用户名: 密码: 验证码:
高性能大锻件控形控性规律与操作机—压机联动轨迹的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大锻件是冶金、造船、石油化工、电力、核能、航空航天和国防军工等领域的大型成套设备的关键零部件,苛刻的服役条件决定了其高质量要求。大锻件的成形制造一般以大型铸锭为原材料,由于大型铸锭通常存在严重的晶粒粗大、夹杂、偏析、疏松和空洞等冶金缺陷,因此锻造的主要目的是成形和成性,即在保证成形精度的同时,打碎枝晶、细化晶粒、消除偏析、压实疏松和焊合空洞,尽可能消除大型铸锭的冶金缺陷。本文针对我国大锻件锻造技术水平较低和生产能力不足的现状,以实现高性能大锻件的自动化锻造为目的,研究了大锻件的控形控性规律,提出了锻造操作机与压机联动轨迹的规划方法。主要包括以下内容。
     采用热模拟实验,研究了典型大锻件用材料42CrMo钢的高温流变行为,建立了应变-应变速率补偿的Arrhenius型高温流变本构方程,可精确预测其高温流变应力,其预测值和实验值的最大相对误差及其标准偏差分别仅为-4.36%和2.36%。
     采用热模拟实验与金相观察,研究了典型大锻件用材料42CrMo钢的动态再结晶、静态再结晶、亚动态再结晶与晶粒长大行为。基于实验结果,建立了三种再结晶的动力学模型与晶粒尺寸模型。结果表明:(1)减小初始奥氏体晶粒尺寸,动态与静态再结晶速率增快、晶粒变细。亚动态再结晶晶粒则在初始奥氏体晶粒尺寸较小时也变细,而在初始奥氏体晶粒较大时变化不明显;(2)升高变形温度,动态、静态与亚动态再结晶速率均增快、晶粒均粗化;(3)增大应变速率,动态、静态与亚动态再结晶晶粒均细化;(4)增大变形量,动态再结晶分数增大、静态再结晶速率增快且晶粒尺寸变小;(5)奥氏体晶粒长大速率受保温温度影响较大,受保温时间影响较小;(6)三种再结晶模型的预测结果均与实验结果吻合较好。
     采用细观损伤力学的研究方法,建立了研究理想刚粘塑性大锻件内部椭圆柱形(圆柱形)空洞演变的代表性体元模型;基于变分原理,导出了体元基体材料速度场的泛函;采用瑞利-里兹法对泛函变分问题进行求解,获得了不同远场应力条件下的空洞演变规律。结果表明:(1)在远场纯剪应力作用下,空洞的形状系数变化率与其形状系数、材料Norton指数分别满足抛物线函数、一次指数函数关系;(2)在远场单向压应力作用下,空洞的形状系数变化率与其形状系数、材料Norton指数分别满足线性函数、一次指数函数关系;(3)在远场双向压应力作用下,空洞的形状系数变化率与其形状系数满足抛物线函数关系、且抛物线的顶点、张口与应力三轴度、材料Norton指数有关;(4)在远场单向压应力作用下,空洞的取向变化率与空洞形状、取向及材料Norton指数有关。
     采用热力耦合的三维有限元模型,研究了大锻件内部椭球形(球形)空洞的演变机理;为了综合考虑应力、应变对空洞形状演变的影响,提出了一个新的特征参量——空洞形状估计参数,并建立了空洞形状估计参数与形状系数的关联模型;获得了平砧拔长工艺参数对大锻件内部空洞形状演变的影响规律,并通过实验验证了本文有限元模型的正确性。
     集成了本文获得的大锻件控形控性规律,提出了锻造操作机与压机联动轨迹的规划方法,开发了操作机与压机联动轨迹的规划系统,并制定了操作机与压机联动轨迹的合理性评价准则,为操作装备的功能设计和控制提供理论依据。结合300MW发电机转子锻件的平砧拔长工艺,给出了操作机-压机联动轨迹规划系统的工程应用实例。
Large forgings are the key parts for heavy machines and equipments which are widely used in metallurgy, ship-building, petrochemical engineering, power generation, and nuclear power industries. Due to the extreme service conditions, the quality of large forgings becomes more and more important. However, the defects, such as coarse grains, slag inclusions, heating cracks, segregations, porosities and voids, inevitably appear when the steel ingots are casted. The mian goals of hot forging are to eliminate metallurgy defects inside large ingots, including breaking dendrites, refining grains, eliminating segregations, compacting porosities, closing voids, and so on. In this dissertation, the flow behaviors, void and microstructure evolution of a typical material for large forgings are investigated. The methods to plan and optimize linkage trajectory of the manipulator-press are put forwarded. The main contents of this dissertation are shown as following.
