用户名: 密码: 验证码:
水处理滤料的表面性质及其过滤除油性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水处理滤料的表面物理化学性质对深床过滤除油效果具有重要影响,近年来已受到国内外研究者们的普遍关注。为了更深入地理解滤床中乳化油的捕集机理,便于滤料的选择和滤床的设计,本论文主要研究了核桃壳、无烟煤、磁铁矿、锰砂、石英砂和沸石等常见硬质粒状水处理滤料的表面结构、润湿性、自由能成分和Zeta电位等表面性质,同时考察了模拟含油废水的深床过滤性能。
     (1)采用扫描电子显微镜(SEM)、比表面积分析仪(BET)、X射线能量色散谱仪(EDS)、电子能谱仪(XPS)和红外光谱仪(FTIR)等技术对水处理滤料的表面物理形态和化学组成进行了表征。SEM结果显示,6种滤料样品的外观形状都极不规则且局部有菱角,其中核桃壳和无烟煤表面排列较有规则,呈现各向同性的特征;磁铁矿表面分布有晶粒和晶片,排列不规则,各向异性明显;锰砂、石英砂和沸石表面排列不规则,呈各向异性特征,其中沸石表面孔隙率和比表面积较大。EDS、XPS和FTIR分析结果表明,核桃壳和无烟煤表面主要是由C、H和O元素形成的有机官能团,呈现非极性特征,表面能较低;磁铁矿表面主要为Fe_3O_4物相,存在剩余键力,表面能较高,极性较强:锰砂表面主要是MnO_2和Mn_2O_3,此外有Si-O键存在,有一定的极性特征;石英砂表面主要是SiO_2,极性较强;沸石表面主要为Ca、Si和Al形成的多价态氧桥联接配合物,因此极性较强。
     (2)根据润湿基本理论和水处理滤料的结构特征,本论文首次提出了亲油亲水比(LHR)的概念,并与Washburn重量方程相结合,得出如下关系并用于水处理滤料表面润湿性的实验研究:
     实验测得20℃时0.45-0.9mm核桃壳、无烟煤、磁铁矿、锰砂、石英砂和沸石的LHR值依次为76.4、2.41、1.06、0.74、0.65和0.64,表明核桃壳和无烟煤亲油,锰砂、石英砂和沸石亲水,而磁铁矿既亲油又亲水。这与滤料表面物理形态和化学组成的表征结果一致,即:核桃壳和无烟煤表面呈现非极性特征且表面能较低,对表面张力小、非极性的油相(环己烷)润湿性好;磁铁矿表面能较高,对表面张力小的油相和表面张力大的水相均能较好润湿;锰砂、石英砂和沸石表面极性较强,为亲水性表面,故对极性水相的润湿性好于油相。
     从van Oss-Chaudhury-Good(VCG)理论出发,推导了表征水处理滤料润湿性的LHR参数与滤料表面自由能成分之间的关系,并将20℃时水和环己烷的物理参数代入可得:
     该式从理论上表明水处理滤料LHR的大小主要取决于其表面自由能酸性成分γ_s~+和碱性成分γ_s~-。同时,本论文基于Washburn方程和VCG理论,以正己烷、1-溴奈、甲酰胺和水为探针液,用多孔介质毛细渗透技术测得核桃壳、无烟煤、锰砂、石英砂和沸石滤料的表面自由能非极性成分γ_s~(LW)依次为38.8mJ·m~(-2)、38.8mJ·m~(-2)、38.1mJ·m~(-2)、37.7mJ·m~(-2)和38.2mJ·m~(-2),而极性成分γ_s~(AB)为0.37mJ·m~(-2)、0.73mJ·m~(-2)、6.79mJ·m~(-2)、8.66mJ·m~(-2)和9.42mJ·m~(-2),从而验证了水处理滤料润湿性的差异主要归因于其表面自由能极性成分(γ_s~+和γ_s~-),而后者在本质上主要取决于其表面化学组成,与水处理滤料表征结果基本吻合。
     (3)以Helmholtz-Smoluchowski方程为依据,用自制装置测得核桃壳、无烟煤、磁铁矿、锰砂、石英砂、沸石滤料在蒸馏水和0.1mol·L~(-1)。KCl流体介质中的Zeta电位分别为-17mV、-17mV、-11mV、-34mV、-64mV、-11mV和-5.1mV、-4.2mV、-1.4mV、-0.11mV、-0.19mV、-0.15mV。在蒸馏水中测得的滤料表面Zeta电位绝对值均大于在0.1mol·L~(-1)KCl溶液中的测定值,说明电解质溶液的浓度较大时,对滤料表面Zeta电位的测定值影响明显。
     (4)通过实验室模拟的含油废水过滤系统,比较了几种水处理滤料的除油效果和反冲洗效果。在过滤10h的实验周期内,核桃壳、无烟煤、磁铁矿、锰砂、石英砂和沸石的除油效率η分别为96%、80%、72%、64%、60%和78%,反冲洗效率,η_r依次为16%、30%、37%、73%、83%和69%。将实验结果进行拟合,即可得到水处理滤料的亲油亲水比与深床过滤除油效果和反冲洗效果之间的定量关系:
     (5)运用XDLVO理论,求得过滤过程中核桃壳、无烟煤、锰砂、石英砂和沸石滤料颗粒与油/水所形成的体系间的界面静电作用能增量△G_(132)~(EL)≈0;Lifshitz-van derWaals作用能增量△G_(132)~(LW)依次为-7.52×10~(-20)J、-7.52×10~(-20)J、-7.25×10~(-20)J、-7.09×10~(-20)J和-7.29×10~(-20)J;Lewis酸碱作用增量△G_(132)~(AB)分别为-4.31×10~(-18)J、-3.99×10~(-18)J、-3.39×10~(-18)J、-2.93×10~(-18)J和-2.87×10~(-18)J;总界面能增量△G_(132)~(TOT)分别为-4.38×10~(-18)J、-4.07×10~(-18)J、-3.46×10~(-18)J、-2.99×10~(-18)J和-2.94×10~(-18)J。5种滤料介质和油/水构建的过滤体系中均有△G_(132)~(TOT)<0,说明废水中乳化油珠被滤料颗粒表面捕获均为自发行为,且这种自发趋势与其表面润湿性和过滤除油效率顺序基本吻合。此外,总界面能增量△G_(132)~(TOT)的主要贡献者为Lewis酸碱作用增量△G_(132)~(AB),即主要归因于滤料的表面自由能极性成分γ_s~(AB),从而也证明滤料表面润湿性LHR与其表面自由能极性成分γ_s~(AB)对过滤除油效果的影响在热力学本质上是一致的。
Surface physicochemical characteristics of water and wastewater treatment filter media play an important role in oil removal during oil-bearing water treatment when using deep bed filtration process. This important role is becoming universally concerned in research field at home and abroad in recent years. Therefore, in order to get a better understanding of the mechanisms affecting oil partcle attachment which helps a lot in selecting and designing of more efficient filter meia for a wide range of industrial applications, the surface properties such as wettabilities, free energy components and Zeta potentials of several commonly-used granular filter media with hard texture, i.e. walnut shell, anthracite, magnetite, manganese sand, zeolite and quartz sand, were investigated in this thesis. At the same time, a laboratory simulated small scale deep bed filtration process was also constructed to treat oil-in-water emulsions.
