用户名: 密码: 验证码:
湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘东南多金属矿集区是南岭多金属成矿带的一个重要组成部分。丰富的多金属矿产床与燕山期的岩浆活动存在密切的联系;柿竹园、骑田岭、香花岭、黄沙坪和宝山、水口山、铜山岭等大型-超大型多金属矿床,均产于花岗岩类岩体或其周围之中。笔者通过查明研究区燕山期主要成矿花岗岩类的地质构造和岩相学特征,完成同位素年代学、矿物化学、岩石化学、微量元素分析测试及稳定同位素地球化学示踪的基础上,对不同成矿花岗岩类的岩石组合类型的划分、地球化学特征背景、地质构造对矿体时空制约、花岗质岩浆物质来源、形成机制及区域壳-幔作用过程、成矿规律和找矿方向等进行了研究,获得如下主要认识: 
    1、通过研究区花岗岩类岩石的锆石SHRIMP 等方法的定年,建立了成矿花岗岩年代格架。将花岗岩成岩时代大致划分为4 个岩浆活动幕,认为成矿时代峰期是中侏罗世的燕山早期(约155±10 Ma)。 
    2、厘定了燕山期17 个典型成矿花岗岩体的岩石谱系单位。并按地幔物质参与的程度和花岗岩类与矿化系列的关系,提出了成矿花岗岩岩石组合谱系类型与矿化系列,将花岗岩类划分为MS 型、SM 型、C 型铝质A 型和S 型强过铝质的4 个岩石组合谱系类型与矿化系列。 
    3、研究了不同岩石组合谱系类型的成矿花岗岩的造岩矿物成分和岩石的主元素、稀土元素、微量元素、同位素地球化学及矿化等特征,探讨了岩石成分变异,尤其是成矿花岗岩富F、C1 等挥发组分导致MS 型和SM 型早期次单元准铝质花岗岩有大型-特大型Cu、Pb、Zn、Sb 等多金属矿化,而重稀土与Sn、W、Nb、Ta 等元素则于SM 型晚期次单元和C 型铝质花岗岩中富集成矿的成因意义。
    4、发现了壳幔混合作用的标志实体——微粒包体,并结合不同岩石组合谱系类型的成矿花岗岩体岩石的地质构造、岩相学的特征和岩石地球化学示踪,揭示了成矿花岗岩类的壳幔源岩浆混合成因的特点,改变了前人对研究区燕山期花岗岩成因的认识,为壳幔混合型花岗岩类与成矿关系的研究提供了新的依据。
    5、揭示了不同岩石组合谱系类型成矿花岗岩类的岩浆源岩主要是地壳物质,具有地幔和地壳双重物源的特征。模拟计算出MS 型和SM 型花岗岩的混合岩浆中碱性玄武岩基性端元分别为大于20%和小于15%,C 型铝质A 型小于10%; 
    6、通过壳-幔相互作用成因分析,发现同序列早次形成的单元岩石,其岩浆混合程度低,由残余的基性岩浆团的固结而成的包体含量高;而晚次单元岩石,其岩浆混合彻底,包体含少量和规模小,并认为同序列花岗岩石岩浆混合作用发生后,又发生了较高程度的结晶分离作用;早期的岩浆混合和晚期的结晶分离作用的共同作用可能是研究区成矿岩体形成的主要机制。 
    7、探索了燕山期花岗岩的形成与区域构造演化的关系,认为研究区燕山早期的花岗质岩石,其成因与玄武岩浆的底侵作用密不可分。在燕山早期早阶段,研究区发生陆陆挤压碰撞造山作用导致在茶郴深大断裂两侧存在明显差异后,在燕山早期的晚阶段后碰撞造山的环境下,研究区东面隆起区可能由于具有更厚的陆壳和地幔岩石圈之故,岩石圈根发生大规模拆沉,导致玄武岩浆底侵作用造成中地壳结晶片岩大量熔融,形成大规模岩浆房。同时,相对少量的源于地幔的基性岩浆也沿深部断裂上侵,侵入中地壳源岩浆房中,形成了混合岩浆。
    8、总结了各岩石组合谱系类型花岗岩类的成矿专属性,建立了找矿标志,分析了找矿潜力,提出了找矿方向。
The southeast Hunan polymetallic mineralized concentration area is one important part of the Nanling polymetallic mineralized belt. The abundant polymetallic deposits were related closely with Yanshanian magmatic activities; large and Super scale polymetallic ore deposit, as the Shizhuyuan, Qitianling, Xianghualing, Huangshaping, Baoshan, Shuikoushan and Tongshanling deposit etc.are found in granitic bodies and country rocks. On the basis of researching the features of geological structure and facieology, isotope chronology, mineral chemistry, petrochemistry, microelement analysis and test, isotopic chemistry tracing of the main Yanshanian metallogenetic granitoids, the author studied the classification of rock assemblage and background of geochemistry of different metallogenetic granites, the ore body time-space controls of geological structure as well as the source formation mechanism of granitic magma, the process of regional crust-mantle interaction, mineralization and ore finding orientation etc. and obtained some recognitions as follows:
    1. Confirmed rock age by Zircon SHRIMP and other ages, the author founded the chronological framework of metallogenetic granites, The period of granide diagenesis is divided into 4 episodes and the main metallogenetic times is the early Yanshanian, with metallogenetic fastigium of Middle Jurassic(155±10 Ma).