     The flow behaviors of42CrMo steel are investigated by on one-pass hot compression tests. Based on experimental results, a revised model describing the relationships of the flow stress, strain rate and forming temperature of42CrMo steel at elevated temperatures is proposed by the compensation of strain and strain rate. The stress-strain values of42CrMo steel predicted by the proposed model well agree with experimental results. The errors and the standard deviation between the preicted and experimental stress is only-4.36%and2.36%.
     The dynamic, static and metadynamic recrystallization behaviors of42CrMo steel are investigated by hot compression and metallographic tests. Based on the experimental results, the kinetic models and grain size models of three kinds of recrystallization phenomena for42CrMo steel are proposed. Results show that:(1) When the initial austenitic grain size is decreased, both the dynamic and static recrystallization will easily occur, and then the dynamic and static recrystallization grain sizes will decrease. Also, decreasing the initial austenitic grain size will result in the fine metadynamic recrystallization grain size;(2) With the increase of the deformation temperature, the rate of dynamic, static and metadynamic recrystalli-zation will become fast, and the coarse grain size appear;(3) With the increase of strain rate, the dynamic, static and metadynamic recrystallization grain sizes become fine;(4) With the increase of deformation degree, the dynamic recrystallization fraction increases, and the dynamic and static recrystallization grain sizes become more fine;(5) The effects of holding temperature on the grain growth are significant. However, the effects of the holding time on the grain growth are slight;(6) The predictions of the kinetic models and grain size models for three kinds of recrystallization phenomena are well in agreement with the experimental results.
     Based on the mesoscopic damage mechanics, the representative volume element (RVE) model for elliptic cylinder void (include cylindrical void) inside large viscous mateial forgings is put forward. The variational functions for the soluting the local velocity field are deduced. The laws for void evolution at different remote stress fields were obtained. Results show that:(1) For the remote shear stress field, the relationships between the changing rate of void aspect ratio and void aspect ratio, material Norton exponent can be represented as the parabolic function and first order exponential function, respectively;(2) For the remote uniaxial compression stress field, the relationships between the changing rate of void aspect ratio and void aspect ratio, material Norton exponent can be represented as the linear function and first order exponential function, respectively;(3) For the remote biaxial compression stress field, the relationships between the changing rate of void aspect ratio and void aspect ratio can be represented as the parabolic function;(4) For the remote uniaxial compression stress field, the changing rate of void orintation is relate to its aspect ratio, its orintation, and material Norton exponent.
     The mechanism of spherical or spheroidal void evolution is studied by thermo-mechanical coupled finite element model. A void aspect ratio evaluation index is proposed to consider the effects of stress and strain on the evolution of the void aspect ratio. The model between the void aspect ratio evaluation index and the void aspect ratio is established. Then, the effects of stretching processing parameters on the void aspect ratio evaluation index are studied, and the predicted results from FEM are verified by the experments.
     By integrating laws for high quality large forgings abtained in this dissertation, the methods to plan linkage trajectory of manipulator-press is put forward, and the modules for producing the linkage trajectory of manipulator-press is developed. Also, the judging rules for the linkage trajectory are established. Taking the strecthing process of300MW generator as an example, the industrial application of the modules to produce the linkage trajectory of manipulator-press is given.