     (1) Surface physical morphologies and chemical compositions of these filter media were characterized using Scanning Electron Microscope (SEM), Specific Surface Area System (BET), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infra-Red Spectroscopy (FTIR). The unaided visual inspections and SEM images indicate that all the filter media particles are irregular in shape, being angularly rectangular or rhombic. SEM micrographs at 1000 time magnification of samples show the regular morphological and homogenous characterization of the walnut shell and anthracite partical surfaces, and irregular surface micro structure and heterogenous nature of the magnetite dotted with crystal particulates and crystal plates. At the same time, the morphologies of manganese sand, zeolite and quartz sand particals are uneven, disorder and heterogenous as the magnetite, of which the zeolite presents notablely larger pore volume and specific surface area. The analysis results of EDS, XPS and FTIR spectra tell us that walnut shell and anthracite surfaces are principally organic functional groups constituted of carbon, hydrogen and oxygen elements, making them an apolar and lower energy chemical surface. Magnetite surface is mostly made up of iron and oxygen elements, which combine into Fe_3O_4 species. Magnetite possesses a higher surface energy because the chemical bonds of Fe_3O_4 on the surface are not saturated. Manganese sand has MnO_2 and Mn_2O_3 on surface, and zeolite and quartz sand contain Si-O bonds and multivalent coordination compounds, which make them a polar and hydrophilic surface characterization.
     (2) Considering the irregular and uneven nature of filter media and based on Washburn's equation, a lipophilic hydrophilic ratio (LHR) concept was defined for the first time and used to compare quantitatively the wettabilities of the above-mentioned filters:
     The calculated LHR values of walnut shell, anthracite, magnetite, manganese sand, quartz sand and zeolite with a size range of 0.45-0.9mm at 20℃were 76.4, 2.41, 1.06, 0.74, 0.65 and 0.64 respectively, which means walnut shell and anthracite are lipophilic, magnetite is not only lipophilic but also hydrophilic, while manganese sand, zeolite and quartz sand are hydrophilic. These results of LHR values are in accordance with the differences of filter's surface physicochemical propoties. Namely, walnut shell and anthracite surfaces are apolar and have lower energy, which makes them wetting easily only to apolar oil(cyclohexane) with lower surface tension. Magnetite possess a higher surface energy, therefore, not only apolar oil but also polar water with higher surface tension are wettable favorably. Manganese sand, zeolite and quartz sand, however, are wetted better with polar water than apolar oil because of their polar surfaces.
     Oginating from van Oss-Chaudhury-Good (VCG) theory and valuating the physical data of water and cyclohexane at 20℃, the relationship between LHR and surface free energy components of filter media was deduced as follows:
     This equation theoretically discloses that filter's LHR value is attributed to their surface free energy acidic componentγ_s~+ and basic oneγ_s~- Also, surface free energy components of the filters were estimated through porous capillary penetration technique, using Washburn's equation and VCG theory with n-hexane, a-bromonaphthalene, formamide and water as probe liquids in this paper. The estimated surface free energy apolar and polar components of walnut shell, anthracite, manganese sand, quartz sand and zeolite were 38.8mJ·m~(-2), 38.8mJ·m~(-2), 38.1mJ·m~(-2), 37.7mJ·m~(-2), 38.2mJ·m~(-2) and 0.37mJ·m~(-2), 0.73mJ·m~(-2), 6.79mJ·m~(-2), 8.66mJ·m~(-2), 9.42mJ·m~(-2), experimentally verifying that the wettabilities of filter media are correlated to their surface free energy polar components (γ_s~+andγ_s~-), and the latter could be ascribed to the differences in surface physicochemistry which is consistent with the characterized results in Section 4.
     (3) Zeta potentials of filter particles were also measured on the basis of Helmholtz-Smoluchowskiequation. Theζvalues of walnut shell, anthracite, magnetite, manganese sand, quartz sand and zeolite in fluid media of distilled water and 0.1mol·L~(-1) KC1 solution at 20℃were -17mV, -17mV, -11mV, -34mV, -64mV, -11mV and -5.1mV, -4.2mV, -1.4mV, -0.11mV, -0.19mV, -0.15mV, respectively. These results make clear that concentration of electrolyte solution will bring significant effect on the Zeta potentials on filter media surfaces.