    2. Calibrated the lithodemic units of 17 typical metallogenetic granitic bodies. According to proportion of mantle material and the relationship between granitoids and mineralization systems, the author brings forward that the type of metallogenetic granitic assemblages and mineralization systems, which is classified into 4 granitic rock assemblage hierarchies and series of mineralization, namely MS-type, SM-type, C-typical aluminous A-type and strong prealuminous S-type granite.
    3. The author studied the components of main rock-froming minerals, major and trace elements geochemistry and mineralization of different metallogenetic granitic assemblages types.
    4. Found the mark of crust-mantle mixing effect—mafic microgranular enclaves, revealed the characteristics of the crust-mantle mixed magma based on the geological structure, character of petrography, lithogeochemical tracer of the different types of petrosal assemblages of memtallogenetic granitic bodies, remodeled the former understands about the genesis of Yanshanian granites, and provided new foundation for the research of the relationship crust-mantle mixed granitoids and mineralization.
    5. It is revealed that the source of different types of metallogenetic granitic assemblages is mainly crustal materials, with mantle material adding. According to simulative calculation, the proportion of alkali basaltic magma in MS-type, SM-type and C-typical aluminous A-type granites is apart ﹥20%,﹤15% and ﹤10%.
    6. based on the analysis of crust-mantle interaction, the author discovered that the earlier units of same granite sequence have lower degree magma mixing, with more mafic microgranular enclaves; and the later units have higher degree magma mixing, with less mafic microgranular enclaves. The author considered that there existed high degree crystal detaching after magma mixing, and the early magma mixing and later crystal detaching were probably the primary forming mechanism of metallogenetic bodies.
    7. searched the relationship between granitic forming and regional tectonic evolution, and considered that the genesis of early Yanshanian granitic rocks was related closely to the bottom intrution of basalt magma. In the early stage of early Yanshanian, intercontinental collision mountain-making caused obvious structural difference between two sides of Chaling-Chenzhou Fault; and in the late stage of early Yanshanian with post-orogenic tectonic environment; since the crust and mantle is thicker in east upwarping Region, the lithosphere was delamilated, which caused basalt underplating and brought about melting of a huge amount of crystallized schist in made the middle crust, and large-scale magma room formed. At the same time, relatively less basaltic magma from mantle up-intrusived to middle crustal magma room along the abyssal faults, and fromed the mixed magma.
    8. Summarized the metallogenic specialization of each petrosal assemblage type , created marker for ore finding and analyzed ore finding potential and favorable trend.
引文
蔡学林,朱介寿,曹家敏,等.四川黑水-台湾花莲断面岩石圈与软流圈结构[J].成都理工大学学报(自然科学版), 2004,31(5):441~451
    车勤建,李金冬,伍光英等.湖南千里山-骑田岭矿集区形成的地质背景初探[J],大地构造与成矿学,2005,105(2):204~214。
    陈柏林,李玉生,等.湖南枞树板铅锌矿区构造特征及控矿条件研究[J].地质力学学报,1998,4(2): 75~82
    陈江峰,江博明.钕、锶、铅同位素示踪和中国东南大陆地壳演化.见:郑永飞,主编.化学地球动力学.北京:科学出版社, 1999,262-287.
    陈江峰,江博明. Nd,Sr,Pb 同位素示踪和中国东南大陆地壳演化[A].郑永飞,化学地球动力学[C].北京:科学出版社, 1999,262~287
    陈民苏,刘星辉.郴州芙蓉锡矿田成矿模式及资源总量预测[J].湖南地质, 2000,19(1): 43~47
    陈毓川,裴荣富,等.南岭地区中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社, 1989. 
    陈毓川等.南岭地区中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社,1989.