引文
[1]Tyurin V A, Ovechkin V V. World achievements in forgings production for power and petroleum-chemical mechanical engineering. Tyazh Mashinost,2001, (1):34-37
    [2]任运来.大型锻件内部缺陷修复条件和修复方法研究:[博士学位论文].秦皇岛:燕山大学,2003
    [3]张效迅.大锻件锻造成形过程中内部空洞型缺陷演化规律的研究:[博士学位论文].上海:上海交通大学,2010
    [4]Cook P M. Dependence of Mechanical Properties of Forgings On Local Strain. Journal of the Iron and Steel Institute,1959, (4):250-252
    [5]田中光之.钢锭内部空隙偺压合.塑性加工春季耩演会,1982,(5):645-651
    [6]Bokelmann D, Forch K, Fleischer M, et al. Forging of Heavy Continuous Grain Flow (CGF)Crankshafts Without Intermediate Cooling. In:Forging Industry Education and Research Foundation of USA, eds. Proc 12th International Forgemasters Meeting. Chicago: Forging Industry Education and Research Foundation of USA,1994.213-218
    [7]刘助柏.平砧拔长矩形截面毛坯的新理论,机械工程学报,1994,30(5):47-49
    [8]梁晨.大型模块锻造工艺模拟与CAPP专家系统研究:[博士学位论文].秦皇岛:燕山大学,2003
    [9]Masayoshi K. On the Mannesmann Effect Appearing in the Course of Solid Forging of Steel Ingot. In:Steel Castings and Forgings Association of Japan, eds. Proc 8th International Forgemasters Meeting. Tokyo:Steel Castings and Forgings Association of Japan,1977. 421-428
    [10]刘助柏.新FM锻造法.机械工程学报,1994,30(4):79-82
    [11]关野蓠吉,鹿野昭一.大型锻钢件偺壏间锻憿丐慪惈.加工,1966,7(55):299-394
    [12]谢云岫.一重转子锻件锻造工艺的演变和发展.见:锻压学会秘书处,编.第四届全国锻压学会论文集.上海:中国机械工程学会,1987.1-4
    [13]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design,2011,32(4):1733-1759
    [14]Johnson G R, Cook W H. A constitutive model and datas for metals subjected to large strains, high strain rates and high tempertures. Proceedings of the Seventh International Symposium on Ballistics,1983, Den Haag, The Netherlands, pp.541-543
    [15]Fields D S, Bachofen W A. Determination of strain hardening characteristics by torsion testing. Proceedings of American Society for Testing and Materials,1957,57:1259-1272
    [16]Zener C, Hollomon H. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics,1944,15(1):22-32
    [17]Jonas J, Sellars C M. Tegart J M. Strength and structure under hot-working Conditions. Metallurgical Reviews,1969,14:1-24
    [18]Lin Y C, Liu G. A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature. Computational Materials Science, 2010,48(1):54-8
    [19]Zhang H J, Wen W D, Cui H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures:experiments and modeling steel. Materials Science and Engineering:A, 2009,504:99-103
    [20]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behavior of typical high-strength alloy steel. Materials Science and Engineering:A,2010,527(26):6980-6986
    [21]Cheng Y Q, Zhang H, Chen Z H, et al. Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation. Journal of Materials Processing Technology,2008, 208(1-3):29-34
    [22]Zhang X H. Experimental and numerical study of magnesium alloy during hot-working process:[PhD thesis]. Shanghai:Shanghai Jiaotong University,2003
    [23]Zerilli P J, Armstrong R W. Dislacation-mechanics-based constitutive relations for material dynamics caculations. Journal of Applied Physics,1987,61:1816-25
    [24]Lin Y C, Chen M S, Zhang J. Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mechanics Research Communications,2008(3),35:142-150
    [25]Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for extreme loading conditions. Journal of Applied Physics,2003,93:211-220
