, 47 (1-4): 155-160
    [93] H. Tanaka, N. Mizuno, M. Misono. Catalytic activity and structural stability of La0.9Ce0.1Co1-xFexO3 perovskite catalysts for automotive emissions control [J]. Appl Catal A: Genernal, 2003, 244(2): 371-382
    [94] W. F. Libby. Promising catalyst for auto exhaust [J]. Science, 1971, 171 (3970): 499-500
    [95] R. J. H. Voorhoeve, J. Jburton, R. C. Carter. Perovskite related oxides as oxidation-reduction catalysts in advanced materials in catalysis [M]. Academic Press, N.Y., 1977
    [96] R. J. H. Voorhoeve, D. W. Johnson, J. P. Remeika, P. K. Gallagher. Perovskite oxides: materials science in catalysis [J]. Science, 1977, 195: 827-833
    [97] V. C. Blessi, T. V. Bakas, C. N. Costa, A. M. Efstathiou, P. J. Pomonis. Synergistic effects of crystal phases and mixed valences in La-Sr-Ce-Fe-O mixed oxidic/perovskitic solids on their catalytic activity for the NO+CO reaction [J]. Appl. Catal. B: Envir, 2000, 28 (1): 13-28
    [98] A. K. Ladavos, P. J. Pomonis. Effects of substitution in perovskites La2-xSrxNiO4-λon their catalytic action for the nitric oxide + carbon monoxide reaction [J]. Appl. Catal. B: Envior. 1992,1(2): 101-116
    [99] N. Guihaume, S. D. Peter and M. Primet. Palladium-substituted lanthanum cuprates: application to automotive exhaust purification [J]. Appl. Catal. B: Envir, 1996, 10(4): 325-344
    [100] L. Forni, C. Oliva, T. Barzetti, E. Selli, A. M. Ezerets, A. V. Vishniakov. FT-IR and EPR spectroscopic analysis of La1-xCexCoO3 perovskite-like catalysts for NO reduction by CO [J]. Appl. Catal. B: Envir 1997, 13(1): 35-43
    [101] K. Zhou, H. Chen, Q. Tian, et al. Pd-containing perovskite-type oxides used for three-way catalysts [J]. J. Mol. Catal A: Chem, 2002, 189(2): 225-232
    [102] Y. Nishihata, J. Mizuki, H. Tanaka, et al. Self-regeneration of palladium- perovskite catalysts in modern automobiles [J]. Journal of Physics and Chemistry of Solids, 2005, 66 (2-4): 274-282
    [103] Y. Nishihata, J. Mizuki, T. Akao, et al. Self--regeneration of Pd-perovskite catalyst for automotive emissions control [J]. Nature, 2002, 418: 164-167
    [104] H. Tanaka. An intelligent catalyst: the self-regenerative palladium-perovskite catalyst for automotive emissions control [J]. Catalysis Surveys from Asia, 2005, 9(2): 63-74
    [105] K. L. Nitin, A. Watanabe, R. B. Biniwale, et al. Alumina supported, perovskite oxide based catalytic materials and their auto-exhaust application [J]. Applied Catalysis B: Environmental, 2001, 33(2): 165-173
    [106]俞守耕.钙钛矿型氧化物在净化汽车尾气催化剂中的应用[J].贵金属, 2001, 22(2) : 61-67
    [107] R. J. Bell, G. J. Millar, J. Drennan. Influence of synthesis route on the catalytic properties of LaxSr1-xMnO3 [J]. Solid State Ionics, 2000, 131(3-4): 211-220
    [108]周克斌,李学隽,王道.汽车尾气净化用稀土钙钛石型复合氧化物催化剂[J].大学化学, 2001, 16(2) : 43-46
    [109] N. Guihaume, S. D. Peter and M. Primet. Palladium-substituted lanthanum cuprates: application to automotive exhaust purification [J]. Appl. Catal B: Envir, 1996, 10(4): 325-344
    [110] K. Zhou, H. Chen, Q. Tian, et al. Pd-containing perovskite-type oxides used for three-way catalysts [J]. J. Mol. Catal A: Chem., 2002, 189(2): 225-232
    [111] Y. Yan, R. Y. Zhong, H. Q. Ming. [J]. Chinese J. Struct. Chem, 2003, 22(1):607-612
    [112]李建勇.堇青石蜂窝陶瓷[J].陶瓷工程, 1995, 26(3): 25-29
    [113]张昂.我国车用催化剂载体的现状和发展[J].陶瓷, 2001(4): 15-17,
    [114]雷霞.汽车尾气催化净化器的研究[J].汽车工艺与材料, 2000(3): 26-28
    [115]周燕,徐晓虹,陈虹.堇青石蜂窝陶瓷载体[J].陶瓷研究, 2002, 17(1): 9-12
    [116] P. M. Then, P. Day. The catalytic Converter Ceramic Substrate-An astonishing and Enduring Invention [J]. Interceram, 2000, 49(1): 20-24
    [117]于岩,阮玉忠,黄清明等.铝厂污泥在不同煅烧温度的晶相结构研究[J].结构化学, 2003, 22(5): 607-613
    [118] I. M. Lachman, R. M. Lewis. Anisotropic cordierite monolith. US Patent: 3885977, 1975: 5-27
    [119] Y. George, J. Onoda, L. Larry. Hench. Ceramic processing before firing [N]. New York: Wiley, 1978, 392-397
    [120] I. M. Lachman, R. M. Lewis. Anisotropic cordierite monolith. US Patent: 3885977, 1975: 5-27
    [121] D. M. Beall, G. A. Merbel. Fabrication of ultra low thermal expansion cordierite structure. US Patent 2002/0010073, 2002-2-2
    [122]姚治才.绿泥石-高岭土合成董青石的反应过程[J].中国陶瓷, 1986(1): 19-25
    [123]史志铭,梁开明等.液相烧结中液相成分对堇青石相变和陶瓷显微组织的影响[J].清华大学学报, 2001, 41(10): 27-29
