用户名: 密码: 验证码:
银纳米材料和金纳米材料的植物生物质还原制备及应用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米材料因其具有独特的催化和光学性能而得到广泛重视,其制备与应用已成为当今纳米技术领域中的一个研究热点。相对于传统的物理法和化学法,近年来出现的基于微生物或植物的生物还原法,具有成本低、绿色环保、纳米材料稳定性高等优点,成为贵金属纳米材料具有发展前景的新颖制备方法。在原材料方面,相比微生物繁琐的筛选与培养过程,植物及其提取液的获得和使用更加简便,得到了一定的关注。然而,目前有关植物及其提取液制备贵金属纳米材料的研究更多地集中在简单的条件实验和纳米材料的表征等,很多重要的基础问题还远未搞清楚,例如:贵金属纳米材料形貌和颗粒粒度的控制仍较为有限,植物及其提取液的工艺路线和还原反应器,以及还原工艺条件的优化均未见报道。这些基础问题的解决对于建立一种贵金属纳米材料形貌和粒度调控的新方法,以及建立实际可行的植物生物还原制备工艺过程与关键技术具有极为重要的意义。
     基于以上研究现状,本工作旨在利用植物干粉及其提取液来还原Ag~+或[AuCl_4]~-获得相应的银和金纳米材料。通过对植物干粉的筛选,以及植物还原过程的工艺路线的优化和还原反应器的设计,建立了一套可调控银和金纳米材料的形貌及颗粒粒度的新方法,并初步探索了银纳米颗粒的抗菌应用和金纳米颗粒的催化应用。
     首先,本工作利用了芳樟叶干粉还原制备了银纳米颗粒和金纳米颗粒,并在芳樟叶提取液还原体系中引入纳米晶种,以调控纳米颗粒的形貌和粒度。通过改变芳樟叶干粉的用量,可以调控获得粒度在55-80 nm之间的近球形银纳米颗粒、边长在25-150 mm和厚度约为7 nm的三角金纳米片以及粒度在10-35 nm之间的近球形金纳米颗粒。在芳樟叶提取液还原Ag~+体系中引入适量的银纳米晶种,促进了银纳米颗粒各向异性生长,而在芳樟叶提取液还原[AuCl_4]~-体系中引入适量的金纳米晶种,反应快速产生的金原子在金晶种上的快速累积,促进了金纳米颗粒各向同性生长。芳樟叶干粉的初步成分分析和红外光谱分析结果表明,多糖、还原糖、黄酮等多羟基化合物的羟基对Ag~+和[AuCl_4]~-起还原作用。
     其次,本工作采用来源广泛而极易获得的中草药植物干粉,在30℃的条件下对银纳米颗粒和金纳米颗粒的形貌进行可控制备,并研究植物干粉还原制备银纳米颗粒和金纳米颗粒过程的共性规律。利用红花、菊花、淫羊藿、夏枯草、金钱草等五种植物干粉可用于制备近球形银纳米颗粒;栀子和金银花可用于制备单晶银纳米线,银纳米线的平均直径约为45 nm,长度可达10μm以上,银纳米线是由近球形银纳米颗粒串接并沿[110]方向生长的。金银花和厚朴花可用于制备银纳米片,银纳米片是由粒度较小的近球形银纳米颗粒逐渐转化而来的,纳米片重叠生长,易于形成树枝状银晶体。基于植物干粉红外光谱计算所得的各向异性生长指数(S)可作为植物干粉筛选的参考依据之一,S>1.0的植物干粉可促进银纳米材料各向异性生长,而S<1.0的植物干粉可促进银纳米材料的各向同性生长。植物干粉在还原制备金纳米颗粒方面是普遍适用的,利用不同的植物干粉来还原HAuCl_4,可获得不同粒度分布的球形金纳米颗粒和三角金纳米片,研究还发现雏形的“纳米片”是由许多10 nm以下的近球形金纳米颗粒团聚形成的。
     再次,研究了植物提取液还原连续制备银纳米颗粒工艺,并考察了主要工艺参数对纳米颗粒形貌和粒度的影响规律。管式微反应器适宜的加热温度为90℃,在该温度下,可以将银晶核的形成过程与银纳米颗粒的生长过程分开,不存在二次成核,因此能够获得粒度分布较窄的银纳米颗粒;原料液经过预热处理有利于获得粒度分布较窄的银纳米颗粒。三通的适宜夹角为60°或90°。获得粒度分布较窄的银纳米颗粒的适宜进料体积流率为0.5 mL·min~(-1)或0.8 mL·min~(-1);在相同的进料体积流率下,反应管内径越小,流体温度越均匀,银晶核成核速度越快,所得的银纳米颗粒粒度分布也越窄,反应管的适宜内径为2 mm或3 mm。
     最后,通过液体培养基法和固体培养基法评价了银纳米颗粒对金黄色葡萄球菌和大肠杆菌的抗菌性能;采用了侧柏叶提取液还原制备了Au/TiO_2催化剂,并以4-硝基酚(4-NP)向4-氨基酚(4-AP)的催化转化反应作为模型反应,对所得的Au/TiO_2催化剂进行催化性能评价。采用侧柏叶提取液快速制备的银纳米颗粒对大肠杆菌的最小抑菌浓度(MIC)和最小杀菌浓度(MBC)分别为1.4 ppm和27 ppm,而银纳米颗粒对金黄色葡萄球菌的MIC为5.4 ppm。侧柏叶干粉所制得的金纳米颗粒较稳定,且对4-NP的催化转化反应有较好的催化活性。利用侧柏叶提取液制备的Au/TiO_2催化剂对4-NP的催化转化反应有较好的催化活性;在30℃下制备的Au/TiO_2催化剂的催化性能优于60℃和90℃下制备的催化剂;经过300℃焙烧处理之后的Au/TiO_2催化剂的催化性能较未焙烧的催化剂好。
Noble metal nanomaterials have attracted extensive attention owing to their uniquecatalytic and optical properties.Therefore,their preparation and application have become oneof research highlights in the field of nanotechnology.Compared with the traditional physicaland chemical methods of synthesizing metal nanomaterials,the bioreduction methods basedon microorganisms or plants have emerged as cost-effective and environmentally benignapproaches to highly stable metal nanomaterials in recent years.Therefore,we envision thatthey will be used to produce commercial metal nanomaterials with promising market prospect.In contrast to microorganisms,the use of readily available plants and their extracts cancircumvent laborious biological screening and cultivation.Hence,plants and their extractswill be better options for synthesis of metal nanomaterials than microorganisms.However,atpresent,the researches on plant-based bioreduction have been focused on simple synthesisand characterization of nanomaterials.Many fundamental problems are far from clear.Forinstance,shape and size control of noble metal nanomaterials have met very limited success.Moreover,process design of plant-based biosynthesis and optimization of operation conditionhave not been reported yet.Sloving such problems are of great significance for establishing anew protocol on shape and size control of noble metal nanomaterials,and practicaltechnology.
     Silver and gold nanomaterials were fabricated via reduction of Ag~+ and[AuCl_4]~- by driedplant biomass and their extract in this work.Concerning the above status of plant-basedbiosynthesis,through screening of plant biomass,process design and optimization ofplant-based biosynthesis,and design of reactors,this work aimed at establishing a newprotocol on shape and size control of Ag and Au nanomaterials.Furthermore,application ofthe Ag nanoparticles (AgNPs) as antimicrobials and Au nanoparticles (AuNPs) as catalystswas preliminarily explored,respectively.
     Firstly,AgNPs and AuNPs were synthesized by sundried C.camphora leaf.Ag or Auseeds were added to the mixture of the precursors and C.camphora leaf extract to tune theshape and size of AgNPs or AuNPs.Not only could silver nanoparticles ranging from 55 to 80nm in size be fabricated,but also gold nanotriangles with edge length range of 25-150 nm orspherical gold nanoparticles with size range of 10-35 nm could be easily modulated byadjusting the amount of C.camphora leaf biomass.The presence of Ag seeds promotedanisotropic growth of AgNPs while that of Au seeds improved the monodispersity of AuNPs.The polyol components such as polysaccharide,reducing sugar,flavones,etc were mainlyresponsible for the reduction of silver ions or chloroaurate ions.
     Secondly,richful and readily available plant biomass of traditional Chinese medicines(TCMs) were used to tune the shape of Ag and Au nanomaterials and particle size of AgNPsand AuNPs at 30℃.And general knowledge based on the biosynthesis by TCMs was proposed.AgNPs and AuNPs could be synthesized by dried powder of F.Carthami,F.Chrysanthemi,H.Epimedii Brevicornus,S.Prunellae Vulgaris and H.Lysimachiae.AgNWswith mean diameter of 45 nm and length of at least 10μm could be fabricated by driedpowder of F.Gardeniae and F.Lonicerae.The nanowires grew along the direction of[110]through chain connection of spheriodal AgNPs.Furthermore,Ag nanoplates could beprepared by dried powder of F.Lonicerae and F.Magnoliae Officinalis.The overlappinggrowth of Ag nanoplates led to dentritic Ag crystal.Anisotropic growth index (S) of plantbiomass based on their FTIR analyses could be used as one of referred indexes of screeningplant biomass.Anisotropic Ag nanostructures were promoted when S was more than 1.0,while isotropic Ag nanostructures were promoted when S was less than 1.0.This workexemplified the universal application of plant bioresources for the synthesis of AuNPs.Thesize,shape and associated optical properties of the AuNPs could be tuned by different TCMs.The nascent gold nanoplates were formed by aggregation of small AuNPs less than 10 nm.
