用户名: 密码: 验证码:
ZK系列镁合金高应变速率锻造工艺及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是最轻的金属结构材料,具有比强度和比刚度高、导热性和阻尼减振性能好、电磁屏蔽性能和机加工性能优异等优点,被誉为“二十一世纪最具发展前景的绿色工程材料”。尤其是锻造镁合金,由于其优异的静态和动态强度,可在航空航天、汽车等领域大幅减轻设备的自重,进而实现节能减排的目的。但由于镁合金锻造温度区间窄、对应变速率敏感,锻造成形困难,极大地制约了镁合金锻件的广泛应用。因此,开发一种有效的锻造工艺制备高性能镁合金锻件具有重要的理论意义和工程应用价值。本文以ZK(Mg-Zn-Zr)系镁合金为研究对象,通过高应变速率变形诱发孪生再结晶,从根本上提高合金的可锻性,并结合多向锻造细化晶粒、软化织构的特点,提出了高应变速率多向锻造工艺,围绕锻造工艺和合金成分对锻坯组织和力学性能的影响开展了镁合金高应变速率锻造的研究。
     1、基于变形温度和应变速率在镁合金锻造过程中的重要作用,开展了ZK系镁合金热压缩模拟的研究,分析了变形温度和应变速率对合金显微组织和流变行为的影响规律,验证了镁合金高应变速率变形的可行性,探讨了高应变速率压缩条件下的动态再结晶机制,初步优化了合金最佳热加工工艺范围,结果表明:
     (1)应变速率ε≤1s-1时,合金主要晶粒细化机制为晶界再结晶;而应变速率ε≥10s-1时,孪生的作用明显增强,在初始晶粒内形成大量的孪晶,并在孪晶上形成再结晶晶粒,合金主要晶粒细化机制为孪生诱发动态再结晶。
     (2)ZK系列镁合金热加工性能随应变速率的增大而提高;其最佳热加工工艺参数范围为:250℃-350℃,应变速率≥10s-1。
     (3)ZK系列合金高应变速率压缩变形时,晶界的再结晶为典型的非连续动态再结晶,其过程包括晶界弓出、弓出晶界附近形成亚晶界、亚晶界演变成大角度晶界;晶内的孪生诱发动态再结晶为典型的连续动态再结晶,其过程包括:位错塞积形成位错胞、位错重排形成亚晶、亚晶界吸收位错形成大角度晶界。
     2、以提高合金的可锻性和锻坯的力学性能为目的,开展了ZK21镁合金高应变速率锻造工艺的研究,研究了单向、双向和三向锻造的变形特征和规律,分析了应变速率、道次变形量和锻后冷却对三向锻造变形的影响规律,进一步优化了锻造工艺,结果表明:
     (1)单向锻造合金再结晶机制为晶界再结晶和孪生诱发动态再结晶,由于合金单向变形所能承受的极限变形量有限,经单向锻造的合金未能获得完全的再结晶组织,锻坯性能较差;双向锻造合金再结晶机制为孪生诱发动态再结晶,经双向锻造的合金可以获得均匀细小的再结晶组织,锻坯强度和屈强比较高、延伸率较差;三向锻造合金再结晶机制为旋转再结晶和孪生诱发动态再结晶,经三向锻造的合金组织由蜂窝状粗大再结晶晶粒和岛状细小再结晶晶粒组成,具有良好的综合力学性能,其抗拉强度和延伸率分别为341MPa和25.1%。
     (2)三向锻造过程中,降低应变速率和增大道次应变会在一定程度上降低合金的晶粒细化能力,使锻坯的力学性能下降,因此小道次应变高应变速率多向锻造是合金较为理想的锻造工艺;而加快锻坯的冷却速度则会在提高强度的同时牺牲一定的塑性,因此空冷是较为理想的冷却方式。
     3、以优化的三向锻造工艺为基础,研究了ZK系列镁合金高应变速率多向锻造显微组织及力学性能演变,分析了Zn含量对孪生和动态再结晶的影响规律,并对锻坯的强化机制进行了深入的探讨,结果表明:
     (1)ZK系列镁合金经高应变速率多向锻造后均可获得蜂窝状粗大再结晶组织和岛状细小再结晶组织混合而成的组织,其晶粒细化效果与合金元素密切相关,Zn含量的高低将决定粗大再结晶组织和细小再结晶组织的晶粒大小,Zn元素的分布将决定粗大再结晶组织和细小再结晶组织的组分比例。
     (2)高应变速率多向锻造可以大幅提高合金的综合力学性能,晶粒细化、孪晶强化和第二相强化是锻坯的主要强化机制,晶粒细化和孪晶对力学性能的贡献随Zn含量的提高而减弱,而第二相对力学性能的贡献则随Zn含量的提高而增强。
     4、以优化的合金成分和锻造工艺为基础,开展了ZK系列镁合金组织均匀性和各向异性的研究,探讨了高应变速率多向锻造的工业应用可行性,结果表明:
     (1)由于外摩擦的影响,锻坯各部位的组织具有一定的不均匀性;但当累积应变为3.3时,ZK21和ZK60合金不同部位的抗拉强度分别为315.2-325.6MPa和313.1-326.5MPa,而延伸率分别为19.4-24.3%和20.7-27.6%,表明高应变速率多向锻造锻坯具有较好的力学性能均匀性。
     (2)累积应变为3.3时,ZK21和ZK60合金各方向的抗拉强度分别为299.3-325.3MPa和310.6-323.9MPa,而延伸率分别为20.5-36.6%和21.9-29.7%,表明高应变速率多向锻造可以避免强烈的各向异性。
     (3)高应变速率多向锻造是制备大尺寸高性能镁合金的理想工艺,具有重要的工业应用价值。
Magnesium alloys are the lightest metallic structure materials with high specific strength and stiffiness, superior properties for absorbing vibration or shock energy, insulating electromagnetic interference, and excellent machining property, etc, which have been considered as the environment-friendly engineering nviterial with the greatest prospects for development in the21st century. Especially, forged magnesim alloy have broad application prospects in aircraft and automobile industries where energy conservation and emissions reduction need to be achieved ascribe to their excellent combination properties. However, the undesirable forgeability because of the narrow range of forging temperature and high sensitivity of forging strain rate in magnesium has limited their widespread application. Therefore, it is of important values both in theory and engineering to develop a more reliable forging process for magnesium alloys with high excellent combination properties. High strain rate forging was carried out on ZK (Mg-Zn-Zr) series alloys in the present study, and the forgeability should be significantly improved by twin induced dynamic recrystallization (TDRX) during high strain rate forging. A forging technique of the high strain rate multiple forging (HSRMF) was developed on the basis of grain refinement and texture weaken during multiple forging (MF), and the influence of forging technics and alloy element on HSRMF were also investigated in this paper.