    [26]Rusinek A, Klepaczko J R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the fow stress. International Journal of Plasticity,2001,17(1):87-115
    [27]Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardenging materials. Journal of Applied Mechanic,1975,42:385-389
    [28]Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automaton. Scripta Materialia,1998,38(6):405-413
    [29]Zhang H J, Wen W D, Cui H T, et al. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates. Materials Science and Engineering:A, 2009,526(1-2):1-6
    [30]Gao C Y, Zhang L C. A constitutive model for dynamic plasticity of FCC metals. Materials Science and Engineering:A,2010,527(13-14):3138-3143
    [31]Kim J B, Shin H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature. International Journal of Impact Engineering,2009,36(5):746-753
    [32]Jin Z Y, Liu J, Cui Z S, et al. Identification of nucleation parameter for cellular automaton model of dynamic recrystallization. Transactions of Nonferrous Metals Society of China, 2010,20(3):458-64
    [33]Lin Y C, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Computational Materials Science,2008, 43(4):752-758
    [34]Cho S H, Yoo Y C. Hot rolling simulations of austenitic stainless steel. Journal of materials science,2001,36(17):4267-4272
    [35]伍来智.低碳结构钢热塑成形过程的组织细化:[博士学位论文].上海:上海交通大学,2010
    [36]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microallyed steels. Acta Materialia, 1996,44(1):137-148
    [37]Medina S F, Hernandez C A. Modelling of the dynamic recrystallization of austenite in alloy and microalloyed steels. Acta Materialia,1996,44(1):165-171
    [38]Senuma T, Yada H. Microstructure evolution of plain carbon steels. In:Hansen S S, et al, eds. Proc,7 Int. Symp. On Metallurgy and Materials Science. Roshide Denmark:Riso National Laboratory,1986.547-552
    [39]Kong L X, Hodgson P D, Wang B. Development of constitutive models for metal forming with cyclic. Journal of Materials Processing Technology,1999,89-90:44-50
    [40]Saito Y. The Monte Carlo simulation of microstructural evolution in metals. Materials Science and Engineering A,1997,223 (1-2):114-124
    [41]Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automata. Scripta Materialia,1998,38(3):405-413
    [42]李雄.结构钢热变行为研究:[博士学位论文].上海:上海交通大学,2004
    [43]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling. Metal Science, 1979,13:187-194
    [44]Hodgson P D. Microstructure modelling for property prediction and control. Journal of Materials Processing Technology,1996,60(1-4):27-33
    [45]Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation and recrysta-llization in deformed austenite. Acta Metallurgica,2001,49(20):4183-4190
    [46]Radhakrishnan B, Sarmo G B, Zachria T. Modeling the kinetics and microstructural evolution during static recrystallization-Monte Carlo simulation of recrystallzation. Acta Metallurgica,1998,46(12):4415-4433
    [47]Hesselbarth H W, Gobel I R. Simulation of recrystallization by cellular automata. Acta Me-tallurgica,1991,25(2-4):69-412
    [48]钟云龙,刘国权,刘胜新,等.新型油井管33Mn2V的奥氏体晶粒长大规律.金属学报,2003,39(7):669-703
    [49]Devadas C, Samarasekera I V, Hawbolt E B. The thermal and metallurgical state of steel strip during hot Rolling:Part 3. microstructural evolution. Metallurgical and Materials Science,1991,22(2):335-349