     Thirdly,continuous-flow biosynthesis of Ag nanoparticles (AgNPs) by C.camphora leafextract in tubular microreactors was investigated.At the proper glycerin bath temperature 90℃,nucleation of silver nuclei and growth of AgNPs could be separated and secondarynucleation could be avoided to attain AgNPs with narrow size distribution.The proper angleof Y junction is 60°or 90°.And the proper volumetric flow rate is 0.5 or 0.8 mL.min~(-1).At thesame volumetric flow rate,the nucleating rate of silver nuclei could be increased bydecreasing the inner diameter to produce AgNPs with narrow size distribution.The properinner diameters of the tubes were 2 or 3 mm.
     Lastly,on one hand,the antibacterial properties of AgNPs by the methods of liquidculture medium and solid culture medium were evaluated and the representative E.coli(gram-positive bacteria) and S.aureus (gram-negative bacteria) were used as tested strains.On the other hand,supported Au/TiO_2 catalysts were fabricated by in-situ bioreduction withthe extract of C.Platycladi and their catalytic activities were tested by catalytic reduction of4-nitrophenol (4-NP) into 4-acetaminophenol (4-AP) as model reaction.The results showedthat AgNPs have a good antibacterial property against these two strains;the minimuminhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of AgNPstowards E.coli is 1.4 ppm and 27 ppm,respectively,whilst the MIC of AgNPs towards S.aureus is 5.4 ppm.The AuNPs produced by dried powder of C.Platycladi were highly stableand exhibited excellent catalytic activity towards reduction of 4-NP to 4-AP.Furthermore,theAu/TiO_2 catalysts also showed good catalytic activity towards reduction of 4-NP to 4-AP.Generally,the Au/TiO_2 catalysts fabricated at 30℃possessed better catalytic activity thanthose at 60 or 90℃.And their catalytic performance could be enhanced by calcination at 300℃.
引文
[1]袁哲俊编著.纳米科学与技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [2]Joachim C.To be nano or not to be nano [J].Nat.Mater.,2005,4:107-109.
    [3]杨志尹.纳米科技[M].北京:机械工业出版社,2004.
    [4]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006.
    [5]Wiley B.J.,Im S.H.,Li Z.Y.,et al.Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis [J].J.Phys.Chem.B,2006,110:15666-15675.
    [6]周全法.贵金属深加工及其应用[M].北京:化学r工业出版社,2002.
    [7]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [8]Burda C.,Chen X.,Narayanan R.,et al.Chemistry and properties of nanocrystals of different shapes [J].Chem.Rev.,2005,105:1025-1102.
    [9]王中林主编.纳米相和纳米结构材料-合成手册[M].北京:清华大学出版社,2002.
    [10]Cushing B.L.,Kolesnichenko V.L.,O'Connor C.J.Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J].Chem.Rev.,2004,104:3893-3946.
    [11]Daniel M.,Astruc D.Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology [J].Chem.Rev.,2004,104:293-346.
    [12]Mann S.Biomineralization:principles and concepts in bioinorganic materials chemistry [M].Oxford:Oxford University Press,2001.
    [13]Sastry M.,Ahmad A.,Khan M.I.,et al.Nanobiotechnology.Microbial nanoparticle production [M].Weinheim:Wiley-VCH,2004.
    [14]Gardea-Torresdey J.L.,Peralta-Videa J.R.,Parsons J.G.,et al.Metal nanoclusters in catalysis and materials science:the issue of size control.Production of metal nanoparticles by plants and plant-derived materials [M].Amsterdam:Elsevier,2008.
    [15]Wang Z.Handbook of nanophase and nanostructured materials-characterization [M].Beijing:Tsinghua University Press,2002.
    [16]Wang X.,Zuo J.,Keil P.,et al.Comparing the growth of PVD silver nanoparticles on ultra thin fluorocarbon plasma polymer films and self-assembled fluoroaikyl silane monolayers [J].Nanotechnology,2007,18:265303.
    [17]Raffi M.,Rumaiz A.K.,Hasan M.M.,et al.Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation [J].J.Mater.Res.,2007,22:3378-3384.
    [18]Cross C.E.,Hemminger J.C.,Penner R.M.Physical vapor deposition of one-dimensional nanoparticle arrays on graphite:seeding the electrodeposition of gold nanowires [J].Langmuir,2007,23:10372-10379.
    [19]Abdelsayed V.,Saoud K.M.,El-Shall M.S.Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts [J].J.Nanopart.Res.,2006,8:519-531.
    [20]Chatterjee K.,Howe J.M.,Johnson W.C.,et al.Static and in situ TEM investigation of phase relationships,phase dissolution,and interface motion in Ag-Au-Cu alloy nanoparticles [J].Acta Mater.,2004,52:2923-2935.
    [21]Xu J.,Yin J.S.,Ma E.Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition [J].Nanostruct.Mater.,1997,8:91-100.
    [22]Fitz-Gerald J.,Pennycook S.,Gao H.,et al.Synthesis and properties of nanofunctionalized particulate materials [J].Nanostruct.Mater.,1999,12:1167-1171.
    [23]Chang H.B.,Sang H.N.,Seung M.P.Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution [J].Appl.Surf.Sci.,2002,197:628-634.
    [24]Izgaliev A.T.,Simakin A.V.,Shafeev G.A.Formation of the alloy of Au and Ag nanoparticles upon laser irradiation of the mixture of their colloidal solutions [J].Quantum Electron.,2004,34:47-50.
    [25]Mafun(?) F.,Kohno J.,Takeda Y.,et al.Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant [J].J.Phys.Chem.B,2001,105:5114-5120.
    [26]Paszti Z,Peto G,Horvath Z.E.,et al.Formation of supported nanoparticles from island thin films during ion etching [J].Nuclear Instrument.Method Phys.Res.Sect.B,2001,178:131-134.
    [27]Zhou X.,Wei Q.,Sun K.,et al.Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition [J].Appl.Phys.Lett.,2009,94:133107.
    [28]Gohil S.,Chandra R.,Chalke B.,et al.Sputter deposition of self-organized nanoclusters through porous anodic alumina templates [J].J.Nanosci.Nanotechnol.,2007,7:641--646.
    [29]李喜波,唐晓红,吴卫东等.磁控溅射法制备金团簇纳米颗粒及性能表征[J].强激光与粒子束,2006,18(6):1023-1026.
    [30]Veith G.M.,Lupini A.R.,Pennycook S.J.,et al.Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon [J].Catal.Today,2007,122:248-253.
    [31]Andersson M.,Pedersen J.S.,Palmqvist A.E.C.Silver nanoparticle formation in microemulsions acting both as template and reducing agent [J].Langmuir,2005,21:11387-11396.
    [32]Pal A.,Shah S.,Devi S.Preparation of silver,gold and silver-gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100 [J].Colloid.Surf A:Physicochem.Eng.Aspects,2007,302:483-487.
    [33]Manna A.,Imae T.,Yogo T.,et al.Synthesis of gold nanoparticles in a Winsor Ⅱ type microemulsion and their characterization [J].J.Colloid Interf Sci.,2002,256:297-303.
    [34]Chen W.,Zhang J.Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method [J].Scripta Mater,2003,49:321-325.
    [35]Huang M.,Choudrey A.,Yang P.Ag nanowire formation within mesoporous silica [J].Chem.Commun.,2000,12:1063-1064.
    [36]Zhang Q.,Li Y.,Xu D.,et al.Preparation of silver nanowire arrays in anodic aluminum oxide templates [J].J.Mater Chem.Lett.,2001,20:925-927.
    [37]Qu L.,Shi G.,Wu X.,et al.Facile route to silver nanotubes [J].Adv.Mater,2004,16:1200-1202.
    [38]Haruta M.Size- and support-dependency in the catalysis of gold [J].Catal.Today,1997,36:153-166.
    [39]Pal S.,De G.A new approach for the synthesis of Au-Ag alloy nanoparticle incorporated SiO_2 films [J].Chem.Mater,2005,17:6161-6166.
    [40]Henglein A.,Giersig M.Formation of colloidal silver nanoparticles:capping action of citrate [J].J.Phys.Chem.B,1999,103:9533-9539.
    [41]Sudeep P.K.,Kamat P.V.Photosensitized growth of silver nanoparticles under visible light irradiation:a mechanistic investigation [J].Chem.Mater 2005,17:5404-5410.
    [42]Jin R.,Cao Y.,Mirkin C.A.,et al.Photoinduced conversion of silver nanospheres to nanoprisms [J].Science,2001,294:1901-1903.
    [43]Sun Y.,Xia Y.Triangular nanoplates of silver:synthesis,characterization,and use as sacrificial templates for generating triangular nanorings of gold [J].Adv.Mater,2003,19:695-699.