     Firstly, hot compression was carried out on ZK series alloy in the consideration that temperature and strain rate play the most important role during forging process. The influence of temperature and strain rate on microstructure and flow behavior was analysed, and the processing parameters were optimized. Moreover, the dynamic recrystallization (DRX) mechanism during high strain rate compression was also investigated, the result showed that:
     (1) During low strain rate (ε≤1s-1) compression, DRX initiated mainly at original grain boundaries and resulted in grain refinement. During high strain rate(ε≥10s-1) compression, DRX initiated maily at the extensively developed twins in original grain cores, and the TDRX was the main grain refinement mechanism.
     (2) The hot workability of ZK series alloys increased with the strain rate increasing, the optimum processing parameters for the three alloys were temperature range of250℃~350℃and strain rate range of ε≥10s-1.
     (3) During High strain rate compression of ZK series alloy, the DRX at intial grain boundaries was characteristic of dis-continuous DRX mechanism which including grain boundary bulging, the formation of suh-grain at the place bulging out and the development of high-angle grain boundaries, while the DRX at intial grain cores was characteristic of continuous DRX mechanism which including the formation of dislocation cells due to dislocation pile-ups, the development of sub-grain caused by dislocation rearrangement and the formation of high-angle grain boundaries.
     Secondly, high strain rate forging at different conditions were studied to improve the forgeability and mechanical properties of ZK21alloy. The forging technics were further optimized by the investigation of deformation characteristics and regularities of different forging routes (uniaxial, biaxial and triaxial). Moreover, the influence forging parameters (including strain rates, pass strain and colling rates) during multiple forging were also investigated, the results showed that:
     (1) DRX at initial grain boundaries and twin induced DRX (TDRX) were the main grain refinement mechanism during uniaxial forging, which resulted in an incomplete DRX structure and small improvement of mechanical properties due to the limited deformation limit under uniaxial load. In biaxial forging samples, TDRX was the main DRX mechanism. A homogeneous ultrafine grained structure formed after biaxial forging wich show high strength but low ductility. In triaxial forging samples, TDRX and rotation DRX were the main grain mechanisms. A novel mixed structure of honeycomb-like coarse DRX grains and island-like ultrafine grains formed after triaxial forging. This novel mixed structure show substantial improvements in mechanical properties, and tenslie testing gave an ultimate tensile strength (UTS) of341MPa and an elongation of25%.
     (2) During high strain strain rate multiple forging, the decrease of strain rate and increase of pass strain could decrease the strength owing to the reduction of grain refinement, small pass strain HSRMF has therefore identified as an effective technique for producing high strength ZK21alloy. On the other hand, the increase of colling rate after HSRMF could decrease the ductility while simultaneous preserving even high strength, therefore air colling was more feasible for producing stronger and more ductile ZK21alloy.
     Thirdly, microstructure and mechanical properties of the HSRMFed ZK series alloy were studied based on the optimized forging parameters, then the influence of Zn content on twinning and DRX was analysed, moreover, the strengthen mechanism was also investigated. The results showed that:
     (1) The initial grains were refined significantly ater HSRMF. A novel mixed structure of honeycomb-like coarse DRX grains and island-like ultrafine grains formed, and the grain refinement was inflenced by alloy element Zn. The grain size of the coarse grains and ultrafine grains were determined by Zn content, while the fraction of the coarse grains and ultrafine grains were determined by the distribution of Zn element.
     (2) The mechanical properties improved substantially after HSRMF, and grain refinement, twins and second phase were the main strengthen mechanism. Increasing of Zn content in ZK series alloy coule reduce the contribution of grain refinement and twins decrease on strengthen materials, but increase the contribution of second phase.