     (4) During 10 hours of filtration process running in a lab simulated small scale deep media bed, the oil removal efficiencisηand backwash efficienciesη_r of walnut shell, anthracite, magnetite, manganese sand, quartz sand and zeolite packed media were 96%, 80%, 72%, 64%, 60%, 78% and 16%, 30%, 37%, 73%, 83, 69%. Compared these efficiencies with LHR values, the following relations were fitted which illustrate that the better the filter's lipophilicity (the greater of the LHR) is, the easier the removal of oil from wastewater and the harder the backwash of it from packed media, and vice versa:
     (5) Calculated by XDLVO theory, the Electrostatic interaction energy changing between filter grain, oil and water were all about zero, i.e.△G_(132)~(EL)≈0; the Lifshitz-van der Waals energy changing△G_(132)~(LW) for walnut shell, anthracite, manganese sand, quartz sand and zeolite were -7.52×10~(-20)J, -7.52×10~(-20)J, -7.25×10~(-20)J, -7.09×10~(-20)J, -7.29×10~(-20)J; the Lewis acidic-basic energy changing△G_(132)~(AB) for them were -4.31×10~(-18)J, -3.99×10~(-18)J, -3.39×10~(-18)J, -2.93×10~(-18)J, -2.87×10~(-18)J; and the total interaction energy changing△G_(132)~(TOT) for them were -4.38×10~(-18)J, -4.07×10~(-18)J, -3.46×10~(-18)J, -2.99×10~(-18)J, -2.94×10~(-18)J, respectively. All△G_(132)~(TOT) between filter grains and oil/water were less than zero, indicating the attachment of oil particulates on media surfaces is spontaneous and these spontaneous trends of filter media are identical to their orders of LHR values and oil removal efficiencies. Furthermore,△G_(132)~(AB) ofsystem is the major donor to△G_(132)~(TOT), once again proving that the effects of LHR andγ_s~(AB) of filter media on oil removal are identical in thermodynamic essence.
引文
[1] 陈国华.水体油污染治理.北京:化学工业出版社,2002.
    [2] 沈齐英.含油废水处理概况.北京石油化工学院学报.2006,14(3):34-38.
    [3] 张文林,李春利,侯凯湖.含油废水处理技术研究进展.化工进展.2005,24(11):1239-1243.
    [4] 孙莉英,杨昌柱.含油废水处理技术进展.华中科技大学学报(城市科学版).2002,19(3):87-91.
    [5] 宋先松,石培基,金蓉.中国水资源空间分布不均引发的供需矛盾分析.干旱区研究.2005,22(2): 162-166.
    [6] 刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析.北京:中国水利水电出版社,2001.
    [7] Gu X Q,Chiang S H. A novel flotation column for oily water cleanup.Separation and Purification Technology.l999,16:193-203.
    [8] Takahashi T,Miyahara T,Nishizaki Y J.Separation of oily water by bubble column.Journal of Chemical Engineering of Japan. 1979,12 (5):394-399.
    [9] Jegatheesan V,Vigneswaran S.The effect of concentration on the early stages of deep bed filtration of submicron particles.Water Research. 1997,31 (11 ):2910-2913.
    [10] Truesdail S E,Lukasik J,Farrah S R,et al.Analysis of bacterial deposition on metal(hydr) oxide-coated sand filter media.Journal of Colloid and Interface Science. 1998,203(2):369-378.
    [11] Wu W J.Baseline studies of the clay minerals society source claysxolloid and surface phenomena.Clays and Clay Minerals.2001,49(5):446-452.
    [12] Brouckaert B M.Hydrodynamic detachment of deposited particles in fiuidised bed backwashing:(Ph.D.Thesis).Atlanta:Georgia Institute of Technology,2004.
    [13] Brouckaert B M,Amirtharajah A,Brouckaert C J,et al.Predicting the efficiency of deposit removal during filter backwash.Water SA.2006,32(5):633-640.
    [14] Vijapurapu C S,Rao D N.Compositional effects of fluids on spreading,adhesion and wettability in porous media.Colloids and Surfaces A: Physicochemical and Engineering Aspects.2004,241(1-3):335-342.
    [15] 候天明,韩子兴.炼油污水中油的性状与除油效率关系探讨.石油化工环境保护.1999,(4):46-53.
    [16] 张伟,孙金蓉,赵立新等.含油污水中油的四组分组成分析.工业水处理.1996,16(3):29-30.
    [17] 史继诚,贾凌云.微生物降解重油的初步研究.化工环保.2005,25(6):427-430.
    [18] 李海波,胡筱敏,罗茜.含油废水的膜处理技术.过滤与分离.2000,10(4):12-14.
    [19] 张相如,庄源益,王旭等.膜法处理含油废水研究进展.城市环境与城市生态.1997,10(1):59-61.
    [20] Benito J M,Rios G,Ortea E,et al.Design and construction of a modular pilot plant for the treatment of oil-containing wastewater.Desalination.2002,147:5-10.
    [21] Gryta M,Karakulski K,Morawski A W.Purification of oily wastewater by hybrid UF/MD.Water Research.2001,35(15):3665-3669.
    [22] Karakulski K,Morawski A W,Grzechulska J.Purification of bilge water by hybrid ultrafiltration and photocatalytic processes.Separation and Purification Technology.l998,14(1-3):163-173.
    [23] Zhong J,Sun X J,Wang C.Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration.Separation and Purification Technology.2003,32(1-3):93-98.
    [24] Chang I S,Chung C M,Han S H.Treatment of oily wastewater by ultrafiltration and ozone.Desalination.2001,133:225-232.
    [25] Mohammadi T,Esmaeelifar A.Wastewater treatment of a vegetable oil factory by a hybrid ultrafiltration-activated carbon process.Joumal of Membrane Science.2005,254:129-137.
    [26] Murray-Guide C,Heatley J E,Karanfil T,et al. Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water.Water Research.2003,37(3):705-713.
    [27] 钟理,陈建军.高级氧化处理有机污水技术进展.工业水处理.2002,22(1):1-5.
    [28] 李凡修,陆晓华,梅平.高级氧化技术用于油田废水处理的研究进展.油田化学.2006,23(2):188-192.
    [29] Andreozzi R,Caprio V,Insola A,et al.Advanced oxidation processes for the treatment of mineral oil-containing wastewaters.Water Research.2000,34(2):620-628.