    [44]Tian X.,Chen K.,Cao G.Seedless,surfactantless photoreduction synthesis of silver nanoplates [J].Mater.Lett.,2006,60:828-830.
    [45]Zhou Y.,Yu S.,Wang C.,et al.A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites [J].Adv.Mater.,1999,11:850-852.
    [46]Hong B.,Bae S.,Lee C.,et al.Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase [J].Science,2001,294:348-351.
    [47]Sloan J.,Wright D.M.,Woo H.,et al.Capillarity and silver nanowire formation observed in single walled carbon nanotubes [J].Chem.Commun.,1999,8:699-700.
    [48]Edmondson M.,Zhou W.,Sieber S.A.,et al.Electron-beam induced growth of bare silver nanowires from zeolite crystallines [J].Adv.Mater.,2001,13:1608-1611.
    [49]Abyaneh M.K.,Paramanik D.,Varma S.,et al.Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation [J].J.Phys.D:Appl.Phys.,2007,40:3771-3779.
    [50]Zhou Y.,Wang C.Y.,Zhu Y.R.,et al.A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature [J].Chem.Mater.,1999,11 :2310-2312.
    [51]Kundu S.,Panigrahi S.,Praharaj S.,et al.Anisotropic growth of gold clusters to gold nanocubes under UV irradiation [J].Nanotechnology,2007,18:075712.
    [52]Mallik K.,Mandal M.,Pradhan N.,et al.Seed mediated formation of bimetallic nanoparticles by UV irradiation:a photochemical approach for the preparation of “core-shell” type structures [J].Nano Lett.,2001,1:319-322.
    [53]Kameo A,Yoshimura T,Esumi K.Preparation of noble metal nanoparticles in supercritical carbon dioxide [J].Colloids Surf A:Physicochem.Engi.Aspects,2003,215:181-189.
    [54]Esumi K.,Sarashina S.,Yoshimura T.Synthesis of gold nanoparticles from an organometallic compound in supercritical carbon dioxide [J].Langmuir,2004,20:5189-5191.
    [55]Rodriguez-gattorno G.,Diaz D.,Rendo'n L.,et al.Metallic nanoparticles from spontaneous reduction of silver( Ⅰ ) in DMSO.Interaction between nitric oxide and silver nanoparticles [J].J.Phys.Chem. B,2002,106:2482-2487.
    [56]Adhyapak P.V.,Karandikar P.,Vijayamohanan K.,et al.Synthesis of silver nanowires inside mesoporous MCM-41 host [J].Mater Lett.,2004,58:1168-1171.
    [57]Liu S.,Yue J.,Gedanken A.Synthesis of long silver nanowires from AgBr nanocrystals [J].Adv.Mater,2001,13:656-658.
    [58]Zhang D.,Qi L.,Ma J.,et al.Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer [J].Chem.Mater.,2001,13:2753-2755.
    [59]Sun Y.,Yin Y.,Mayers B.T.,et al.Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone) [J].Chem.Mater.,2002,14:4736-4745.
    [60]Sun Y.,Xia Y.Large-scale synthesis of uniform silver nanowires through a soft,self-seeding,polyol process [J].Adv.Mater.,2002,14:833-837.
    [61]Sun Y.,Gates B.,Mayers B.,et al.Crystalline silver nanowires by soft solution processing [J].Nano Lett.,2002,2:165-168.
    [62]Sun Y.,Mayers B.,Herricks T.,et al.Polyol synthesis of uniform silver nanowires:a plausible growth mechanism and the supporting evidence [J].Nano Lett.,2003,3:955-960.
    [63]Xiong Y.,Xie Y.,Wu C.,et al.Formation of silver nanowires through a sandwiched reduction process [J].Adv.Mater.,2003,15:405-408.
    [64]赵启涛,候立松,黄瑞安.软化学法低温合成银纳米线及其生长机制[J].化学学报,2003,61(10):1671-1674
    [65]Hu J.,Chen Q.,Xie Z.,et al.A simple and effective route for the synthesis of crystalline silver nanorods and nanowires [J].Adv.Funct.Mater.,2004,14:183-189.
    [66]Li C.,Yang X.,Yang B.,et al.A template-free oxide reduction route to silver nanowires [J].Mater Lett.,2005,59:1409-1412.
    [67]Wei G.,Zhou H.,Liu Z.,et al.One-step synthesis of silver nanoparticles,nanorods and nanowires on the surface of DNA network [J].J.Phys.Chem.B,2005,109:8738-8743.
    [68]Zhang S.,Jiang Z.,Xie Z.,et al.Growth of silver nanowires from solutions:a cyclic penta-twinned-crystal growth mechanism [J].J.Phys.Chem B.,2005,109:9416-9421.
    [69]Liu Y.,Chu Y.,Yang L.,et al.A novel solution-phase route for the synthesis of crystalline silver nanowires [J].Mater Res.Bull.,2005,40:1796-1801.
    [70]Jana N.,Gearheart L.,Murphy C.J.Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J].Chem.Commun.,2001,7:617-618.
    [71]Sun Y.,Xia Y.Shape-controlled synthesis of gold and silver nanoparticles [J].Science,2002,298:2176-2179.
    [72]Wiley B,Herricks T,Sun Y.,et al.Polyol synthesis of silver nanoparticles:use of chloride and oxygen to promote the formation of single-crystal,truncated cubes and tetrahedrons [J].Nano Lett.,2004,4:1733-1739.
    [73]Tao A.,Sinsermsuksakul P.,Yang P.Polyhedral silver nanocrystals with distinct scattering signatures [J].Angew.Chem.Int.Ed.,2006,45:4597-4601.
    [74]Chen S.,Fan Z.,Carroll D.Silver nanodisks:synthesis,characterization,and self-assembly [J].J.Phys.Chem.B,2002,106:10777-10781.
    [75]Xiong Y.,Washio I.,Chen J.,et al.Poly(vinyl pyrrolidone):a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions [J].Langmuir,2006,22:8563-8570.
    [76]Washio I.,Xiong Y.,Yin Y.,et al.Reduction by the end groups ofpoly(vinyl pyrrolidone):a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates [J].Adv.Mater.,2006,18:1745-1749.
    [77]武慧芳,马艳芸,谢兆雄.银纳米片的室温合成及其生K机理[J].科学通报,2007,52(18):2217-2219.
    [78]Wiley B.J.,Xiong Y.,Li Z.,et al.Right bipyramids of silver:a new shape derived from single twinned seeds [J].Nano Lett.,2006,6:765-768.
    [79]Liang H.,Yang H.,Wang W.,et al.High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals [J].J.Am.Chem.Soc.,2009,131:6068-6069.
    [80]Turkevich J.,Stevenson P.C.,Hillier J.A study of the nucleation and growth processes in the synthesis of colloidal gold [J].Discuss.Faraday Soc.,1951,11:55-75.
    [81]Jana N.R.,Gearheart L.,Murphy C.J.Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J].J.Phys.Chem.B,2001,105:4065-4067.
    [82] Sun Y., Mayers B., Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors [J]. Nano Lett., 2002, 2: 481-485.
    [83] Chen Y., Gu X., Nie C., et al. Shape controlled growth of gold nanoparticles by a solution synthesis [J]. Chem. Commun., 2005, 33: 4181-4183.
    [84] Chen J., Saeki F., Wiley B.J., et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents [J]. Nano Lett., 2005, 5:473-477.
    [85] Huo Z., Tsung C.K., Huang W., et al. Sub-two nanometer single crystal Au nanowires [J]. Nano Lett., 2008, 8: 2041-2044.
    [86] Lu X., Yavuz M.S., Tuan H., et al. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction [J]. J. Am. Chem. Soc., 2008, 130: 8900-8901.
    [87] Wang C, Hu Y., Lieber C.M., et al. Ultrathin Au nanowires and their transport properties [J]. J. Am. Chem. Soc., 2008, 130: 8902-8903.
    [88] Ma Y., Kuang Q., Jiang Z., et al. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method [J]. Angew. Chem. Int. Ed., 2008, 47: 8901-8904.
    [89] Liao H., Jiang Y., Zhou Z., et al. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis [J]. Angew. Chem. Int. Ed., 2008, 47: 9100-9103.
    [90] Srnova'-S(?)loufova I., Lednicky' F., Gemperle A., et al. Core-shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images [J]. Langmuir, 2000, 16: 9928-9935.
    [91] Sun Y., Xia Y Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. J. Am. Chem. Soc., 2004, 126: 3892-3901.
    [92] Zhang H., Jin R., Mirkin C.A. Synthesis of open-ended, cylindrical Au-Ag alloy nanostructures on a Si/SiOx surface [J]. Nano Lett., 2004, 4: 1493-1495.
    [93] Krichevski O., Tirosh E., Markovich G., et al. Formation of gold-silver nanowires in thin surfactant solution films [J]. Langmuir, 2006, 22: 867-870.
    [94] Fan F., Liu D., Wu Y., et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes [J]. J. Am. Chem. Soc., 2008, 130: 6949-6951.