     Fourthly, HSRMF was carried out based on the optimizd forging paramenter and alloy content, and the microstructure homogeneity and mechanical anisotropy was studied. The results showed that:
     (1) Micro structural imhomogenity was detected in the HSRMF samples owing to the friction. However, The UTS and ductility of the HSRMFed ZK21and ZK60alloys in different positions at the accumulated strain of3.3were315.2-325.6MPa,19.4~24.3%and313.1~326.5MPa,20.7-27.6%, respectively.
     (2) The UTS and ductility of the HSRMFed ZK21and ZK60alloys in different directions at the accumulated strain of3.3were299.3-325.3MPa,20.5~36.6%and310.6~323.9MPa,21.9-29.7%, respectively. HSRMF was therefore identified as a potential technique for producing magnesium alloy with low anisotropy.
     (3) HSRMF was a potential technique for producing stronger and more ductile magnesium alloy.
引文
[1]Mordike B L, Ebert T. Magnesium-Properties-applications-potential. Materials Science and Engineering a,2001,302 (1):37-45
    [2]陈振华,严红革,陈吉华.镁合金.北京:化学工业出版社,2004,2-15
    [3]Avedesian M M, Baker H. ASM Specialty Handbook-Magnesium and Magnesium Alloys. Second ed.:ASM International, Metals Park,1999,85-87
    [4]Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment. Journal of Materials Processing Technology,2001,117 (3): 381-385
    [5]Friedrich H, Schumann S. Research for a "new age of magnesium" in the automotive industry. Journal of Materials Processing Technology,2001,117 (3): 276-281
    [6]Gao F, Nie Z R, Wang Z H, et al. Assessing environmental impact of magnesium production using Pidgeon process in China. Transactions of Nonferrous Metals Society of China,2008,18 (3):749-754
    [7]Alderliesten R, Rans C, Benedictus R. The applicability of magnesium based Fibre Metal Laminates in aerospace structures. Composites Science and Technology, 2008,68 (14):2983-2993
    [8]Kainer K U. Magnesium-alloys and technology. Weinheim:WILEY-VCH,2003, 23-130
    [9]Zhang Z M, Zhang X, Yang Y Q. Influence of aging on microstructure and properties of ZK60 magnesium alloy. Transactions of Nonferrous Metals Society of China,2006,16:S332-S334
    [10]Yu Z H, Yan H G, Chen J H, et al. Effect of Zn content on the microstructures and mechanical properties of laser beam-welded ZK series magnesium alloys. Journal of Materials Science,2010,45 (14):3797-3803
    [11]Tong K K S, Hu B H, Niu X P, et al. Cavity pressure measurements and process monitoring for magnesium die casting of a thin-wall hand-phone component to improve quality. Journal of Materials Processing Technology,2002,127 (2): 238-241
    [12]陈振华,夏伟军,严红革.变形镁合金.北京:化学工业出版社,2005,1-105
    [13]潘复生,韩恩厚.高性能变形镁合金及加工技术.北京:科学出版社,2007, 1-46
    [14]中国机械工程学会塑性工程学会.锻压手册.北京:机械工业出版社,2007,1-2
    [15]Zhu S Q, Yan H G, Chen J H, et al. Effect of twinning and dynamic recrystallization on the high strain rate rolling process. Scripta Materialia,2010, 63 (10):985-988
    [16]Clark J B, Zabfyr L, Moser Z. Binary alloy phase diagrams. Ohio:American society for metals,1986,1563-1566
    [17]Mukai T, Yamanoi M, Watanabe H, et al. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Materials Transactions,2001,42 (7):1177-1181
    [18]刘楚明,李冰峰,刘洪挺.稀土元素Nd和Dy对铸态ZK10镁合金组织及性能的影响.中南大学学报,2010,41(1):125-131
    [19]李建平,曾昭文,杨忠.Gd对ZK60镁合金显微组织的影响.西安工业大学学报,2007,27(2):142-147
    [20]Wu W, Wang Y, Zeng X, et al. Effect of neodymium on mechanical behavior of Mg-Zn-Zr magnesium alloy. Journal of Materials Science Letters,2003,22 (6): 445-447
    [21]Zhou H T, Zhang Z D, Liu C M, et al. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering a, 2007,445:1-6
    [22]叶呈武,刘志义.镱对挤压ZK31镁合金室温力学性能的影响.金属热处理,2005,30(10):17-19
    [23]Zhao K Y, Peng X D, Xie W D. Effects of Ce on microstructure of semi-continuously cast Mg-1.5Zn-0.2Zr magnesium alloy ingots. Transactions of Nonferrous Metals Society of China,2010,20 (2):s324-s330
    [24]Zhang J, Li W G, Zhang B X, et al. Influence of Er addition and extrusion temperature on the microstructure and mechanical properties of a Mg-Zn-Zr magnesium alloy. Materials Science and Engineering a,2011,528 (13-14): 4740-4746
    [25]Cheng R J, Pan F S, Yang M B, et al. Effects of various Mg-Sr master alloys on microstructural refinement of ZK60 magnesium alloy. Transactions of Nonferrous Metals Society of China,2008,18:S50-S54
    [26]刘娟,崔振山,李从心.镁合金ZK60的三维加工图及失稳分析.中国有色金属学报,2008,18(6):1020-1026
    [27]席海霞,于彦东,周浩.ZK60镁合金棒材挤压过程有限元分析.哈尔滨理工大学学报,2010,15(1):60-63
    [28]Figueiredo R B, Langdon T G. The development of superplastic ductilities and micro structural homogeneity in a magnesium ZK60 alloy processed by ECAP. Materials Science and Engineering a,2006,430 (1-2):151-156
    [29]Lin L, Liu Z, Chen L J, et al. Microstructure evolution and low temperature superplasticity of ZK40 magnesium alloy subjected to ECAP. Metals and Materials International,2004,10 (6):501-506