    [30] Philippopoulos C J,Poulopoulos S GPhoto-assisted oxidation of an oily wastewater using hydrogen peroxide.Joumal of Hazardous Materials.2003,B98:201-210.
    [31] Stepnowski P,Siedlecka E M,Behrend P,et al.Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water Research.2002,36(9):2167-2172.
    [32] L(?)pez Bernal J L.Portela Miguelez J R,Nebot Sanz E,et al. Wet air oxidation of oily wastes generated aboard ships:kinetic modeling.Journal of Hazardous Materials. 1999,B67:61-73.
    [33] Grzechulska J,Hamerski M,Morawski A W.Photocatalytic decomposition of oil in water.Water Research.34(5):1638-1644.
    [34] Pikaev A K.New data on electron-beam purification of wastewater.Radiation Physics and Chemistry. 2002,65:515-526.
    [35] Drijvers D,Van Langenhove H,Beckers M.Decomposition of phenol and trichloroethylene by the ultrasound/H_2O_2/CuO process.Water Research. 1999,33 (5): 1187-1194.
    [36] 杨昌柱,王敏,濮文虹.磁技术在废水处理中的应用.化工环保.2004,24(6):412-415.
    [37] 朱又春,曾胜.磁分离法处理餐饮污水的除油机理.中国给水排水.2002,18(7):39-41.
    [38] 姚晔栋,钱学玲,李道棠等.高梯度磁分离法处理含油废水.上海交通大学学报.2003,37(11): 1791-1794.
    [39] 刘卫国,章凤萍,赵陈龙等.磁在混凝处理废水中的应用研究.石油化工环境保护.2005,28(4):10-12.
    [40] 国家环境保护局.石油石化工业废水治理.北京:中国环境科学出版社,1992.
    [41] 孟军,李桂平,王东升等.聚合氯化铁在微絮凝-深床过滤工艺中的应用.环境科学.2003,24(1):98-102.
    [42] Tansel B,Vilar F.Enhancement of media filter performance with coagulant use for treatment of diesel oil contaminated surface water.Desalination.2005,173:69-76.
    [43] Guo J L,Wang Y L,Liu R X,et al.Calculation model of uniform media filtration capacity.Colloids and Surfaces A: Physicochemical and Engineering Aspects.2002,201(1-3):237-245.
    [44] 郭瑾珑,王毅力,刘瑞霞等.均质滤料过滤截污模型研究.环境科学学报.2002,22(4):417-422.
    [45] 景有海,金同轨,范瑾初.均质滤料过滤过程的水头损失计算模型.中国给水排水.2000,16(2):9-12.
    [46] 景有海,金同轨,范瑾初.均质滤料过滤过程的毛细管去除浊质模型.中国给水排水.2000,16(6):1-4.
    [47] 金同轨,张建锋,王晓昌.均质滤料滤池运行及改造的优化.给水排水.2002,28(3):18-20.
    [48] Hall D, Fitzpatrick C S B. A mathematical filter backwash model. Water Science and Technology. 1998, 37 (12):371-379.
    [49] Hall D,Fitzpatrick C S B.Suspension concentration profiles during rapid gravity filter backwashing. Chemical Engineering Journal.2000,80(1-3):197-201.
    [50] 徐勇鹏,王在刚,崔福义.滤池反冲洗时间控制模式的分析与优化.中国给水排水.2006,22(1):66-69.
    [51] Ribeiro T H,Rubio J,Smith R W.A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions.Spill Science and Technology Bulletin.2003,8(5-6):483-489.
    [52] Toyoda M,Moriya K,Aizawa J,et al.Sorption of heavy oil by exfoliated graphite.In:Hupka J,Miller J D.Environmental Technology for Oil Pollution(Eds).University of Gdansk,Poland:Chemical Faculty,1999:139-142.
    [53] Tryba B,Morawaski A W,Kale(?)czuk R J,et al.Exfoliated graphite for removing wasted oil and colours from water.In:Hupka J,Miller J D.Environmental Technology for Oil Pollution(Eds).University of Gdansk,Poland:Chemical Faculty, 1999:167-170.
    [54] Cambiella (?),Ortea E,R(?)os G,et al.Treatment of oil-in-water emulsions:Performance of a sawdust bed filter. Journal of Hazardous Materials.2006,B 131:195-199.
    [55] Farizoglu B,Nuhoglu A,Yildiz E,et al.The performance of pumice as a filter bed material under rapid filtration conditions.Filtration and Separation.2003,40(3):41-47.
    [56] Huang X F,Lim T T.Performance and mechanism of a hydrophobic-oleophilic kapok filter for oil/water separation.Desalination.2006,190:295-307.
    [57] Bajpai S,Chaudhuri M.Removal of arsenic from ground water by manganese dioxide-coated Sand.Journal of Environmental Engineering.1999,125(8):782-784.
    [58] Chen J N,Truesdail S,Lu F H,et al.Long-term evaluation of aluminum hydroxide-coated sand for removal of bacteria from wastewater. Water Research.l998,32(7):2171-2179.
    [59] Preston D R,Vasudevan T V,Bitton G,et al.Novel approach for modifying microporous filters for virus concentration from water.Applied and Environmental Microbiology. 1988,54 (6):1325-1329.
    [60] Chang Y,Li C W,Benjamin M M.Iron oxide-coated media for NOM sorption and particulate filtration.Journal of the American Water Works Association. 1997,89(5): 100-113.
    [61] Lukasik J,Cheng Y F,Lu F H,et al.Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides.Water Research.1999,33(3):769-777.
    [62] Tanaka Y,Yatagai A,Masujima H,et al.Autotrophic denitrification and chemical phosphate removal of agro-industrial wastewater by filtration with granular medium.Bioresource Technology.2007,98(4):787-791.
    [63] Ayirala S C,Rao D N.Multiphase flow and wettability effects of surfactants in porous media.Colloids and Surfaces A: Physicochemical and Engineering Aspects.2004,241:313-322.