    [95] Park K., Vaia R.A. Synthesis of complex Au/Ag nanorods by controlled overgrowth [J]. Adv. Mater., 2008, 20:3882-3886.
    [96] Habas S.E., Lee Y., Radmilovic V., et al. Shaping binary metal nanocrystals through epitaxial seeded growth [J]. Nat. Mater., 2007, 6: 692-697.
    [97] Zou J., Xu Y., Hou B., et al. Controlled growth of silver nanoparticles in a hydrothermal process [J]. China Particuol., 2007, 5: 206-212.
    [98] Wei G., Nan C., Deng Y., et al. Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method [J]. Chem. Mater., 2003, 15: 4436-4441.
    [99] Sun X., Li Y. Cylindrical silver nanowires: preparation, structure and optical properties [J]. Adv. Mater., 2005, 17: 2626-2630.
    [100] Wang Z., Liu J., Chen X., et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires [J]. Chem. Eur. J., 2005, 11: 160-163.
    [101] Yu D., Yam V.W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction [J]. J. Phys. Chem. B, 2005, 109: 5497-5503.
    [102] Gao S., Zhang H., Wang X., et al. Unique gold sponges: biopolymer-assisted hydrothermal synthesis and potential application as surface-enhanced Raman scattering substrates [J]. Nanotechnology, 2005, 16:2530-2535.
    [103] Chang C., Wu H., Kuo C., et al. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures [J]. Chem. Mater., 2008, 20: 7570-7574.
    [104] Xu J., Weng J., Wang X., et al. Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form [i].Adv. Funct. Mater., 2008, 18: 277-284.
    [105] Nepijko S.A., Ievlev D.N., Schulze W., et al. Growth of rodlike silver nanoparticles by vapor deposition of small clusters [J]. ChemPhysChem, 2000, 1: 140-142.
    [106] Palgrave R.G., Parkin I.P. Surfactant directed chemical vapour deposition of gold nanoparticles with narrow size distributions [J]. Gold Bull,, 2008,41: 66-69.
    [107] Lamarrea J., Billardb F., Kerboua C.H., et al. Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix [J]. Opt. Commun., 2008, 281: 331-340.
    [108]Starowicz M.,Stypula B.,Banas J.Electrochemical synthesis of silver nanoparticles [J].Electrochem.Commun.,2006,8:227-230.
    [109]Ma H.,Yin B.,Wang S.,et al.Synthesis of silver and gold nanoparticles by a novel electrochemical method [J].ChemPhysChem,2004,5:68-75.
    [110]Braun E.,Eichen Y.,Sivan U.,et al.DNA-templated assembly and electrode attachment of a conducting silver wire [J].Nature,1998,391:775-778.
    [111]Choi J.,Sauer G.,Nielsch K.,et al.Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio [J].Chem.Mater.,2003,15:776-779.
    [112]Wu Y.,Livneh T.,Zhang Y.X.,et al.Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays [J].Nano Lett.,2004,4,2337-2342.
    [113]Zong R.,Zhou J.,Li Q.,et al.Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane [J].J.Phys.Chem.B,2004,108:16713-16716.
    [114]Sun X.,Xu F.,Li Z.,et al.Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template [J].Mater.Chem.Phys.,2005,90:69-72.
    [115]Yu Y.,Chang C.,Lee C.,et al.Gold nanorods:electrochemical synthesis and optical properties [J].J.Phys.Chem.B,1997,101:6661-6664.
    [116]Huang C.,Wang Y.,Chiu P.,et al.Electrochemical synthesis of gold nanocubes [J].Mater.Lett.,2006,60:1896-1900.
    [117]潘善林,张浩力,彭勇等.模板合成法制备金纳米线的研究[J].高等学校化学学报,1999,20(10):1622-1624.
    [118]Zhang X.Y.,Zhang L.D.,Lei Y.,et al.Fabrication and characterization of highly ordered Au nanowire arrays [J].J.Mater.Chem.,2001,11:1732-1734.
    [119]Wang Z.,Su Y.,Li H.AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template [J].Appl.Phys..4,2002,74:563-565.
    [120]Mbindyo J.K.N.,Malouk T.E.,Mattzela J.B.,et al.Template synthesis of metal nanowires containing monolayer molecular junctions [J].J.Am.Chem.Soc.,2002,124:4020-4026.
    [121]Liu J.,Duan J.L.,Karim S.,et al.Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires [J].Nanotechnology,2006,17:1922-1926.
    [122]Hadad L.,Perkas N,Gofer Y.,et al.Sonochemical deposition of silver nanoparticles on wool fibers [J].J.Appl.Polym.Sci.,2006,104:1732-1737.
    [123]黄磊,凌国平,郦剑.纳米Ag-Al_2O_3复合粉末的制备[J].浙江大学学报(工学版),2003,37(1):65-69.
    [124]Jiang L.,Xu S.,Zhang J.,et al.Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings [J].Inorg.Chem.,2004,43:5877-5883.
    [125]Perkas N,Zhong Z.,Grinblat J.,et al.Deposition of gold particles on mesoporous catalyst supports by sonochemical method,and their catalytic performance for CO oxidation [J].Catal.Lett.,2008,120:19-24.
    [126]Zhu J.,Liu S.,Palchik O.,et al.Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods [J].Langmuir,2000,16:6396-6399.
    [127]Zhu J.,Qiu Q.,Wang H.,et al.Synthesis of silver nanowires by a sonoelectrochemical method [J].Inorg.Chem.Commun.,2002,5:242-244.
    [128]Liu Y.C.,Li H.L.,Chiu W.H.Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods [J].J.Phys.Chem.B,2004,108:19237-19240.
    [129]Liu C.,Lee H.,Peng H.New pathway for sonoelectrochemical synthesis of gold-silver alloy nanoparticles from their bulk substrates [J].Chem.Phys.Lett.,2004,400:436-440.
    [130]Zhu Y.,Hu X.Microwave-assisted polythiol reduction method:a new solid-liquid route to fast preparation of silver nanowires [J].Mater.Lett.,2004,58:1517-1519.
    [131]Huang H.,Zhang S.,Qi L.,et al.Microwave-assisted deposition of uniform thin gold film on glass surface [J].Surf.Coat.Technol.,2006,200:4389- 4396.
    [132]Tsuji M,Hashimoto M.,Nishizawa Y.,et al.Synthesis of gold nanorods and nanowires by a microwave-polyol method [J].Mater.Lett.,2004,58:2326-2330.
    [133]Dujardin E.,Peet C.,Stubbs G.,et al.Organization of metallic nanoparticles using tobacco mosaic virus templates [J].Nano Lett.,2003,3:413-417.
    [134]Djalali R.,Chen Y.,Matsui H.Au nanowire fabrication from sequenced histidine-rich peptide [J].J..4m.Chem.Soc.,2002,124:13660-13661.
    [135]Wiley B.,Sun Y.,Mayers B.,et al.Shape-controlled synthesis of metal nanostructures:the case of silver [J].Chem.Eur.J.,2005,11 :454-463.
    [136]Wiley B.,Sun Y.,Xia Y.Synthesis of silver nanostructures with controlled shapes and properties [J].Acc.Chem.Res.,2007,40:1067-1076.
    [137]Xia Y.,Xiong Y.,Lim B.,et al.Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics [J].Angew.Chem.Int.Ed.,2009,48:60-103.
    [138]Tao A.R.,Habas S.,Yang P.Shape control of colloidal metal nanocrystals [J].Small,2008,4:310-325.
    [139]Klaus T.,Joerger R.,Olsson E.,et al.Silver-based crystalline nanoparticles,microbiaily fabricated [J].PNAS,1999,96:13611-13614.
    [140]Xie J.,Lee J.Y.,Wang D.I.C.,et al.Silver nanoplates:from biological to biomimetic synthesis [J].ACSNano,2007,l:429-439.
    [141]Gardea-Torresdey J.L.,Tiemann K.J.,Gamez G.,et al.Gold nanoparticles obtained by bio-precipitation from gold(Ⅲ) solutions [J].J.Nanopart.Res.1999,l:397-404.
    [142]Gardea-Torresdey J.L.,Parsons J.G.,Gomez E.,et al.Formation and growth of Au nanoparticles inside live alfalfa plants [J].Nano Lett.,2002,2:397-401.
    [143]Gardea-Torresdey J.L,Gomez E.,Peralta-Videa J.R.,et al.Alfalfa sprouts:a natural source for the synthesis of silver nanoparticles [J].Langmuir,2003,19:1357-1361.
    [144]Shankar S.,Rai A.,Ankamwar B.,et al.Biological synthesis of triangular gold nanoprisms [J].Nat.Mater.,2004,3:482-488.
    [145]Senapati S.,Ahmad A.,Khan M.I.,et al.Extracellular biosynthesis of biometallic Au-Ag alloy nanoparticles [J].Small,2005,1:517-520.
    [146]Naik R.,Stringer S.,Agarwal G.,et al.Biomimetic synthesis and patterning of silver nanoparticles [J].Nat.Mater.,2002,1:169-172.
    [147]Slocik J.M.,Stone M.O,Naik R.R.,et al.Synthesis of gold nanoparticles using multifunctional peptides [J].Small,2005,11:1048-1052.