    [124] K. Toshiharu et al. Honeycomb structural body and method of manufacturing the same [P]. EP0753490, 1996(11): 12-16
    [125] N. Yamazoe, Y. Teraoka, and T. Seiyama. TPD and XPS study on thermal behavior of absorbed oxygen in La1-xSrxCoO3 [J]. Chemistry Letters, 1981: 1767-1770
    [126]刘相果,彭晓东,谢卫东等. SrCO3的热分解动力学及其影响因素.[J].材料研究学报, 2005, 19(3): 287-292
    [127] Y. Teraoka, H. Nii, et al. Synthesis and catalytic properties of perovskite-related phases in the La-Sr-Co-Cu-Ru-O system [J]. J. Mater. Chem., 1996, 6(1): 97-102
    [128] J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, et al. Oxygen nonstoichiometryand defect equilibrium in the perovskite-type oxides La1?xSrxMnO3+δ[J]. Solid State Ionics, 2000, 129(1-4): 163-177
    [129] J. J. Zhu, Z. Zhao, D. H. Xiao, et al. CO Oxidation, NO Decomposition, and NO+CO Reduction over Perovskite-like Oxides La2CuO4 and La2-xSrxCuO4: An MS-TPD Study [J]. Ind. Eng. Chem. Res., 2005, 44(12-13): 4227-4233
    [130] A. E. Giannakas, A. K. Ladavos, P. J. Pomonis. Preparation, Characterization and Investigation of Catalytic Activity for NO Plus CO Reaction of LaMnO3 and LaFeO3 Perovskites Prepared via Microemulsion Method [J]. Appl. Catal. B: Envir, 2004, 49 (3): 147
    [131] A. A. Leontiou, A. K. Ladavos, G. S. Armatas, P. N. Trikalitis, P. J. Pomonis. Kinetics investigation of NO+CO reaction on La-Sr-Mn-O perovskite-type mixed oxides [J]. Appl. Catal. A: Gen, 2004, 263(2): 227-239
    [132] A. Lindstedt, D. Stromberg, M.A. Milh. High-temperature catalytic reduction of nitrogen monoxide by carbon monoxide and hydrogen over La1-xSrxMO3 perovskites (M=Fe, Co) during reducing and oxidizing conditions [J]. Appl. Catal A: Gen, 1994, 116(1-2): 109-126
    [133] J. J. Zhu, Z. Zhao, D. H. Xiao, et al. CO Oxidation, NO Decomposition, and NO+CO Reduction over Perovskite-like Oxides La2CuO4 and La2-xSrxCuO4: An MS-TPD Study [J]. Ind. Eng. Chem. Res., 2005, 44(12-13): 4227-4233
    [134] A. E. Giannakas, A. K. Ladavos, P. J. Pomonis. Preparation, Characterization and Investigation of Catalytic Activity for NO Plus CO Reaction of LaMnO3 and LaFeO3 Perovskites Prepared via Microemulsion Method [J]. Appl. Catal. B: Envir, 2004, 49(3): 147
    [135] A. A. Leontiou, A. K. Ladavos, G. S. Armatas, P. N. Trikalitis, P. J. Pomonis. Kinetics investigation of NO+CO reaction on La-Sr-Mn-O perovskite-type mixed oxides [J]. Appl. Catal. A: Gen, 2004, 263(2): 227-239
    [136] A. Lindstedt, D. Stromberg, M. A. Milh. High-temperature catalytic reduction of nitrogen monoxide by carbon monoxide and hydrogen over La1-xSrxMO3 perovskites (M=Fe, Co) during reducing and oxidizing conditions [J]. Appl. Catal. A: Gen, 1994, 116(1-2): 109-126
    [137] V. C. Blessi, T. V. Bakas, C. N. Costa, et al. Synergistic effects of crystal phases and mixed valences in La-Sr-Ce-Fe-O mixed oxidic/perovskitic solids on their catalytic activity for the NO+CO reaction [J]. Appl. Catal. B: Envir, 2000, 28(1): 13-28
    [138] T. Nakamura, M. Misono, Y. Yoneda. Reduction-oxidation and Catalytic Properties of Perovskite-type mixed oxide catalysts (La1-xSrxCoO3) [J]. Chemistry Letters, 1981:1589-1592
    [139] R. J. H. Voorhoeve. Advanced Materials in Catalysis [M]. Academic press, Now York, 1977, p.129
    [140] L. G. Tejuca, J. L. G. Fierro. Properties and Applications of Perovskite-type Oxides [M]. Eds. Marcel Dekker: New York, Basel, Hong Kong, 1993
    [141] M. Uenishi, H. Tanaka, M. Taniguchi, et al. The reducing capability of palladium segregated from perovskite-type LaFePdOx automotive catalysts [J]. Appl.Catal A: GEN, 2005, 296(2): 114-119
    [142] Z. X. Song, H. Nishiguchi, W. Liu. A Co-TAP study of reducibility of La1-xSrxFe(Pd)O3±δperovskites [J]. Appl. Catal. A: GEN, 2006, 306(1): 175-183
    [143] M. Uenishi, M. Taniguchi, H. Tanaka, M. Taniguchi, et al. Redox behavior of palladium at start-up in the Perovskite-type LaFePdOx automotive catalysts showing a self-regenerative function [J]. Appl. Catal. B: ENVIR, 2005, 57(4): 267-273
    [144] H. Tanaka. An intelligent catalyst: the self-regenerative palladium-perovskite catalyst for automotive emissions control [J]. Catalysis Surveys from Asia, 2005, 9(2): 63-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700