    [64] Ortiz-Arroyo A,Larachi F,Iliuta I.Method for inferring contact angle and for correlating static liquid hold-up in packed beds.Chemical Engineering Sciences.2003,58(13):2835-2855.
    [65] Ustohal P,Stauffer F,Dracos T.Measurement and modeling of hydraulic characteristics of unsaturated porous media with mixed wettability.Journal of Contaminant Hydrology.1998,33(1-2):5-37.
    [66] Lord D L,Buchley J S.An AFM study of the morphological features that effect wetting at crude oil-water-mica interfaces.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002,6(2):531-546.
    [67] Truesdail S E,Westermann-Clark G B,Shah D O.Apparatus for streaming potential measurements on granular filter media.Journal of Environmental Engineering.l998,124(12):1228-1232.
    [68] Stephan E A.Chase G GA preliminary examination of zeta potential and deep bed filtration activity.Separation and Purification Technology.2001,21(3):219-226.
    [69] Ives K J. Filtration studied with endoscopes.Water Research. 1989, 23 (7):861-866.
    [70] Amirtharajah A.Some theoretical and conceptual views of filtration.Journal of the American Water Works Association.1988,80(12):36-46.
    [71] O'Melia C R.Particles, pretreatment,and performance in water filtration.Journal of Environmental Engineering. 1985,11 (6):874-890.
    [72] Shandalov S,Yakirevich A,Brenner A,et al.Model calibration of deep-bed filtration based on pilot-scale treatment of secondary effluent. Water Science and Technology. 1997,36(4):231-237.
    [73] Mints D M.Modern theory of filtration.International Water Supply Congress Proceedings,Spain,1966:2-29.
    [74] 范荣桂,范彬,杜显云等.深床过滤机理及其在水处理中的应用研究与进展.环境污染治理技术与设备.2005,6(9):1-6.
    [75] 何少华,熊正为.过滤理论发展过程中存在的一些问题探讨.南华大学学报(理工版).2002,16(4):31-35.
    [76] Iwasaki T.Some notes on sand filtration.Journal of the American Water Works Association. 1937,29(10): 1891-1602.
    [77] Ives K J.Rational design of filters.Proceedings of the Institutions of Civil Engineers. 1960,16(2):189-193.
    [78] Ohja C S P,Graham N J D.Appropriate use of deep bed filtration models.Journal of Environmental Engineering. 1992,118(6):964-981.
    [79] Adin A,Rebun M.Deep-bed filtration:accumulation-detatchment model parameters.Chemical Engineering Science. 1987,42(5): 1213-1219.
    [80] Yao K M,Habibian M T,O'Melia C R.Water and waste water filtrationxoncepts and applications. Environmental Science and Technology. 1971,5( 11): 1105-1112.
    [81] Tien C,Payatakes A C.Advances in deep bed filtrationJournal of American Institute of Chemical Engineers.1979,25(5):737-759.
    [82] Payatakes A C,Tien C,Turian R M.A new model for granular porous media:Part Ⅰ.Model formulation.Journal of American Institute of Chemical Engineers.l973,19(1):58-66.
    [83] Payatakes A C,Rajagopalan R,Tien C.Application of porous media models to the study of deep bed filtration.Canadian Journal of Chemical Engineering. 1974,52( 12):722-731.
    [84] Payatakes A C,Tien C,Turian R M.Trajectory calculation of particle deposition in deep bed filtration part Ⅰ : model formation.Journal of American Institute of Chemical Engineers. 1974,20(5):889-899.
    [85] Payatakes A C,Tien C,Turian R M.Trajectory calculation of particle deposition in deep bed filtration part Ⅱ xase study of the effect of the dimensionless groups and comparison with experimental data. Journal of American Institute of Chemical Engineers. 1974,20(5):900-905.
    [86] Rajagopalan R,Tien C.Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model.Journal of American Institute of Chemical Engineers.l976,22(3):523-533.
    [87] Rajagopalan R,Tien C.Single collector analysis of collector mechanisms in water filtration.Canadian Journal of Chemical Engineering. 1977,55:246-255.
    [88] Vaidyanathan R,Tien C.Hydrosol deposition in granular beds.Chemical Engineering Sciences. 1988,3(2):289-302.
    [89] Li Y C,Park C W.A predictive model for the removal of colloidal particles in fibrous filter media. Chemical Engineering Sciences.1999,54(5):633-644.
    [90] Kretzschmar R,Barmettler K,Grolimund D,et al.Experimental determination of colloid deposition rates and collision efficiencies in natural porous media.Water Resources Research.1997,33(5):1129-1137.
    [91] Grolimund D,Elimelech M,Borkovec M,et al.Transport of in situ mobilized particles in packed soil columns.Environmental Science and Technology.1998,32(22):3562-3569.
    [92] Tufenkji N,Elimelech M.Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.Langmuir.2004,20(25):10818-10828.
    [93] Tufenkji N,Elimelech M.Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media.Environmental Science and Technology.2004,38(2):529-536.
    [94] Kuhnen F.Barmettler K,Bhattacharjee S,et al.Transport of iron oxide colloids in packed quartz sand media:monolayer and multilayer deposition.Journal of Colloid and Interface Science.2000,231(21):32-41.
    
    [95] Ives K. J. The scientific basis of filtration.Leyden:Noordhoff International Publishing CO.,1975.
    [96] Johnson W P,Li X Q,Assemi S.Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition.Advances in Water Resources.2007,30(6-7):1432-1454.
    [97] Scheibe T D,Wood B D.A particle-based model of size or anion exclusion with application to microbial transport in porous media. Water Resources Research.2003, 39(4): 1080-1089.
    [98] Li X Q,Scheibe T D,Johnson W P. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions.A general phenomenon.Environmental Science and Technology.2004,38(21):5616-5625.
    [99] Derjaguin B V,Landau L.Theory of stability of highly charged lyophobic sols and adhesion of highly charged particules in solutions of electrolytes.Acta Physichochim,URSS.1941,14:633-652.