    [148]张冬柏,齐利民,程虎民等.液晶模板法制备Au纳米线[J].高等学校化学学报,2003,24(12):2143-2146.
    [149]周全法,刘维桥,尚通明.贵金属纳米材料[J].化学工L业出版社,2008.
    [150]殷焕顺,艾仕云,钱萍等.纳米银的制备方法及其应用[J].材料研究与应用,2008,2(1):6-10.
    [151]Risse T.,Shaikhutdinov S.,Nilius N.,et al.Gold supported on thin oxide films:from single atoms to nanoparticles [J].Acc.Chem.Res.,2008,41:949-956.
    [152]Haruta M.,Kobayashi T.,Sano H.,et al.Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 ℃C[J].Chem.Lett.,1987,16:405-408.
    [153]Fu Q.,Saltsburg H.,Flytzani-Stephanopoulos M.Active nonmetallic Au and Pt Species on ceria-based water-gas shift catalysts [J].Science,2003,301:935-938.
    [154]Hutchings G.J.,Haruta M.A golden age of catalysis:a perspective [J].Appl.Catal.A:General,2005,291:2-5.
    [155]Valden M.,Lai X.,Goodman D.W.Onset of catalytic activity of gold dusters on titania with the appearance of nonmetallic properties [J].Science,1998,281 :1647-1650.
    [156]Kung M.C.,Davis R.J.,Kung,H.H.Understanding Au-catalysed low-temperature CO oxidation [J].J.Phys.Chem.C,2007,111:11767-11775.
    [157]Chen M.S.,Goodman D.W.Catalytically active gold:from nanoparticles to ultrathin films [J].Acc.Chem.Res.,2006,39:739-746.
    [158]Chen M.S.,Goodman D.W.Catalytically active gold on ordered titania supports [J].Chem.Soc.Rev.,2008,37:1860-1870.
    [159]Hutchings G.J.New directions in gold catalysis [J].GoldBull.,2004,37:3-11.
    [160]Bond G.C.,Thompson D.T.Catalysis by gold [J].Cat.Rev.-Sci.Eng.,1999,41:319-388.
    [161]Haruta M.Gold as a novel catalyst in the 21st century:preparation,working mechanism and applications [J].Gold Bull.,2004,37:27-36.
    [162]Hashmi A.S.K.,Hutchings G.J.Gold catalysis [J].Angew.Chem.Int.Ed.,2006,45:7896-7936.[163]Charles T.C.The active site in nanoparticle gold catalysis [J].Science,2004,306:234-235.
    [164]Haruta M.Catalysis of gold nanoparticles deposited on metal oxides [J].CATTECH,2002,6:102-115.
    [165]Comotti M.,Li W.,Spliethoff B.,et al.Support effect in high activity gold catalysts for CO oxidation [J].J.Am.Chem.Soc.,2006,128:917-924.
    [166]Pina C.D.,Falletta E.,Prati L.,et al.Selective oxidation using gold [J].Chem.Soc.Rev.,2008,37:2077-2095.
    [167]李玉敏.纳米金涂料的研制与应用[J].黄金,2006,27(5):52-53.
    [168] Ruchhoft C.C. The possibilities of disposal of radioactive wastes by biological treatment methods [J]. Sewage Works J., 1949, 21: 877-883.
    [169] Klaus-joerger T., Joerger R., et al. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science [J]. Trends Biotechnol., 2001, 19: 15-20.
    [170] Sastry M., Ahmad A., Khan M.I., et al. Biosynthesis of metal nanoparticles using fungi and actinomycete [J]. Curr. Sci., 2003, 85: 162-170.
    [171] Mandal D., Bolander M.E., Mukhopadhyay D., et al. The use of microorganisms for the formation of metal nanoparticles and their application [J]. Appl. Microbiol. Biotechnol., 2006, 69: 485-492.
    [172] Debaditya B., Rajinder G. Nanotechnology and potential of microorganisms [J]. Crit. Rev. Biotechnol., 2005, 25: 199-204.
    [173] Mohanpuria P., Rana N.K., Yadav S.K. Biosynthesis of nanoparticles: technological concepts and future applications [J]. J. Nanopart. Res., 2008, 10: 507-517.
    [174] Joerger R., Klaus T., Granqvist C.G. Biologically produced silver-carbon composite materials for optically functional thin-film coatings [i].Adv. Mater., 2000, 12: 407-409.
    [175] Joerger R., Klaus-Joerger T., Olsson E., et al. Optical properties of biomimetically produced spectrally selective coatings [J]. Sol. Energy, 2000,69: 27-33.
    [176] Labrenz M., Druschel G.K., Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria [J]. Science, 2000, 290:1744-1747.
    [177] Nair B., Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains [J]. Cryst. Growth Des., 2002,2: 293-298.
    [178] Yong P., Rowson N., Farr J.P.G., et al. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307 [J]. Biotechnol. Bioengi., 2002, 80: 369-379.
    [179] Yong P., Rowson N., Farr J.P.G., et al. Bioaccumulation of palladium by Desulfovibrio desulfuricans [J]. J. Chem. Technol. Biotech., 2002, 77: 593-601.
    [180] Yong P., Paterson-Beedle M., Mikheenko I.P., et al. From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst [J]. Biotechnol. Lett., 2007, 29: 539-544.
    [181] Baxter-Plant V.S., Mikheenko I.P., Macaskie L.E. Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds [J]. Biodegradation, 2003, 14: 83-90.
    [182] Baxter-Plant V.S., Mikheenko I.P., Robson M., et al. Dehalogenation of chlorinated aromatic compounds using a hybrid bioinorganic catalyst on cells of Desulfiovibrio desulfuricans [J]. Biotechnol. Lett., 2004, 26: 1885-1890.
    [183] Ahmad A., Senapati S., Khan M.I., et al. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. [J]. Langmuir, 2003, 19: 3550-3553.
    [184] Ahmad A., Senapati S., Khan M.I., et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species [J]. Nanotechnology, 2003, 14: 824-828.
    [185] Rautaray D., Ahmad A., Sastry M. Biosynthesis of CaCO_3 crystals of complex morphology using a fungus and an actionmycete [J]. J. Am. Chem. Soc, 2003, 125: 14656-14657.
    [186] Rautaray D., Ahmad A., Sastry M. Bilogical synthesis of metal carbonate minerals using fungi and actinomycetes [J]. J. Mater. Chem., 2004, 14: 2333-2340.
    [187] Mabbett A., Yong P., Farr J.P.G., et al. Reduction of Cr(Ⅵ) by "palladized" biomass of Desulfovibrio desulfuriacans ATCC 29577 [J]. Biotechnol. Bioengl, 2004, 87: 104-109.
    [188] Mabbett A.N., Sanyahumbi D., Yong P., et al. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application [J]. Environ. Sci. Technol., 2006, 40: 1015-1021.
    [189] Creamer N.J., Baxter-Plant V.S., Henderson J., et al. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans [J]. Biotechnol. Lett., 2006, 28: 1475-1484.
    [190] Macaskie L.E., Creamer N.J., Essa A.M.M., et al. A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap [J]. Biotechnol. Bioengi., 2007,96:631-639.
    [191] Humphries A.C., Penfold D.W, Macaskie L.E. Cr(Ⅵ) reduction by bio and bioinorganic catalysis via use of bio-H_2: a sustainable approach for remediation of wastes [J]. J. Chem. Technol. Biotechnol., 2007,82: 182-189.
    [192] Konishi Y, Tsukiyama T., Ohno K., et al. Intracellular recovery of gold by microbial reduction of AuCl_4~- ions using the anaerobic bacterium Shewanella algae [J]. Hydrometallurgy, 2006, 81: 24-29.
    [193] Konishi Y., Tsukiyama T., Tachimi T., et al. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae [J]. Electrochim. Acta, 2007, 53: 186-192.
    [194] Konishi Y., Ohno K., Saitoh N., et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae [J]. J. Biotechnoi., 2007, 128:648-653.
    [195] Rajwade J.M., Paknikar K.M. Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application [J]. Hydrometallurgy, 2003, 71: 243-248.
    [196] Sweeney R.Y., Mao C, Gao X., et al. Bacterial biosynthesis of cadmium sulfide nanocrystals [J]. Chem. Biol., 2004, 11: 1553-1559.
    [197] Windt W.D., Aelterman P., Verstraete W. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls [J]. Environ. Microbiol., 2005, 7: 314-325.
    [198] De Windt W, Boon N, Van den Bulcke J, et al. Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis [J]. Anton. Int. J. G., 2006, 90: 377-389.
    [199] Gericke M., Pinches A. Biological synthesis of metal nanoparticles [J]. Hydrometallurgy, 2006, 83: 132-140.
    [200] Gericke M., Pinches A. Microbial production of gold nanoparticles [J]. Gold Bull., 2006, 39: 22-28.
    [201] Lengke M., Southam G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(Ⅰ)-thiosulfate complex [J]. Geochim. Cosmochim. Acta, 2006, 70: 3646-3661.