    [30]Lin J B, Wang Q D, Peng L M, et al. Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. Journal of Alloys and Compounds,2009,476 (1-2):441-445
    [31]孔晶,侯文婷,彭永辉.T型通道挤压变形ZK60镁合金的组织与力学性能.中国有色金属学报,2011,21(6):1199-1204
    [32]Gong X B, Kang S B, Li S Y, et al. Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling. Materials & Design,2009,30 (9):3345-3350
    [33]程永奇,傅定发,夏伟军.等径角轧制ZK60镁合金板材的组织与性能.机械工程材料,2006,30(6):37-39
    [34]彭建,张丁非,杨椿楣.ZK60镁合金铸坯均匀化退火研究.材料工程,2004,(8):32-34
    [35]麻彦龙,左汝林,汤爱涛·时效ZK60镁合金中的合金相探索.重庆大学学报,2004,27(12):91-94
    [36]Wang S R, Kang S B, Cho J. Effect of hot compression and annealing on microstructure evolution of ZK60 magnesium alloys. Journal of Materials Science,2009,44 (20):5475-5484
    [37]Chen H M, Yu H S, Kang S B, et al. Optimization of annealing treatment parameters in a twin roll cast and warm rolled ZK60 alloy sheet. Materials Science and Engineering a,2010,527 (4-5):1236-1242
    [38]王萍,李建平.Gd对ZK60铸造镁合金组织和耐蚀性能的影响.稀有金属材料与工程,2008,37(6):1056-1059
    [39]芦笙,祁英,王泽鑫.时效对ZK60镁合金在含Cl-碱液中腐蚀性能的影响.材料热处理技术,2009,38(8):132-135
    [40]Zeng R C, Kainer K U, Blawert C, et al. Corrosion of an extruded magnesium alloy ZK60 component-The role of microstructural features. Journal of Alloys and Compounds,2011,509 (13):4462-4469
    [41]Mei Z, Guo L F, Yue T M. The effect of laser cladding on the corrosion resistance of magnesium ZK60/SiC composite. Journal of Materials Processing Technology, 2005,161 (3):462-466
    [42]Gao B, Hao Y, Tu G F, et al. Compounded Surface Modification of ZK60 Mg Alloy by High Current Pulsed Electron Beam plus Micro-plasma Oxidation. Plasma Science & Technology,2010,12 (1):67-70
    [43]Wang C Y, Wu K, Zheng M Y. Hot deformation behavior of Al(18)B(4)O(33)w/ZK60 magnesium matrix composite. Materials Science and Engineering a,2008,487 (1-2):495-498
    [44]Wang C Y, Wu K, Zheng M Y. Hot deformation and processing maps of Al(18)B(4)O(33)w/ZK60 composite. Materials Science and Engineering a,2008, 477(1-2):179-184
    [45]胡连喜,李小强,王尔德.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响.中国有色金属学报,2000,10(5):680-683
    [46]Nieh T G, Schwarez A J, Wadsworth J. Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite. Materials Science and Engineering a,1996,208 (1):30-36
    [47]Yan F, Wu K, Wu G L, et al. Superplastic deformation behavior of a 19.7 vol.% beta-SiCw/ZK60 composite. Materials Letters,2003,57 (13-14):1992-1996
    [48]Xie G M, Ma Z Y, Geng L. Efeects of friction stir welding parameters on microstructures and mechanical properties of ZK60 magnesium alloy joints. Acta Metallurgica Sinica,2008,44 (6):665-670
    [49]Yu Z H, Yan H G, Chen S J, et al. Method for welding highly crack susceptible magnesium alloy ZK60. Science and Technology of Welding and Joining,2010, 15 (5):354-360
    [50]Wu Y Z, Yan H G, Chen J H, et al. Hot deformation behavior and micro structure evolution of ZK21 magnesium alloy. Materials Science and Engineering a,2010, 527 (16-17):3670-3675
    [51]Barnett M R. Twinning and the ductility of magnesium alloys Part I:"Tension" twins. Materials Science and Engineering a,2007,464 (1-2):1-7
    [52]Barnett M R. Twinning and the ductility of magnesium alloys Part II. "Contraction" twins. Materials Science and Engineering a,2007,464 (1-2):8-16
    [53]McQueen H J. Development of dynamic recrystallization theory. Materials Science and Engineering a,2004,387:203-208
    [54]Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. second ed. Oxford:Elsevier,2004,1-68
    [55]McQueen H J, Leo P, Cerri E. Constitutive Equations for Mg Alloy Hot Work Modeling. Recent Developments in the Processing and Applications of Structural Metals and Alloys,2009,604-605:53-65
    [56]Perez-Prado M T, del Valle J A, Ruano O A. Achieving high strength in commercial Mg cast alloys through large strain rolling. Materials Letters,2005, 59 (26):3299-3303
    [57]Perez-Prado M T, del Valle J A, Ruano O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Materialia,2004,50 (5):667-671
    [58]Perez-Prado M T, del Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Materialia,2004,50 (5):661-665
    [59]Eddahbi M, del Valle J A, Perez-Prado M T, et al. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science and Engineering a,2005,410:308-311
    [60]del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Materials Science and Engineering a,2003,355 (1-2):68-78
    [61]Cheng Y Q, Chen Z H, Xia W J, et al. Effect of channel clearance on crystal orientation development in AZ31 magnesium alloy sheet produced by equal channel angular rolling. Journal of Materials Processing Technology,2007,184 (1-3):97-101
    [62]Cheng Y Q, Chen Z H, Xia W J. Effect of crystal orientation on the ductility in AZ31 Mg alloy sheets produced by equal channel angular rolling. Journal of Materials Science,2007,42 (10):3552-3556