    [100] Verwey E J W,Overbeek J T GTheory of the Stability of Lyophobic Colloids.Amsterdam:Elsevier Press, 1948.
    [101] Gregory J.Approximate expressions for retarded van der Waals interaction.Journal of Colloid and Interface Science.1981, 83(1):138-145.
    [102] Tufenkji N,Elimelech M.Breakdown of colloid filtration theory:Role of the secondary energy minimum and surface charge heterogeneities.Langmuir.2005,21(3):841-852.
    [103] Hahn M W,O'Melia C R.Deposition and reentrainment of brownian particles in porous media under unfavorable chemical conditions:Some concepts and applications.Environmental Science and Technology.2004,38(1):210-220.
    [104] Israelachvili J N.Intermolecular and surface forces.London: Academic Press, 1992.
    
    [105] Adamson A W,Gast A P.Physical chemistry of surfaces.New York:John Wiley & Sons, Incorporation,1997.
    [106] Hogg R,Healy T W,Fuerstenau D W. Mutual coagulation of colloidal dispersions.Transactions of the Faraday Society.1966, 62:1638-1651.
    [107] Hahn M W,Abadzic D,O'Melia C R.Aquasols:On the role of secondary minima.Environmental Science and Technology.2004,38(22):5915-5924.
    [108] Swanton S W.Modeling colloid transport in groundwater.The prediction of colloid stability and retention behaviour.Advances in Colloid and Interface Science. 1995, 54:129-208.
    [109] Chen QFlury M.Retention of mineral colloids in unsaturated porous media as related to their surface properies.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2005,256(2-3):207-216.
    [110] Duran J D G,Ontiveros A,Delgado A V,et al.Kinetics and interfacial interactions in the adhesion of colloidal calcium carbonate to glass in a packed-bed.Applied Surface Science.l998,134(l):125-138.
    [111] Li B,Logan B E.Bacterial adhesion to glass and metal-oxide surface.Colloids and Surfaces B:Biointerfaces.2004,36(2):81-90.
    [112] van Oss C J,Good R J,Chaudhurry M K.The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces.Journal of Colloid and Interface Science. 1986,111(2):378-390.
    [113] van Oss C J,Good R J,Chaudhurry M K.Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir.1988,4(4):884-891.
    [114] O'Neill M E. A sphere in contact with a plane wall in a slow linear shear flow.Chemical Engineering Science. 1968,23 (11): 1293-1298.
    [115] Sharma M M,Chamoun H,Sita Rama Sarma D S H,et al.Factors controlling the hydrodynamic detachment of particles from surfaces.Journal of Colloid and Interface Science. 1992,149 (1):121-134.
    [116] Li X Q,Zhang P F,Lin C L,et al.Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions.Environmental Science and Technology.2005,39(11):4012-4020.
    [117] Bergendahl J,Grasso D.Prediction of colloid detachment from a model porous media:thermodynamics.American Institute of Chemical Engineers Journal. 1999,45(3):475-484.
    [118] Bergendahl J,Grasso D.Prediction of colloid detachment from a model porous media:hydrodynamics.Chemical Engineering Science.2000,55(9):1523-1532.
    [119] Chan S K,Ng K M.Geometrical characteristics of the pore space in a random packing of equal spheres.Powder Technology. 1988,54(2): 1523-1532.
    [120] Johnson K L,Kendall K,Roberts A D.Surface energy and the contact of elastic solids.Proceeding s of the Royal Society of London A. 1971,324:301-313.
    [121] Stevik T K,Ausland G,Hanssen J F,et al.The influence of physical and chemical factors on the transport of E.coli through biological filters for wastewater purification.Water Research. 1999, 33(18):3701-3706.
    [122] Sun Z X,Su F W,Forsling W,et al. Surface Characteristics of magnetite in aqueous suspension.Journal of Colloid and Interface Science.l998,197(1):151-159.
    [123] Bismarck A,Boccaccini A R,Egia-Ajuiagojeaskoa E,et al.Surface characterization of glass fibers made from silicate waste:Zeta-potential and contact angle measurements.Journal of Materials Science.2004,39(2):401-412.
    [124] Ko C H,Elimelech M.The "shadow effect" in colloid transport and deposition dynamics in granular porous media:Measurements and mechanisms.Environmental Science and Technology.2000,34(17):3681-3689.
    [125] 法默V C.矿物的红外光谱.北京:科学出版社,1982.
    [126] 卢涌泉,邓振华.实用红外光谱解析.北京:电子工业出版社,1989.
    [127] Bona N,Ortenzi A,Capaccioli S.Advances in understanding the relationship between rock wettability and high-frequency dielectric response.Journal of Petroleum Science and Engineering.2002, 33(1):87-99.
    [128] Garcia A B,Tarazona M R,Vega J M G,et al.On the role of oil wetting in the cleaning of high rank coals by agglomeration. Fuel.l998,77(5):387-392.
    [129] Martic G, De Coninck J, Blake T D. Influence of the dynamic contact angle on the characterization of porous media.Journal of Colloid and Interface Science.2003,263(1):213-216.
    [130] Prestidge C A,Tsatouhas G.Wettability studies of morphine sulfate powders.International Journal of Pharmaceutics.2000,198(2):201-212.
    [131] Lavi B,Marmur A.The exponential power law: partial wetting kinetics and dynamic contact angles. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2004,250(1-3):201-206.
    [132] Osterhof H J,Bartell F E.Three fundamental types of wetting. Adhesion tension as the measure of the degree of wetting.The Journal of Physical Chemistry. 1930,34(7): 1399-1411.
    [133] Young T.An essay on the cohesion of fluids.Philosophical Transactions of the Royal Society of London. 1805,95:65-87.
    [134] Lowry B J,Steen P H.Capillary Surfaces: Stability from families of equilibria with application to the liquid bridge.Proceedings:Mathematical and Physical Sciences.l995,449(1937):411-439.