    [202] Lengke M.F., Fleet M.E., Southam G. Morphology of gold nanoparticles synthesized by filamentous Cyanobacteria from gold(Ⅰ)-thiosulfate and gold(Ⅲ)-chloride complexes [J], Langmuir, 2006, 22: 2780-2787.
    [203] Lengke M.F., Fleet M.E., Southam G. Biosynthesis of silver nanoparticles by filamentous Cyanobacteria from a silver(Ⅰ) nitrate complex [J]. Langmuir, 2007, 23: 2694-2699.
    [204] Pollmann K., Merroun M., Raff J., et al. Manufacturing and characterization of Pd nanoparticles formed on immobilized bacterial cells [J]. Lett. Appl. Microbiol., 2006,43:39-45.
    [205] Du L.W., Jiang H., Liu X.H., et al. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5 alpha and its application on direct electrochemistry of hemoglobin [J]. Electrochem. Commun., 2007,9:1165-1170.
    [206] Yeary L.W., Moon J.W., Love L.J., et al. Magnetic properties of biosynthesized magnetite nanoparticles [J]. IEEE Trans. Magn., 2005, 41: 4384-4389.
    [207] Shahverdi A.R., Minaeian S., Shahverdi H.R., et al. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach [J]. Process Biochem., 2007, 42: 919-923.
    [208] He S., Guo Z., Zhang Y, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate [J]. Mater. Lett., 2007, 61: 3984-3987.
    [209] He S., Zhang Y., Guo Z., et al. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata [J]. Biotechnoi. Prog., 2008, 24: 476-480.
    [210] Husseiny M.I., El-Aziz M.A., Badr Y, et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa [J]. Spectrochim. Acta A, 2007, 67: 1003-1006.
    [211] Prasad K., Jha A.K., Kulkarni A.R. Lactobacillus assisted synthesis of titanium nanoparticles [J]. Nanoscale Res. Lett., 2007, 2: 248-250.
    [212] Jha A.K., Prasad K., Kulkarni A.R. Microbe-mediated nanotransformation: cadmium [J]. Nano, 2007, 2: 239-242.
    [213] Singh S., Bhatta U.M., Satyam P.V., et al. Bacterial synthesis of silicon/silica nanocomposites [J]. J. Mater. Chem., 2008, 18: 2601-2606.
    [214] Bharde A., Kulkarni A., Rao M., et al. Bacterial enzyme mediated biosynthesis of gold nanoparticles [J]. J. Nanosci. Nanotechnol., 2007, 7: 4369-4377.
    [215] Bharde A.A., Parikh R.Y., Baidakova M., et al. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles [J]. Langmuir, 2008, 24: 5787-5794.
    [216] Parikh R.Y., Singh S., Prasad B.L.V., et al. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism [J]. ChemBioChem, 2008, 9: 1415-1422.
    [217] Kang S.H., Bozhilov K.N., Myung N.V., et al. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli [J]. Angew. Chem. Int. Ed, 2008, 47: 5186-5189.
    [218] Kalimuthu K., Babu R.S., Venkataraman D., et al. Biosynthesis of silver nanocrystals by Bacillus licheniformis [J]. Colloid. Surf. B: Biointerf., 2008, 65: 150-153.
    [219] Kalishwaralal K., Deepak V., Ramkumarpandian S., et al. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis[J].Mater.Lett.,2008,62:4411-4413.
    [220]Feng Y.Z.,Lin X.G.,Wang Y.M.,et al.Diversity of aurum bioreduction by Rhodobacter capsulatus [J].Mater.Lett.,2008,62:4299-4302.
    [221]Hasan S.S.,Singh S.,Parikh R.Y.,et al.Bacterial synthesis of copper/copper oxide nanoparticles [J].J.Nanosci.Nanotechnol.,2008,8:3191-3196.
    [222]Law N.,Ansari S.,Livens F.R.,et al.Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens [J].Appl.Environ.Microbiol.,2008,74:7090-7093.
    [223]Jha A.K.,Prasad K.,Kulkarni A.R.Synthesis of TiO_2 nanoparticles using microorganisms [J].Colloids Surf B:Biointerfaces,2009,71:226-229.
    [224]Mokhtari N.,Daneshpajouh S.,Seyedbagheri S.,et al.Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia:the effects of visible-light irradiation and the liquid mixing process [J].Mater.Res.Bull.,2009,44:1415-1421.
    [225]蔡妙英,卢运玉,赵玉峰.细菌名称[M].北京:科学出版社,1996.
    [226]周德庆,徐士菊.微生物学词典[M].天津:天津科学技术出版社,2005.
    [227]Mukherjee P.,Ahmad A.,Mandal D.,et al.Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix:a novel biological approach to nanoparticle synthesis [J].Nano Lett.,2001,1:515-519.
    [228]Mukherjee P.,Ahmad A.,Mandal D.,et al.Bioreduction of AuCl_4~- ions by the fungus,Verticillium sp.and surface trapping of the gold nanoparticles formed [J].Angew.Chem.Int.Ed.,2001,40:3585-3588.
    [229]Mukherjee P,Senapati S,Mandal D.,et al.Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum [J].ChemBioChem,2002,3:461-463.
    [230]Mukherjee P.,Roy M.,Mandal B.P.,et al.Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T-asperellum [J].Nanotechnology,2008,19:07510.
    [231]Ahmad A.,Mukherjee P.,Mandal D.,et al.Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus,Fusarium oxysporum [J].J.Am.Chem.Soc.,2002,124:12108-12109.
    [232]Ahmad A.,Mukherjee P.,Senapati S.,et al.Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum [J].Colloids Surf B:Biointerf,2003,28:313-318.
    [233]Ahmad A.,Senapati S.,Khan M.I.,et al.Extra-/Intracellular biosynthesis of gold nanoparticles by an Alkalotolerant Fungus,Trichothecium sp.[J].J.Biomed.Nanotechnol.,2005,1:47-53.
    [234]Ahmad A.,Jagadale T.,Dhas V.,et al.Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO_2 [J].Adv.Mater,2007,19:3295-3299.
    [235]Rautaray D.,Sanyal A.,Adyanthaya S.D.,et al.Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum [J].Langmuir,2004,20:6827-6833.
    [236]Kowshik M.,Ashtaputre.,Kharrazi S.,et al.Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3 [J].Nanotechnology,2003,14:95-100.
    [237]Kowshik M.,Deshmukh N.,Vogel W.,et al.Microbial synthesis of semiconductor CdS nanoparticles,their characterization,and their use in the fabrication of ideal diode [J].Biotechnol.Bioeng.,2003,78:583-588.
    [238]Bansal V.,Rautaray D.,Ahmad A.,et al.Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum [J].J..Mater.Chem.,2004,14:3303-3305
    [239]Bansal V.,Rautaray D.,Bharde A.,et al.Fungus-mediated biosynthesis of silica and titania particles [J].J.Mater Chem.,2005,15:2583-2589.
    [240]Bansal V.,Ahmad A.,Sastry M.Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica [J].J.Am.Chem.Soc.,2006,128:14059-14066.
    [241]Bansal V.,Poddar P.,Ahmad A.,et al.Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles [J].J.Am.Chem.Soc.,2006,128:11958-11963.
    [242]Bansal V.,Syed A.,Bhargava S.K.,et al.Zirconia enrichment in zircon sand by selective fungus-mediated bioleaching of silica [J].Langmuir,2007,23:4993-4998.
    [243]Sanyal A.,Rautaray D.,Bansal V.,et al.Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals [J].Langmuir,2005,21 :7220-7224.
    [244]Bharde A.,Rautaray D.,Bansal V.,et al.Extracellular biosynthesis of magnetite using fungi [J].Small,2006,2:135-141.
    [245]Bhainsa K.C.,Souza S.Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus [J].Colloids Surf B:Biointerf ,2006,47:152-156.
    [246]Dur(?)n N.,Marcato PD.,Alves O.L.,et al.Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains [J].J.Nanobiotech.,2005,3:8-14.
    [247]Duran N.,Marcato P.D.,Souza G.I.H.D.,et al.Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment [J].J.Biomed.Nanotechnol.,2007,3:203-208.
    [248]Riddin T.L.,Gericke M.,Whiteley C.G.Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporurn f sp.Lycopersici using response surface methodology [J].Nanotechnology,2006,17:3482-3489.
    [249]Vigneshwaran N.,Ashtaputre N.M.,Varadarajan P.V.,et al.Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus [J].Mater.Lett.,2007,61:1413-1418.
    [250]Vigneshwaran N.,Kathe A.A.,Varadarajan P.V.,et al.Biomimetics of silver nanoparticles by white rot fungus,Phaenerochaete chrysosporiuma [J].Colloids Surf.B:Biointerf,2006,53:55-59.
    [251]Kumar S.A.,Ansary A.A.,Ahmad A.,et al.Extracellular biosynthesis of CdSe quantum dots by the fungus,Fusarium Oxysporum [J].J.Biomed.Nanotechnol.,2007,3:190-194.
    [252]Krumov N.,Oder S.,Pemer-Nochta I.,et al.Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess [J].J.Biotechnol.,2007,132:481-486.