    [50]E Anelli. Application of mathematical modelling to hot Rolling and controlled cooling of wire rods and bars. ISIJ International,1992,32 (1):440-449
    [51]李立新,汪凌云,周家林,等.等温条件下晶粒长大模型研究.武汉科技大学学报(自然科学版),2002,25(4):335-336
    [52]高艳涛.大型锻件空隙性缺陷修复的力学条件及冷却自愈合研究:[硕士学位论文].秦皇岛:燕山大学,2007
    [53]Chaaban M A, Alexander J M. A study of the closure of cavities in swing forging. In:Tabias S A, eds. Proceedings of the 17th international Machine and Tool Design Research Conference. London:Birmingham,1977.633-645
    [54]陶永发,杨煜生,王欣.FM法锻造效果的实验研究.重型机械,1985,(12):16-20
    [55]孙捷先,郭会光.FM锻造法的试验与有限元分析研究.机械工程学报,1986,22(4):47-55
    [56]曹起骧,江松,王顺龙,等.FM锻造工艺高温云纹法模拟研究.大型铸锻件,1990,4:90-97,106
    [57]曹起骧,叶绍英,金坚,等.V型砧锻造时变形规律的云纹法模拟研究.大型铸锻件1987,2:1-13
    [58]1曹起骧,叶绍英,王顺龙,等.FM法锻造时变形规律的云纹法模拟研究.大型铸锻件,1987,2:14-23
    [59]曹起骧,王顺龙,杨正汉,等.用云纹法模拟研究FM法锻造工艺.大型铸锻件,1988,3:1-8
    [60]曹起骧,谢冰,杜学刚,等.WHF法错砧锻造效果模拟研究.大型铸锻件,1988,3:18-24
    [61]任猛.大型钢锭内部空洞性缺陷锻合过程的数值模拟和实验研究:[博士学位论文].北京:清华大学,1986
    [62]王祖唐,刘庄,任猛.大钢锭内部空洞性缺陷锻合过程的实验研究.机械程学报,1989,25(4):47-53
    [63]任广升,谭红,李运兴,等.镦粗过程中锻件内孔洞缺陷邻域应变分布的模拟研究.塑性工程学报,1994,1(3):14-19
    [64]任广升,黄朝晖,白忐斌.镦粗过程中孔洞应变分布的光塑性研究,机械工程学报,1995,31(2):93-98
    [65]任运来,王欣,兰英斌.应力状态对孔洞性缺陷锻合的影响.锻压技术,1993,(2):8-10
    [66]张艳妹,任运来,吴瑜,等.砧宽比对孔洞闭合影响的光塑性研究.大型铸锻件,2002,(1):1-3,9
    [67]Penence A E M, Cetlin P R. Analysis of a new model material for the physical simulation of metal forming. Journal of Materials Processing Technology,1998.84(1):261-267
    [68]WallerO A. Closing of a central longitudinal pore in hot rolling. Journal of Mechanical Working Technology,1985,12(2):233-242
    [69]马庆贤,谢冰,曹起骧.云纹有限元法数值模拟技术探讨.塑性工程学报,1995,2(4):18-22
    [70]於美甫.中心压实锻造法的发掘创新试验研究与生产应用.大型铸锻件,1980,(4):24-38
    [71]谢冰,曹起骧,叶绍英,等.宽砧强压锻造效果的常温模拟实验研究.大型铸锻件,1987,(2):24-30
    [72]钟杰.大型轴类锻什锻造工艺的云纹法模拟研究:[博士学位论文].北京:清华大学,1989
    [73]杜学刚.大型支承辊类锻件锻造工艺优化的云纹法模拟:[博士学位论文].北京:清华大学,1989
    [74]邓陟,曹起骧.中心压实法锻造工艺的高温云纹法模拟研究.大型铸锻件,1990,(3):7-22
    [75]金宁.大锻件孔隙性缺陷的压合与焊合规律的研究及高温栅的研究:[博士学位论文].北京:清华大学,1990
    [76]韩静涛.大型饼类锻件夹杂形缺陷形成机理及控制锻造:[博士学位论文].北京:清华大学,1995
    [77]钟忠平.大型筒体锻件组织性能控制与高温缺陷修复实验研究:[博士学位论文].北京:清华大学,1998
    [78]蒋智.三维变形过程中空洞闭合的模拟研究:[硕士学位论文].北京:机械科学研究院,2003
    [79]吕炎,徐亦公.大型锻件非对称拔长工艺的有限元分析.金属科学与工艺,1985,4(3):95-101
    [80]王欣.FM法的模拟实验研究及刚塑性有限元理论分析:[硕士学位论文].秦皇岛:东北重机学院,1985
    [81]杨煜生,陶永发,王欣.FM锻造法的刚塑性有限元分析.燕山大学学报,1986,(4):9-16
    [82]杨煜生,李伟民,陶永发.钢锭内部疏松缺陷压实程度的刚塑性有限元解法.钢铁,1992,27(2):24-27
    [83]王祖唐,刘庄,任猛.大钢锭内部空洞锻合过程的数值模拟.机械工程学报,1989,25(3):51-56
    [84]Tanaka M, Ono S, Tsuneno M. A numerical analysis on void crushing during side compression of round bar by flat dies. Journal of the Japan Society for Technology of Plasticity,1987,28(314):238-244
    [85]Ono S I, Minami K, Murai E, et al. Three-dimensional simulation on the internal void closure in an ultra-large ingot using a pre-cooling ingot forging process. Journal of the Japan Society for Technology of Plasticity,1994,35(405):1201-1206
    [86]Dudra S P, Im YT. Analysis of void closure in open-die forging. International Journal of Machine Tools and Manufacture,1990,30(1):65-75
    [87]Cho J R, Park C Y, Yang D Y. Investigation of the cogging process by three-dimensional thermo-viscoplastic finite element analysis. Journal of Engineering Manufacture,1992, 206(4):277-286