    [63]Xia W J, Chen Z H, Chen D, et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling. Journal of Materials Processing Technology,2009,209 (1):26-31
    [64]Kim W J, Lee M J, Lee B H, et al. A strategy for creating ultrafine-grained microstructure in magnesium alloy sheets. Materials Letters,2010,64 (6): 647-649
    [65]Kim W J, Jeong H G, Jeong H T. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Materialia,2009,61 (11):1040-1043
    [66]Kim W J, Kim M J, Wang J Y. Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Materials Science and Engineering a,2009,527 (1-2):322-327
    [67]Perez-Prado M T, del Valle J A, Ruano O A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scripta Materialia,2004,51 (11):1093-1097
    [68]del Valle J A, Perez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy. Materials Science and Engineering a,2005,410:353-357
    [69]Yan K, Sun Y S, Bai J, et al. Micro structure and mechanical properties of ZA62 Mg alloy by equal-channel angular pressing. Materials Science and Engineering a, 2011,528(3):1149-1153
    [70]Zuberova Z, Sabirov I, Estrin Y. The effect of deformation processing on tensile ductility of magnesium alloy AZ31. Kovove Materialy-Metallic Materials,2011, 49(1):29-36
    [71]Rosochowski A. Processing metals by severe plastic deformation. Bulk and Graded Nanometals,2005,101-102:13-22
    [72]Chen Y J, Wang Q D, Lin J B, et al. Fabrication of bulk UFG magnesium alloys by cyclic extrusion compression. Journal of Materials Science,2007,42 (17): 7601-7603
    [73]Wang Q D, Chen Y J, Lin J B, et al. Micro structure and properties of magnesium alloy processed by a new severe plastic deformation method. Materials Letters, 2007,61 (23-24):4599-4602
    [74]陈勇军.往复挤压镁合金的组织结构与力学性能研究:[上海交通大学博士学位论文].上海:上海交通大学,2007,9-12
    [75]Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperatures for precision forging. International Journal of Machine Tools & Manufacture,2002,42 (5):607-614
    [76]Matsumoto R, Kubo T, Osakada K. Fracture of magnesium alloy in cold forging. Cirp Annals-Manufacturing Technology,2007,56 (1):293-296
    [77]Matsumoto R, Osakada K. Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press. Journal of Materials Processing Technology,2010,210 (14):2029-2035
    [78]Padap A K, Chaudhari G P, Nath S K, et al. Ultrafine-grained steel fabricated using warm multiaxial forging:Microstructure and mechanical properties. Materials Science and Engineering a,2009,527 (1-2):110-117
    [79]Sakai T, Miura H, Yang X. Ultrafine grain formation in face centered cubic metals during severe plastic deformation. Materials Science and Engineering a, 2009,499 (1-2):2-6
    [80]Mironov S Y, Salishchea G A, Myshlyaev M M, et al. Evolution of misorientation distribution during warm 'abc' forging of commercial-purity titanium. Materials Science and Engineering a,2006,418 (1-2):257-267
    [81]Takayama A, Yang X, Miura H, et al. Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging. Materials Science and Engineering a,2008,478 (1-2):221-228
    [82]Miura H, Yu G, Yang X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Materials Science and Engineering a,2011,528 (22-23):6981-6992
    [83]Miura H, Yu G, Yang X, et al. Micro structure and mechanical properties of AZ61 Mg alloy prepared by multi directional forging. Transactions of Nonferrous Metals Society of China,2010,20 (7):1294-1298
    [84]Yang X Y, Ji Z S, Miura H, et al. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31. Transactions of Nonferrous Metals Society of China,2009,19 (1):55-60
    [85]Yang X Y, Sun Z Y, Xing J, et al. Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging. Transactions of Nonferrous Metals Society of China,2008,18:S200-S204
    [86]Guo Q, Yan H G, Chen Z H, et al. Grain refinement in as-cast A-Z80 Mg alloy under large strain deformation. Materials Characterization,2007,58 (2):162-167
    [87]Guo Q, Yan H G, Chen Z H, et al. Effect of multiple forging process on micro structure and mechanical properties of magnesium alloy AZ80. Acta Metallurgica Sinica,2006,42 (7):739-744
    [88]Guo Q, Yan H G, Chen Z H, et al. Fracture behaviors of AZ80 magnesium alloy during multiple forging processes. Transactions of Nonferrous Metals Society of China,2006,16 (4):922-926
    [89]Guo Q, Yan H G, Chen Z H, et al. Evolution of the grain orientation of AZ80 magnesium alloy during multiple forging process. Acta Metallurgica Sinica,2007, 43 (6):619-624
    [90]Nie K B, Wang X J, Hu X S, et al. Effect of multidirectional forging on microstructures and tensile properties of a particulate reinforced magnesium matrix composite. Materials Science and Engineering a,2011,528 (24): 7133-7139