    [253]Basavaraja S.,Balaji S.D.,Lagashetty A.,et al.Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum [J].Mater.Res.Bull.,2008,43:1164-1170.
    [254]Ingle A.,Gade A.,Pierrat S.,et al.Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria [J].Curr.Nanosci.,2008,4:141-144.
    [255]Sadowski Z.,Maliszewska I.H.,Grochowalska B.,et al.Synthesis of silver nanoparticles using.microorganisms [J].Mater.Sci.-Poland,2008,26:419-424.
    [256]Balaji D.S.,Basavaraja S.,Deshpande R.,et al.Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus [J].Colloids Surf.B:Biointerf.,2009,68:88-92.
    [257]Gade A.K.,Bonde P.,Ingle A.P.,et al.Exploitation of Aspergillus niger for synthesis of silver nanoparticles [J].J.BiobasedMater.Bioenerg.,2008,2:243-247.
    [258]Uddin I.,Adyanthaya S.,Syed A.,et al.Structure and Microbial Synthesis of Sub-10 nm Bi_2O_3 Nanocrystals [J].J.Nanosci.Nanotechnol.2008,8:4588-4590.
    [259]Sanghi R.,Verma P.Biomimetic synthesis and characterisation of protein capped silver nanoparticles [J].Bioresource Technol.,2009,100:501-504.
    [260]Govender Y.,Riddin T.,Gericke M.,Whiteley C.G.Bioreduction of platinum salts into nanoparticles:a mechanistic perspective [J].Biotechnol Lett.,2009,31:95-100.
    [261]Jha A.K.,Prasad K.,Prasad K.A green low-cost biosynthesis of Sb_2O_3 nanoparticles [J].Biochem.Eng.J.,2009,43:303-330.
    [262]K.Kathiresan,Manivannan S.,Nabeel M.A.,et al.,Studies on silver nanoparticles synthesized by a marine fungus,Penicilliumfellutanum isolated from coastal mangrove sediment [J].Colloids Surf B.Biointerf.,2009,71:133-137.
    [263]傅锦坤,张伟德,刘月英等.细菌吸附还原贵金属离子特性及表征[J].高等学校化学学报,1999,20(9):1452-1454.
    [264]傅锦坤,刘月英,古萍英等.乳酸杆菌A09吸附还原Ag(Ⅰ)谱学表征[J].物理化学学报,2000,16(9):779-782.
    [265]Liu Y.,Fu J.,Hu H.,et al.Properties and characterization of Au~(3+)-adsorption by mycelial waste of Streptomyces aureo-aciences [J].Chinese Sci.Bull.,2001,46:1709-1712.
    [266]刘月英,杜天生,陈平等.啤酒酵母废菌体吸附Pd~(2+)的物化特性研究[J].高等学校化学学报,2003,24(12):2248-2251.
    [267]林种玉,傅锦坤,吴剑鸣等.贵金属离子非酶法生物还原机理初探[J].物理化学学报,2001,17(5):477-480.
    [268]林种玉,周朝晖,吴剑鸣等.地衣芽孢杆菌R08吸附和还原钯(Pd~(2+))的研究[J].科学通报,2002,47(5):357-360.
    [269]林种玉,吴剑鸣,傅博强等.巨大芽孢杆菌D01吸附金(Au~(3+))的谱学表征[J].化学学报,2004,62:1829-1834
    [270]Lin Z.,Zhou C.,Wu J.,et al.A further insight into the mechanism of Ag~+ biosorption by Lactobacillus sp.strain A09 [J].Spectrochim.ActaA,2005,61:1195-1200.
    [271]薛茹,林种玉,郑建红等.Ag~+生物吸附的谱学研究[J].高等学校化学学报,2006,27(3): 553-555.
    [272]Lin Z.,Wu J.,Xue R.,et al.Spectroscopic characterization of Au~(3+) biosorption by waste biomass of Saccharomyces cerevisiae [J].Spectrochim.Acta A.,2005,61:761-765.
    [273]Zhang H.,Li Q.,Lu Y.,et al.Biosorption and bioreduction of diamine silver complex by Corynebacterium [J].J.Chem.Technol.Biotech.,2005,80:285-290.
    [274]Zhang H.,Li Q.,Wang H.,et al.Accumulation of silver(Ⅰ) ion and diamine silver complex by A eromonas SH10 biomass [J].Appl.Biochem.Biotechnol.,2007,143:54-62.
    [275]Fu M.,Li Q.,Sun D.,et al.Rapid preparation process of silver nanoparticles by bioreduction and their characterizations [J].Chinese J Chem.Eng.,2006,14:114-117.
    [276]Chen J,C.,Lin Z.H.,Ma X.X.Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate [J].Lett.Appl.Microbiol.,2003,37:105-108.
    [277]Kumar V.,Yadav S.K.Plant-mediated synthesis of silver and gold nanoparticles and their applications [J].J.Chem.Technol.Biotechnol.,2009,84:151-157.
    [278]Shankar S.,Ahmad A.,Pasricha R.,et al.Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes [J].J Mater.Chem.,2003,13:1822-1826.
    [279]Shankar S.S.,Ahmad A.,Sastry M.Geranium leaf assisted biosynthesis of silver nanoparticles [J].Biotechnol.Prog.,2003,79:1627-1631.
    [280]Shankar S.S.,Rai A.,Ahmad A.,et al.Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings [J].Chem.Mater,2005,17:566-572.
    [281]Shankar S.,Rai A.,Ahmad A.,et al.Rapid synthesis ofAu,Ag,and biometallic Au core-Ag shell nanoparticles using Neem(Azadirachta indica) leaf broth [J].J.Colloid Interf Sci,2004,275:496-502.
    [282]Ascencio,J.A.,Mejia Y.,Liu H.B.,et al.Bioreduction synthesis of Eu-Au nanoparticles [J].Langmuir,2003,19:5882-5886.
    [283]Ascencio J.A.,Rincon A.C.,Canizal G.Synthesis and theoretical analysis of samarium nanoparticles:perspectives in nuclear medicine [J].J.Phys.Chem.B,2005,109:8806-8812.
    [284]Ascencio J.A.,Canizal G.,Medina-Flores A.,et al.Neodymium nanoparticies:biosynthesis and structural analysis [J].J.Nanosci.Nanotechnol.,2006,6:1044-1049.
    [285]Armendariz V.,Herrera I.,Peralta-Videa J.R.,et al.Size controlled gold nanoparticle formation by Avena sativa biomass:use of plants in nanobiotechnology [J].J Nanopart.Res.,2004,6:377-382
    [286]Armendariz V.,Jose-Yacaman M.,Duarte Moller A.,et al.HRTEM characterization of gold nanoparticles produced by wheat biomass [J].Rev.Mexicana F'isica,2004,50:7-11.
    [287]Liu B.,Xie J.,Lee J.Y.,et al.Optimization of high-yield biological synthesis of single-crystalline gold nanoplates [J].J..Phys.Chem.B,2005,109:15256-15263.
    [288]Lopez M.L.,Parsons J.G.,Videa J.R.P.,et al.An XAS study of the binding and reduction of Au(Ⅲ) by hop biomass [J].Microchem.J.,2005,81:50-56.
    [289]Ankamwar B.,Damle C.,Ahmad A.,et al.Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract,their phase transfer and transmetallation in an organic solution [J].J.Nanosci.Nanotechnol.,2005,5:1665-1671.
    [290]Ankamwar B.,Chaudhary M.,Sastry M.Gold nanotriangles biologically synthesized using Tamarind leaf extract and potential application in vapor sensing [J].Synth.React.Inorg.Metal-Org.Nano-Metal Chem.,2005,35:19-26.
    [291]Chandran S.P.,Chaudhary M.,Pasricha R.,et al.Synthesis of gold nanotriangles and silver nanoparticles using Aloe Wera plant extract [J].Biotechnol Prog.,2006,22:577-583.
    [292]Singh A.,Chaudhari M.,Sastry M..Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing [J].Nanotechnology,2006,17:2399-2405.
    [293]Liu H.B.,Canizal G.,Schabes-Retchkiman P.S.,et al.Structural selection and amorphization of small Ni-Ti bimetallic clusters [J].J..Phys.Chem.B,2006,110:12333-12339.
    [294]Schabes-Retchkiman P.S.,Canizal G.,Herrera-Becerra R.,et al.Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles [J].Opt.Mater,2006,29:95-99.
    [295]Canizal G.,Schabes-Retchkiman P.S.,Pal U.,et al.Controlled synthesis of Zn~0 nanoparticles by bioreduction [J].Mater Chem.Phys.,2006,97:321-329.
    [296]Ghule K.,Ghule A.V.,Liu J.Y.,et al.Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicer arietinum L.) extract and HAuCl_4·3H_2O:a green biogenic approach [J].J. Nanosci.Nanotechnol.,2006,6:3746-3751.
    [297]Herrera-Becerra R.,Zorrilla C.,Ascencio A.J.,et al.Production of iron oxide nanoparticles by a biosynthesis method:an environmentally friendly route [J].J..Phys.Chem.C,2007,111:16147-16153.