    [135] 王晓东,彭晓峰,陆建峰等.接触角测试技术及粗糙表面上接触角的滞后性Ⅰ:接触角测试技术.应用基础与工程科学学报.2003,11(2):174-184.
    [136] Oliver J F,Huh C,Mason S G.The apparent contact angles of liquids on finely-grooved solid surfaces-A SEM study. Journal of the Adhesion. 1977,8(1):223-234.
    [137] Rotenberg Y,Boruvka L,Neumann A W.Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces.Journal of Colloid and Interface Science.l983,93(1):169-183.
    [138] Kwok D Y,Lin R,Mui M,et al.Low-rate dynamic and static contact angles and the determination of solid surface tension.Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1996,116(1-2):63-77.
    [139] Kwok D Y,Lam C N C,Li D, et al.Measuring and interpretation contact angles:A complex issue. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1998,142(2):219-235.
    [140] Lam C N C,Wu R,Li D,et al.Study of the advancing and receding contact angles: Liquid sorption as a cause of contact angle hysteresis.Advances in Colloid and Interface Science.2002,96(1-3):169-191.
    [141] Hayes R A,Robinson A C,Ralston J.A Wilhelmy technique for the rapid assessment of solid wetting dynamics.Langmuir. 1994,10:2850-2852.
    [142] Neumann A W,Tanner W.The temperature dependence of contact angles-polytetrafluoroethylene/n-decane. Journal of Colloid and Interface Science.1970, 34:128.
    [143] Bartell F E,Osterhof H J.Determination of the wettability of a solid by a liquid.Industrial and Engineering Chemistry. 1927,19:1277-1280.
    [144] White L R.Capillary rise in powders.Journal of Colloid and Interface Science. 1982,90(2):536-538.
    [145] Dunstan D, White L R.A capillary pressure method for measurement of contact angles in powders and porous media.Journal of Colloid and Interface Science.l986,3(1):60-64.
    [146] Iveson S M,Holt S,Biggs S.Contact angle measurements of iron ore powders.Colloids and Surface A:Physicochemical and Engineering Aspects.2000,166(1):203-214.
    [147] Siebold A,Walliser A,Nardin M,et al.Capillary rise for thermodynamic characterization of solid particle surface. Journal of Colloid and Interface Science. 1997,186(1):60-70.
    [148] Subrahmanyam T V,Prestidge C A,Ralston J.Contact angle and surface analysis studies of sphalerite particles.Minerals Engineering. 1996,9(7):727-741.
    [149] Washburn E W. The dynamics of capillary flow. Physical Review.1921, 17(3):273-283.
    [150] Varadaraj R,Bock J,Brons N,et al.Influence of surfactant structure on wettability modification of hydrophobic granular surfaces. Journal of Colloid and Interface Science. 1994, 167(1): 207-210.
    [151] 魏红,徐承天,韩庆平等.粉体接触角法快速测定长江口沉积物的表面自由焓变.净水技术.2005,24(6):1-3.
    [152] 陈国平,陈邦林,韩庆平.渗透压力法测定粉体接触角.大学化学.1992,7(5):38-41.
    [153] 黄小凤,龚福忠.Washburn动态渗透压力法测量粉体接触角.实验室研究与探索.2003,22(5):48-50.
    [154] 陈晓娟.滤料接触角的研究与探索:(硕士学位论文).兰州:兰州交通大学,2005.
    [155] Prestidge C A,Ralston J.Contact angle studies of participate sulphide minerals. Minerals Engineering.1996,9(1):85-102.
    [156] Simon M I, Susan H, Simon B. Contact angle measurements of iron ore powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2000,166(1):203-214.
    [157] Wenzel R N. Resistance of solid surfaces to wetting by water.Industrial and Engineering Chemistry.1936, 28(8):988-994.
    [158] 顾惕人,朱步瑶,李外郎等.表面化学.北京:科学出版社,1994.
    [159] Hamraoui A,Nylander T.Analytical approach for the Lucas-Washburn equation.Journal of Colloid and Interface Science.2002,250(2): 415-421.
    [160] Hamraoui A,Thuresson K,Nylander T,et al.Can a dynamic contact angle be understood in terms of a friction coefficient. Journal of Colloid and Interface Science.2000, 226(2):199-204.
    [161] Hamraoui A,Thuresson K,Nylander T,et al.Dynamic wetting and dewetting by aqueous solutions containing amphiphilic compounds. Progress in colloid and polymer science.2000,116(2): 113-119.
    [162] 许保玖.给水处理理论.北京:中国建筑工业出版社,2000.
    [163] Clint J H,Wicks A C.Adhesion under water: surface energy considerations. International Journal of Adhesion and Adhesives.2001,21(4):267-273.
    [164] Kwok D Y.Neumann A W.Contact angle interpretation in terms of solid surface tension.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2000,161(1):31-48.
    [165] Bilinski B,Holysz L.Some theoretical and experimental limitations in the determination of surface free energy of siliceous solids.Powder Technology. 1999,102(2): 120-126.
    [166] Chibowski E,Perea-Carpio R.A novel method for surface free-energy determination of powdered solids.Journal of Colloid and Interface Science.2001,240(2):473-479.
    [167] Chibowski E,Perea-Carpio R.Problems of contact angle and solid surface free energy determination.Advances in Colloid and Interface Science.2002,98(2):245-264.
    [168] Kwok D Y,Neumann A W.Contact angle measurement and contact angle interpretation.Advances in Colloid and Interface Science. 1999,81(3): 167-249.
    [169]] Fowkes F M.Determination of interfacial tensions,contact angles and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces.Journal of Physical Chemistry. 1962,66:382.
    [170] Fowkes F M. Attractive forces at interfaces. Industrial and Engineering Chemistry. 1964,56:40-52.
    [171] van Oss C J,Chaudhurry M K,Good R J.Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems.Chemical Reviews. 1988, 88:927-941.
    [172] Bartell F E,Whitney C E.Adhesion tension, a receding contact angle, pressure of displacement method.Journal of Physical Chemistry. 1932, 36(2):3115-3126.