    [91]Nie K B, Wu K, Wang X J, et al. Multidirectional forging of magnesium matrix composites:Effect on microstructures and tensile properties. Materials Science and Engineering a,2010,527 (27-28):7364-7368
    [92]Zhao Z D, Chen Q, Hu C K, et al. Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging. Materials & Design,2009,30 (10):4557-4561
    [93]Zheng X W, Dong J, Yin D D, et al. Forgeability and die-forging forming of direct chill casting Mg-Nd-Zn-Zr magnesium alloy. Materials Science and Engineering a,2010,527 (16-17):3690-3694
    [94]Guan S K, Wu L H, Wang P. Hot forgeability and die-forging forming of semi-continuously cast AZ70 magnesium alloy. Materials Science and Engineering a,2009,499 (1-2):187-191
    [95]Kim W J, Lee H W, Park J P, et al. Forging of Mg-3Al-1Zn-1Ca alloy prepared by high-frequency electromagnetic casting. Materials & Design,2009,30 (10): 4120-4125
    [96]Shan D B, Xu W C, Lu Y. Study on precision forging technology for a complex-shaped light alloy forging. Journal of Materials Processing Technology, 2004,151 (1-3):289-293
    [97]刘娟.镁合金锻造成形性研究及数值模拟:[上海交通大学博士学位论文].上海:上海交通大学,2008,78-92
    [98]Lee J H, Kang S H, Yang D Y. Novel forging technology of a magnesium alloy impeller with twisted blades of micro-thickness. Cirp Annals-Manufacturing Technology,2008,57 (1):261-264
    [99]Kang H T, Ostrom T. Mechanical behavior of cast and forged magnesium alloys and their microstructures. Materials Science and Engineering a,2008,490 (1-2): 52-56
    [100]Zhou H T, Zeng X Q, Liu L L, et al. Microstructural evolution of AZ61 magnesium alloy during hot deformation. Materials Science and Technology, 2004,20(11):1397-1402
    [101]Hamouda A M S. Effect of energy losses during an impact event on the dynamic flow stress. Journal of Materials Processing Technology,2002,124 (1-2): 209-215
    [102]郭强,严红革,陈振华.铸态AZ80镁合金高温热变形行为研究.塑性工程学报,2006,13(5):26-31
    [103]顾威.ZK60镁合金热变形行为的实验研究和数值模拟:[中南大学硕士学 位论文].长沙:中南大学,2006,52-55
    [104]Christian J W, Mahajan S. Deformation twinning. Progress in Materials Science, 1995,39(1-2):1-157
    [105]吴秀玲,谭成文.冲击载荷作用下AZ31镁合金中的变形局域化.稀有金属材料与工程,2008,37(6):1110-1113
    [106]Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Materials Letters,2005,59 (12):1511-1515
    [107]Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy. Materials Science and Engineering a,2009,523 (1-2):304-311
    [108]Sun H Q, Shi Y N, Zhang M A, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Materialia,2007,55 (3):975-982
    [109]Ma Q, Li B, Marin E B, et al. Twinning-induced dynamic recrystallization in a magnesium alloy extruded at 450 degrees C. Scripta Materialia,2011, 65 (9): $23-826
    [110]A1-Samman T, Molodov K D, Molodov D A, et al. Softening and dynamic rcrystallization in magnesium single crystals during c-axis compression. Acta Materialia,2012,60 (2):537-545
    [111]Yin D L, Zhang K F, Wang G F, et al. Superplasticity of fine-grained AZ31 Mg alloy sheets. Transactions of Nonferrous Metals Society of China, 2004,4 (6): 11100-1105
    [112]Xing J, Yang X Y, Miura H, et al. Superplasticity of fine-grained magnesium alloy AZ31 processed by multi-directional forging. Materials Transactions,2007, 48(6):1406-1411
    [113]Watanabe H, Mukai T, Ishikawa K, et al. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia,2002,46 (12):851-856
    [114]Jiang L, Jonas J J, Luo A A, et al. Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures. Scripta Materialia,2006,54 (5): 7711-775
    [115]Li L X, Lou Y, Yang L B, et al. Flow stress behavior and deformation characteristics of Ti-3Al-5V-5Mo compressed at elevated temperatures. Materials & Design,2002,23 (5):451-457
    [116]Varin R A, Mazurek B, Himbeault D. Discontinuous yielding in ultrafine-grained austenitic stainless steels. Materials science and Engineering, 1987,94(10):109-119
    [117]Rosen A, Bodner S R. Repeated discontinuous yielding of 2024 aluminum alloy. Materials science and Engineering,1969,4 (2-3):115-122
    [118]Morris D G, Besag F M C, Smallman R E. Discontinuous yielding and dislocation locking in Cu3Au. Acta Materialia,1974,22 (7):801-811
    [119]Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys-an overview. Materials Science and Engineering a,1998,243 (1-2):46-65
    [120]Philippart I, Rack H J. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5Fe-1.5Al. Materials Science and Engineering a,1998,243 (1-2): 196-200
    [121]Han Z Y, Luo H Y, Wang H W. Effects of strain rate and notch on acoustic emission during the tensile deformation of a discontinuous yielding material. Materials Science and Engineering a,2011,528 (13-14):4372-4380
    [122]Hofmann U, Blum W. Micro structural evolution during high temperature deformation of lamellar Ti48Al-2Nb-2Cr. Intermetallics,1999,7 (3-4):351-361