    [88]Pietrzyk M, Kawalla R, Pircher H. Simulation of the behaviour of voids in steel plates during hot rolling. Steel Research,1995,66(12):526-529
    [89]Wang A, Thomson P F, Hodgson P D. A study of pore closure and welding in hot rolling process. Journal of materials processing,1996,60(1-4):95-102
    [90]Park C Y, Yang D Y. Modelling of void crushing for large-ingot hot forging. Journal of Materials Processing Technology,1997,67(1-3):195-200
    [91]Hamzah S, Stahlberg U. A study of pore closure in the manufacturing of heavy rings. Journal of materials processing,1998,84(1-3):25-37
    [92]Hamzah S, Stahlberg U. A new pore closure concept for the manufacturing of heavy rings. Journal of Materials Processing Technology,2001,110(3):324-333
    [93]崔振山,任广升,徐秉业,等.大锻件空洞的局部效应与锻合压下率研究.塑性工程力学,2003,20(2):55-59
    [94]付强.大型轴类锻件锻造过程的数值模拟研究:[硕士学位论文].上海:上海交通大学,2008
    [95]Kakimoto H, Arikawa T, Takahashi Y, et al. Development of forging process design to close internal voids. Journal of Materials Processing Technology,2010,210(3):415-422
    [96]Lee Y S, Lee S U, Van Tyn C J, et al. Internal void closure during the forging of large cast ingots using a simulation approach. Journal of Materials Processing Technology,2011, 211(6):1136-1145
    [97]McClintock F M. A criterion for ducile fracture by the growth of holes. Journal of Applied Mechanics,1968,35:363-371
    [98]Rice J R, Tracey D M. On the ductile enlargenment of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids,1969,17:201-217
    [99]Budiansky B, Hutchinson J W, Slutsky S. Void growth and collapse in viscous solids. In: Hopkins H G, Sewell M J, eds. Mechanics of Solids. Oxford:Pergamon Press,1982.13-45
    [100]Huang Y, Hutchinson J W, Tvergaard V. Cavitation instabilities in elastic-plastic solids. Journal of the Mechanics and Physics of Solids,1991,39(2):223-241
    [101]Huang Y. Accurate dilation rates for spherical voids in triaxial stress field. Report Mech-155. Division of Applied Sciences.Harvard University,1989
    [102]Gurson A L. Plastic flow and behavior of ductile materials incorporating void nucleation: [Ph.D Theies]. Rhode Island:Brown Universtiy,1975
    [103]朱明.大型锻件内部孔洞缺陷闭合过程的理论探讨.北京理工大学学报,1990,10(S2):58-63
    [104]朱明,金泉林.材料内部孔洞压实机理的研究.兵工学报,1992,(1):59-65
    [105]朱明,金泉林.一种考虑孔洞形状变化的损伤细观模型及其在孔洞闭合过程中的应用,应用数学和力学,1992,13(8):729-736
    [106]李妍.大锻件镦粗成形中内部空洞型缺陷的演化规律研究:[硕士学位论文].上海:上海交通大学,2009
    [108]Sun J X. Analysis of special forging processes for heavy ingots by finite element method. International Journal of Machine Tools and Manufacture,1988,28(2):173-179
    [110]Kim S, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel. Meterials Scinece and Engineering,2001,311(1-2):108-113
    [111]Yanagida A, Yanagimoto J. A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve. Journal of Materials Processing Technology,2004, 151(1-3):3-38
    [112]McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state. Journal of Materials Processing Technology,1995,53(1-2):293-310
    [113]曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响.金属学报,2007,43(1):35-40
    [114]王晓峰,王雷.34CrMoV结构钢动态再结晶行为研究.钢铁钒钛,2007,28(1):18-21
    [115]Kong L X, Hodgson P D, Wang B. Development of constitutive models for metal forming with cyclic strain softening. Journal of Materials Processing Technology,1999,89-90: 44-50