    [173] Eley D D, Pepper D C. A dynamic determination of adhesion tension.Transactions of the Faraday Society. 1946, 42:697-702.
    [174] Giese R F, Costanro P M, van Oss C J.The surface free energies of.talc and pyrophyllite. Physics and Chemistry of Minerals. 1991,17(7):611-616.
    [175] van Oss C J, Giese R F, Li Z, et al. Determination of contact angles and pore size of porous media by column and thin layer wicking. Journal of Adhesion Science and Technology. 1992, 6(4):413-428.
    [176] Holysz L.The effect of thermal treatment of silica gel on its surface free energy components. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1998,134(3):321-329.
    [177] Labajos-Broncano L,Gonzalez-Martin M L,Janczuk B,et al.Comparison of the use of Washburn's equation in the distance-time and weight-time imbibition techniques.Jouranl of Colloid Interface Science.2001, 233(2):356-360.
    [178] Labajos-Broncano L,Gonzalez-Martin M L,Bruque J M,et al.Influence of the meniscus at the bottom of the solid plate on imbibition experiments.Journal of Colloid and Interface Science.2001,234(1):79-83.
    [179] Marmur A. Penetration and displacement in capillary systems of limited size. Advances in Colloid and Interface Science. 1992,39(3): 13-33.
    [180] Wu W J,Nancollas G H.Determination of interfacial tension from crystallization and dissolution data:A comparison with other methods. Advances in Colloid and Interface Science.1999,79(2):229-279.
    [181] Costanzo P M,Wu W J,Giese R F,et al.Comparison between direct contact angle measurements and thin layer wicking on synthetic monosized cuboid hematite particles.Langmuir. 1995,11:1827-1830.
    [182] Grundke K,Augsburg A.On the determination of the surface energetics of porous polymer materials.Journal of Adhesion Science and Technology.2000,14(5):765-775.
    [183] Elimelech M,Nagai M,Ko C H,et al.Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media.Environmental Science and Technology.2000,34(11):2143-2148.
    [184] Elimelech M,O'Melia C R.Kinetics of deposition of colloidal particles in porous media. Environmental Science and Technology. 1990,24(10): 1528-1536.
    [185] Ryde N.Kihira H,Matijevic E.Effect of Colloid Stability in Multilayer Deposition.Journal of Colloid and Interface Science. 1992,151(2):421-432 .
    [186] Ryan J N,Elimelech M.Colloid mobilization and transport in groundwater.Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1996,107:1-56.
    [187] Kretzschmar R,Borkovec M,Grolimund D,et al.Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy. 1999,66:121 -194.
    [188] Ryan J N, Elimelech M, Ard R A, et al. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environmental Science and Technology.l999,33(1):63-73.
    [189] 张建锋,杨长生,王晓昌等.滤料表面(?)电位的测定.西安建筑科技大学学报.2001,33(3):218-220,224.
    [190] van der Put A G. Electrokinetic investigations on the system polystyrene/aqueous electrolyte solution:( Ph.D. thesis). The Netherlands: Agric. Univ. of Wageningen, 1980.
    [191] Hiemenz P C,Rajagopalan R.Principles of colloid and surface chemistry(3rd ed.).New York: Marcel Dekker Inc., 1997.
    [192] Afonso M D,Hagmeyer G,Gimbel R.Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions.Separation and Purification Technology.2001, 22-23:529-541.
    [193] Bird R B.Stewart W E,Lightfoot E N.Transport phenomena. New York: John Wiley & Sons.Inc., 1960.
    [194] Ives D J, Janz G J. Reference electrodes:Theory and practice.New York: Academic Press, 1961.
    [195] 李华昌,符斌.实用化学手册.北京:化学工业出版社,2006.
    [196] 金孟.滤料表面zeta电位的研究:(硕士学位论文).兰州:兰州交通大学,2007.
    [197] Chen J Y,Ko C H,Bhattacharjee S,et al.Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,191(1-2):3-15.
    [198] Liu D, Johnson P R, Elimelech M. Colloid deposition dynamics in flow through porous media: Role of electrolyte concentration.Environmental Science and Technology. 1995, 29(12):2963-2973.
    [199] 郑红,汤鸿霄.天然矿物锰矿砂对苯酚的界面吸附与降解研究.环境科学学报.1999,19(6):619-624.
    [200] 高乃云,徐迪民,范瑾初等.氧化铝涂层改性石英砂过滤性能研究.中国给水排水.1999,15(3):8-10.
    [201] Zembala M. Electrokinetics of heterogeneous interfaces. Advances in Colloid and Interface Science.2004,112(1-3):59-92.
    [202] Zembala M, Adamcayk Z. Measurements of streaming potential for mica covered by colloid particles. Langmuir.2000,16(4): 1593-1601.
    [203] Hayer R A,B(?)hmer M R,Fokkink L G J.A study of silica nanoparticle adsorption using optical reflectometry and streaming potential techniques.Langmuir.1999,15 (8):2865-2870.
    [204] Hayer R A.The electrokinetic behaviour of surfaces modified by particle adsorption.Colloids and Surfaces A:Physicochemical and Engineering Aspects.l999,146(1-3):89-94.
    [205[ Li X Q,Scheibe T D,Johnson W P.Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: A general phenomenon.Environmental Science and Technology.2004,38(21):5616-5625.
    [206] 国家环保局.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1989.
    [207] 缪旭光,倪小红,袁武建等.正己烷萃取-紫外分光光度法测定矿井水中微量油.煤矿环境保护.2001,15(1):21-23.
    [208] Lin C Y, Chen L W. Emulsification characteristics of three-and two-phase emulsions prepared by the ultrasonic emulsification method. Fuel Processing Technology.2006, 87 (4):306-317.
    [209] Kamogawa K,Akatsuka H,Matsumoto M,et al.Surfactant-free O/W emulsion formation of oleic acid and its esters with ultrasonic dispersion.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,180(1):41-53.
    [210] 王松汉.石油化工设计手册.第1卷:石油化工基础数据.北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700