    [123]Slooff F A, Zhou J, Duszczyk J, et al. Constitutive analysis of wrought magnesium alloy Mg-AL4-Znl. Scripta Materialia,2007,57 (8):759-762
    [124]Guo Q, Yan H G, Zhang H, et al. Behaviour of AZ(31) magnesium alloy during compression at elevated temperatures. Materials Science and Technology,2005, 21 (11):1349-1354
    [125]McQueen H J, Ryan N D. Constitutive analysis in hot working. Materials Science and Engineering a,2002,322 (1-2):43-63
    [126]Luo G M, Wu J S, Fan J F, et al. Deformation behavior of an ultrahigh carbon steel (UHCS-3.0Si) at elevated temperature. Materials Science and Engineering a,2004,379(1-2):302-307
    [127]Zhou M, Clode M P. Effects of specimen geometry on temperature rise and flow behavior of aluminium alloys in hot torsion testing. Materials & Design,1996, 17 (5-6):275-281
    [128]盛虹伟,李德江.塑性变形温升对合金钢锻造的影响.石油矿场机械,2000,29(6):46-47
    [129]Liu L F, Ding H L. Study of the plastic flow behaviors of AZ91 magnesium alloy during thermomechanical processes. Journal of Alloys and Compounds, 2009,484 (1-2):949-956
    [130]Guo Q, Yan H G, Chen Z H, et al. Elevated temperature compression behaviour of Mg-Al-Zn alloys. Materials Science and Technology,2006,22 (6):725-729
    [131]Kim H L, Bang W, Chang Y W. Grain Size Effect on the Dome-Forming Limit and Deformation Mechanism of Az31b Magnesium Alloy Sheets. Magnesium Technology 2010,2010:209-213
    [132]Yu K, Rui S T, Song J M, et al. Effects of grain refinement on mechanical properties and microstructures of AZ31 alloy. Transactions of Nonferrous Metals Society of China,2008,18:S39-S43
    [133]Wang J T, Yin D L, Liu J Q, et al. Effect of grain size on mechanical property of Mg-3Al-1Zn alloy. Scripta Materialia,2008,59 (1):63-66
    [134]McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state. Journal of Materials Processing Technology,1995,53 (1-2): 293-310
    [135]Kang F W, Sun J F, Mang G Q, et al. Characteristics of hot compression deformation and microstructure evolution of spray formed nickel base superalloy. Acta Metallurgica Sinica,2007,43 (10):1053-1058
    [136]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Materials Science and Engineering a,2003,339 (1-2):124-132
    [137]Xu S W, Kamado S, Matsumoto N, et al. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Materials Science and Engineering a,2009,527 (1-2):52-60
    [138]郭强.镁合金高温单向压缩及多向变形行为研究:[湖南大学博士学位论文].长沙:湖南大学,2007,93-98
    [139]Sitdikov O, Kaibyshev R. Dynamic recrystallization in pure magnesium. Materials Transactions,2001,42 (9):1928-1937
    [140]Jiang L, Jonas J J. Effect of twinning on the flow behavior during strain path reversals in two Mg (+Al, Zn, Mn) alloys. Scripta Materialia,2008,58 (10): 803-806
    [141]Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Materialia,2007,55 (11):3899-3910
    [142]Al-Samman T, Gottstein G. Influence of strain path change, on the rolling behavior of twin roll cast magnesium alloy. Scripta Materialia,2008,59 (7): 760-763
    [143]Behrens B A, Schmidt I. Improving the properties of forged magnesium parts by optimized process parameters. Journal of Materials Processing Technology, 2007,187:761-765
    [144]夏伟军,杨春花,黄长清.变形量和变形速率对AM60铸锭压缩过程中孪晶的影响.机械工程材料,2006,30(8):13-56
    [145]Hou J, Peng Q J, Shoji T, et al. Effects of cold working path on strain concentration, grain boundary micro structure and stress corrosion cracking in Alloy 600. Corrosion Science,2011,53 (9):2956-2962
    [146]Pinheiro P, Monteiro W A, Barbosa R, et al. The effect of strain path on the mechanical behavior and dislocation arrangements in the hot working of copper. Materials Science and Engineering a,2004,368 (1-2):280-285
    [147]Ding H L, Liu L F, Kamado S, et al. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy. Journal of Alloys and Compounds,2008,456 (1-2):400-406
    [148]Ding H L, Liu L F, Kamado S, et al. Evolution of microstructure and texture of AZ91 alloy during hot compression. Materials Science and Engineering a,2007, 452:503-507
    [149]Chen Y J, Wang Q D, Roven H J, et al. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression. Journal of Alloys and Compounds,2008,462 (1-2):192-200
    [150]Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Materialia,1982,30 (10):1909-1919
    [151]曲家惠,李四军,王福.AZ31镁合金挤出棒锻造变形时的组织与织构的变化.材料与冶金学报,2006,5(3):221-230
    [152]Xin Y C, Jiang J, Chapuis A, et al. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression. Materials Science and Engineering a,2012,532:50-57
    [153]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia,2004,52 (17):5093-5103
    [154]Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia,2008,59 (7):696-698
    [155]Wang H Y, Xue E S, Xiao W, et al. Influence of grain size on deformation mechanisms in rolled Mg-3Al-3Sn alloy at room temperature. Materials Science and Engineering a,2011,528 (29-30):8790-8794