    [116]王进,陈军,赵震,等.非调质钢F40MnV高温流动应力模型研究.塑性工程学报,2005,12(5):54-57
    [117]Mecking H, Kocks U F. Kinetics of flow and strain-hardending. Acta Metallurgica,1982, 29(11):1865-1875
    [118]Zhang L, Yang W Y, Sun Z Q. Modeling of microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite. Journal of University of Science and Technology Beijing,2007,14(2):130-135
    [119]沈丙振,方能炜,沈厚发,等.低碳钢奥氏体再结晶模型的建立.材料科学与工艺,2005,13(5):516-520
    [120]Laasraoui A, Jonas J J. Prediction of temperature distribution flow stress and microstructure during the multi-pass hot rolling of steel plate an strip. ISIJ International,1991,31(1): 95-105
    [121]Rao K P, Prasad Y K D V, Hawboly E B. Study of fractional softening in multi-stage hot deformation. Journal of Materials Processing Technology,1998,77(1-3):166-174
    [122]Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization an application to the hot rolling of steels. ISIJ International,1997,37(10):1000-1009
    [123]Cho S H, Kang K B, Jonas J J, et al. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel. Materials Science and Technology,2002,18(4):389-395
    [124]Phaniraj M P, Behera B B, Lahiri A K. Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill Part-Ⅱ.microstructure evolution. Journal of Materials Processing Technology,2006,178(1/3):388-394
    [125]Serajzadeh S, A study on kinetics of static and metadynamic recrystallization during hot rolling. Materials Science and Engineering A,2007,448(1-2):146-153
    [126]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problem. Proceedings of the Royal Society of London,1957, A241:376-396
    [127]Lee B J, Mear M E. Evolution of elliptical voids in power-law viscous solids. Mechanics of Materials,1999,31(1):9-28
    [128]Fleck N A, Hutchinson J W.Void growth in shear. Proceedings of the Royal Society of London,1986, A 407:435-458
    [129]谢水生,李雷.金属塑性成形的有限元模拟技术及应用.北京:科学出版社,2008
    [130]韩剑峰,王冰田.欧洲自由锻行业介绍.锻压与冲压,2005,(7):26-30
    [131]Lin Y C, Chen M S, Zhang J. Effects of Forging Processing Parameters on Axial Effective Strain in Heavy Forgings. Materials Science Forum,2010,654-656:1618-1624
    [132]Tomlinson A, Stringer J D. Spread and elongation in flat tool forging. Journal of The Iron and Steel Institute,1959,193:157-162
    [133]Shutt A. A note on spread in indenting. Applied Scientific Research,1960,9:389-392
    [134]Hill R. A general method of analysis for metal-working process. Journal of the Mechanics and Physics of Solids,1963,11:305-326
    [135]Braun-Angoot P, Berger B. An upper bound approximation for spread and pressure in flat tool forging, Proceedings of the international conference on numerical methods in industrial forming processes, Pineridge Press, Swansea,1982,165-174
    [136]Pahnke H J. Fundamentals of programmed forging. Metallurgical Plant and Technology, 1983,5:92-97
    [137]Lin Y C, Din Y, Fu Y X, et al. Effects of processing parameters on the mean elongation ratio and maximum spread ratio of heavy forgings during stretching process. Journal of Materials Science,2011,46(23):7536-7544
    [138]万胜狄等编.锻造机械化与自动化.北京:机械工业出版社,1983
    [139]中国机械工程学会塑造性工程学会.锻压手册.北京:机械工业出版社,2008
    [140]谢懿.实用锻压技术手册.北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700