    [298]Herrera-Becerra R.,Zorrilla C.,Rius J.L.,et al.Electron microscopy characterization of biosynthesized iron oxide nanoparticles [J].Appl.Phys.A:Mater Sci.Proc.,2008,91:241-246.
    [299]Xie J.,Lee J.Y.,Wang D.I.C.,et al.Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions [J].Small 2007,3:672-682.
    [300]Li S.,Shen Y.,Xie A.,et al.Green synthesis of silver nanoparticles using Capsicum annuum L.extract [J].Green Chem.,2007,9:852-858.
    [301]Li S.,Shen Y.,Xie A.,et al.Rapid,room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract [J].Nanotechnology,2007,18:405101.
    [302]Haverkamp R.G.,Marshall A.T.,van Agterveld D.Pick your carats:nanoparticles of gold-silver-copper alloy produced in vivo [J].J.Nanopart.Res.2007,9:697-700.
    [303]Sharma N.C.,Sahi S,V.,Nath S.,et al.Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials [J].Environ.Sci.Technol.2007,41:5137-5142.
    [304]Vilchis-Nestor A.R.,S(?)nchez-Mendieta V.,Camacho-L6pez M.A.,et al.Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract [J].Mater.Lett.,2008,62:3103-3105.
    [305]Nadagouda M.N.,Varma R.S.Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract [J].Green Chem.,2008,10:859-862.
    [306]Govindaraju K.,Basha S.K.,Kumar V.G.,et al.Silver,gold and bimetallic nanoparticles production using single-cell protein (Spirulinaplatensis) Geitler [J].J.Mater.Sci.,2008,43:5115-5122.
    [307]Shukla R.,Nune S.K.,Chanda N.,et al.Soybeans as a phytochemical reservoir for the production and stabilization ofbiocompatible gold nanoparticles [J].Small,2008,4:1425-1436.
    [308]Harris A.T.,Bali R.On the formation and extent of uptake of silver nanoparticles by live plants [J].J.NanopartRes.,2008,10:691-695.
    [309]Narayanan K.B.,Sakthivel N.Coriander leaf mediated biosynthesis of gold nanoparticles [J].Mater Lett.2008,62:4588-4590.
    [310]Iosin M.,Toderas F.,Baldeck P.,et al.In vitro biosynthesis of gold nanotriangles for surface-enhanced Raman spectroscopy [J].J..Optoelectron.Adv,Mater.,2008,10:2285-2288.
    [311]Song J.Y.,Kim B.S.Biological synthesis of bimetallic Au/Ag nanoparticles using persimmon (Diopyros kaki) leaf extract [J].Korean J.Chem.Engi.,2008,25:808-811.
    [312]Kasthuri J.,Veerapandianb S.,Rajendiran N.Biological synthesis of silver and gold nanoparticles using apiin as reducing agent [J].Colloids Surf.B.:Biointerf.,2009,68:55-60.
    [313]Philip D.Biosynthesis of Au,Ag and Au-Ag nanoparticles using edible mushroom extract [J].Spectrochim.Acta A,2009,73:374-381.
    [314]Philip D.Honey mediated green synthesis of gold nanoparticles [J].Spectrochim.Acta A,2009,73:650-653.
    [315]Mata Y.N.,Torres E.,Bl(?)quez M.L.,et al.Gold(Ⅲ) biosorption and bioreduction with the brown alga Fucus vesiculosus [J].J.Hazard.Mater.,2009,166:612-618.
    [316]Bar H.,Bhui D.K.,Sahoo G.P.,et al.Green synthesis of silver nanoparticles using latex of Jatropha curcas [J].Colloids Surf.A:Physicochem.Eng.Aspects,2009,339:134-139.
    [317]傅谋兴.微生物还原法制备水溶性纳米银粉及其催化和抗菌应用[D].厦门:厦门大学,2006.
    [318]傅锦坤,刘月英,胡荣宗.微生物还原法制备负载型高分散度金催化剂[J].物理化学学报,1998,14(9):769-771.
    [319]傅锦坤,翁绳周,姚炳新等.细菌还原法制备负载型金催化剂[P].中国发明专利,ZL99120177.9.
    [320]傅锦坤,刘月英,傅金印.生物化学法制备负载型钯催化剂[J].厦门大学学报(自然科学版),2000,39(1):67-71.
    [321]贾立山,李清彪,傅谋兴等.微生物还原贵金属改性TiO_2催化剂及其制备方法[P].中国发明专利,ZL 200510125575.7.
    [322]李清彪,孙道华,贾立山等.微生物还原备负载型银催化剂的方法[P].中国发明专利,ZL 200610135429.7.
    [323]Vilchis-Nestor A.R.,Avalos-Borja M.,G(?)mez S.A.,et al.Alternative bio-reduction synthesis method for the preparation of Au(AgAu)/SiOz--Al203 catalysts:oxidation and hydrogenation of CO [J].Appl. Catal B:Environ.,2009,90:64-73.
    [324]苏远波.芳樟叶中有效成分的提取及其生物活性研究[D].厦门:厦门大学,2006.
    [325]苏远波,李清彪,姚传义等.芳樟树叶乙醇提取物的抗癌作用[J].化工进展,2006,25(2):200-204.
    [326]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,2003.
    [327]王宪泽主编.生物化学实验技术原理和方法[M].北京:中国农业出版社,2002.
    [328]余建瑛编.生物化学实验技术[M].北京:化学工业出版社,2005.
    [329]刘惠玉,陈东,高继宁等.贵金属纳米材料的液相合成及其表面等离子体共振性质应用[J].化学进展,2006,18(7-8):889-896.
    [330]Shankar S.S.,Bhargava S.,Sastry M.Synthesis of gold nanospheres and nanotriangles by the Turkevich approach [J].J.Nanosci.Nanotechnol,2005,5:1721-1727.
    [331]Wang Z.L.Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J].J..Phys.Chem.B,2000,104:1153-1175.
    [332]Luo L.,Yu S.,Qian H.,et al.Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach [J].J.Am.Chem.Soc.,2005,127:2822-2823.
    [333]刘庆玲,刘建华,刘金杰.中草药资源开发利用的研究现状与进展[J].生物学通报,2001,36(5):45-46.
    [334]Williams D.B.,Carter C.B.Transmission electron microscopy:a textbook for materials science [M].New York:Plenum Publising Corporation,1996.
    [335]郭珍.紫外光谱在天然产物结构鉴定中的应用[J].光谱实验室,2006,23(3):594-597.
    [336]陈寒元,李建奇,高燕等.低维纳米材料中五次孪晶结构的透射电镜研究[J].电子显微学报,2005,24(1):29-38.
    [337]Johnson C.J.,Dujardin E.,David S.A.,et al.Growth and form of gold nanorods prepared by seed-mediated,surfactant-directed synthesis [J].J.Mater.Chem.,2002,12:1765-1770.
    [338]Shao Y.,Jin Y.,Dong S.J.Synthesis of gold nanoplates by aspartate reduction of gold chloride [J].Chem.Commun.,2004,9:1104-1105.
    [339]Tan Y.,Lee .J.,Wang D.I.C.Aspartic acid synthesis of crystalline gold nanoplates,nanoribbons,and nanowires in aqueous solutions [J].J.Phys.Chem.C,2008,112:5463-5470.
    [340]Yang S.,Wang Y.,Wang Q.,et al.Growth of gold nanoplates:the case of a self-repair mechanism [J].Cryst.Growth Des.,2007,7:2258-2261.
    [341]Lim B.,Camargo P.H.C.,Xia Y.Mechanistic study on the synthesis of Au nanotadpoles,nanokites,and microplates by reducing aqueous HAuCl_4 with poly(vinyl pyrrolidone) [J].Langmuir,2008,24:10437-10442.
    [342]Lin X.Z.,Terepka A.D.,Yang H.Synthesis of silver nanoparticles in a continuous flow tubular microreactor [J].Nano Lett.,2004,4:2227-2232.
    [343]黄少烈,邹华生.化工原理[M].北京:高等教育出版社,2002.
    [344]He S.,Kohira T.,Uehara M.,et al.Effects of interior wall on continuous fabrication of silver nanoparticles in microcapillary reactor [J].Chem.Lett.,2005,34:748-749.
    [345]Rai M.,Yadav A.,Gade A.Silver nanoparticles as a new generation of antimicrobials [J].Biotechnol.Adv.,2009,27:76-83.
    [346]丁浩,童忠良,杜高翔.纳米抗菌技术[M].北京:化学工业出版社,2008.
    [347]彭书传,刘国栋,谢晶晶等.铁屑微电解—锰矿物组合工艺处理硝基酚废水[J].工业水处理,2008,28(10):55-58.
    [348]Kuroda K.,Ishida T.,Haruta M.Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA [J].J.Mol.Catal.A-Chem.,2009,298:7-11.
    [349]殷杰.纳米银粉的制备工艺及抗菌应用研究[D].成都:四川大学,2006.
    [350]Sondi I.,Salopek-Sondi B.Silver nanoparticles as antimicrobial agent:a case study on E-coli as a model for Gram-negative bacteria [J].J..Colloid lnterf.Sci.,2004,275:177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700