    [156]Miura H, Maruoka T, Yang X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy. Scripta Materialia,2012,66 (1): 49-51
    [157]Chao H Y, Sun H F, Chen W Z, et al. Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment. Materials Characterization,2011,62 (3):312-320
    [158]Yang X Y, Zhu Y K, Miura H, et al. Static recrystallization behavior of hot-deformed magnesium alloy AZ31 during isothermal annealing. Transactions of Nonferrous Metals Society of China,2010,20 (7):1269-1274
    [159]Biswas S, Suwas S. Evolution of sub-micron grain size and weak texture in magnesium alloy Mg-3Al-0.4Mn by a modified multi-axial forging process. Scripta Materialia,2012,66 (2):89-92
    [160]Park K-T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels:Effect of Al addition. Materials Science and Engineering:A,2010,527 (16-17):3651-3661
    [161]Datta A, Waghmare U V, Ramamurty U. Structure and stacking faults in layered Mg-Zn-Y alloys:A first-principles study. Acta Materialia,2008,56 (11): 2531-2539
    [162]Huang B X, Wang X D, Wang L, et al. Effect of Nitrogen on Stacking Fault Formation Probability and Mechanical Properties of Twinning-Induced Plasticity Steels. Metallurgical and Materials Transactions A,2008,39 (4): 717-724
    [163]Kim J-K, Chen L, Kim H-S, et al. On the Tensile Behavior of High-Manganese Twinning-Induced Plasticity Steel. Metallurgical and Materials Transactions A, 2009,40 (13):3147-3158
    [164]Hong S, Shin S Y, Kim H S, et al. Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels. Metallurgical and Materials Transactions A,2012,43 (6):1870-1883
    [165]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Materials Transactions,2003,44 (4):426-435
    [166]Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys:Particle pinning. Materials Science and Engineering:A,2011,528 (12):4239-4247
    [167]Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys:Particle-stimulated nucleation. Acta Materialia, 2009,57 (9):2739-2747
    [168]Li X, Jiao F, Al-Samman T, et al. Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation. Scripta Materialia,2012,66 (3-4):159-162
    [169]Li X, Al-Samman T, Gottstein G. Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling. Materials & Design,2011,32 (8-9):4385-4393
    [170]Yin S M, Wang C H, Diao Y D, et al. Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy. Journal of Materials Science & Technology,2011,27 (1):29-34
    [171]Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys. Materials Letters,2002,56 (1-2):53-58
    [172]Kubota K. Review Processing and mechanical properties of fine-grained magnesium alloys. Journal of Materials Science,1999,34 (4):2255-2262
    [173]Lu K, Lu L, Suresh S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science,2009,324 (5925):349-352
    [174]Lu L, Shen Y F, Chen X H, et al. Ultrahigh Strength and High Electrical Conductivity in Copper. Science,2004,304:273-276
    [175]Shen Y F, Lu L, Lu Q H, et al. Tensile properties of copper with nano-scale twins. Scripta Materialia,2005,52 (10):989-994
    [176]Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Materialia,2009,57 (20): 6215-6225
    [177]Zhao W, Tao N, Guo J, et al. High density nano-scale twins in Cu induced by dynamic plastic deformation. Scripta Materialia,2005,53 (6):745-749
    [178]Chen X H, Huang X W, Pan F S, et al. Effects of heat treatment on microstructure and mechanical properties of ZK60 Mg alloy. Transactions of Nonferrous Metals Society of China,2011,21 (4):754-760
    [179]Xu D K, Liu L, Xu Y B, et al. The effect of precipitates on the mechanical properties of ZK60-Y alloy. Materials Science and Engineering a,2006,420 (1-2):322-332
    [180]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-I. The model. Acta metallurgica Materialia,1990,38 (10):1789-1802
    [181]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-II. Applications of the model Acta metallurgica Materialia,1990,38 (10): 1803-1812
    [182]Nakashima K, Suzuki M, Futamura Y, et al. Limit of dislocation density and dislocation strengthening in iron. Nanomaterials by Severe Plastic Deformation, 2006,503-504:627-632
    [183]程永奇.AZ31镁合金板材等径角轧制及冲压性能研究:[湖南大学博士学位论文].长沙:湖南大学,2007,45-59
    [184]Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy. Materials Science and Engineering a,2004,379 (1-2):258-263
    [185]Liu P, Xin Y C, Liu Q. Plastic anisotropy and fracture behavior of AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China,2011,21 (4):880-884
    [186]Wan G, Wu B L, Zhang Y D, et al. Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy. Materials Science and Engineering a,2010,527 (12): 2915-2924
    [187]Bohlen J, Nurnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Materialia,2007,55 (6): 2101-2112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700