    崔彬,赵磊.湘南东坡矿田钨锡成矿系列流体同位素特征[J].矿物岩石地球化学通报,2001,20 (4): 328~330
    戴延龄,李殿东,于桂海,等.安徽省绩溪黑云母二长花岗岩中高铁铁橄榄石大斑晶的研究[J].岩石矿物学杂量志,1990, 9(2):166-169
    邓宝宣,蔡益源,邓集余,等.湖南省宜章县瑶岗仙地区铅锌银大比例尺成矿预测报告..1995
    邓晋福,罗照华,苏尚国,等岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004, 3~199
    邓晋福,莫宣学,肖庆辉,等.地质事件序列与造山过程p-T-t 轨迹[J].岩石矿物学杂志, 2002b,21(4):336~342
    邓晋福,莫宣学,赵海玲,等.壳幔物质与深部过程[J].地学前缘, 1998a,5(3):67~75
    邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质, 1999,18(4):309~314
    邓晋福,苏尚国,赵国春,等.华北燕山造山带结构要素组合[J].高校地质学报,2004,10(3):315~323
    邓晋福,赵国春,赵海岭,等.中国东部燕山期火成岩构造组合与造山-深部过程[J].地质论评, 2000,46(1): 41~47
    邓晋福,赵海岭,莫宣学,等.中国大陆根-柱构造——大陆动力学的钥匙[M].北京:地质出版社, 1996,12~89
    邓晋福.开放的岩浆体系——八十年代火成岩研究新进展之一.地质科技情报,1989,8(2): 1~7 
    邓晋福.岩浆-成矿作用-板块构造——八十年代火成岩研究新进展. 地质科技情报,1990,9(2): 39~44
    南岭项目花岗岩专题组.南岭花岗岩地质及其成因和成矿关系[M].北京:地质出版社, 1989,20~212
    丁鹏飞.钦州—钱塘结合带及其控矿作用.见:孙文珂,主编, 重点成矿区带的区域构造和成矿构造文集.地质出版社,2001,75-102
    杜方权,王伏泉,王开怡,等.构造成矿与找矿——以香花岭至千里山一带及其邻侧地区为例[M].北京:地质出版社,1991.
    付建明,马昌前,谢才富,等.湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP 定年及其意义[J].中国地质, 2004,31(1):96~100
    广西地矿局.广西壮族自治区地质志[M].北京:地质出版社,1985.
    贵阳地球化学研究所.华南花岗岩类的地球化学[M].北京: 科学出版社,1979.
    郭锋,范蔚茗,林舸,等.湖南省道县虎子岩片麻岩包体的岩石学特征和年代学研究[J].长春地质学院学报, 1997a,27(1): 25~30
    郭锋,范蔚茗,林舸,等.湖南道县辉长岩包体的年代学研究及成因探讨[J].科学通报, 1997b,42(15): 1661~1663
    洪大卫,谢锡林,张季生等.试析杭州—诸广山—花山高εNd 值花岗岩带的地质意义[J].地质通报, 2002,21(6):348~354
    侯增谦,高永丰.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,21(1):24~29
    侯增谦,李红阳.试论幔柱构造与成矿系统——以三江特提斯成矿域为例[J].矿床地质,1998,17(2):116~125
    侯增谦,卢记仁,李红阳,等.中国西南特提斯构造演化──幔柱构造控制[J].地球学报-中国地质科学院院报, 1996, (04):439-453.
    侯增谦,吕庆田,王安建,等.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例[J].矿床地质, 2003,22(2):566~572
    侯增谦,孟祥金,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质, 2005,24(2):112~118 
    侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑岩铜矿为例[J].矿床地质, 2003,22(01):3-14.
    侯增谦.河北阳原岩体辉石岩—正长岩组合与岩浆不混溶作用[J].现代地质,1990,4(2):146~ 152
    侯增谦.斑岩Cu-Mo-Au 矿床:新认识与新进展[J].地学前缘, 2004,11(1):12~17
    湖南地矿局408 队.大义山岩体东南部铜多金属矿地质特征及成矿规律研究报告,1979.
    湖南地矿局湘南地质勘查院.湖南省郴县铁渣市—桥头地区铅锌银矿大比例尺成矿预测报,1993.
    湖南地矿局湘南地质勘查院.湖南省宜章县瑶岗仙地区铅锌银大比例尺成矿预测报,1994.
    湖南地质矿产勘查开发局.湖南花岗岩单元-超单元划分及其成矿专属性[M],湖南地质, 1995(增刊8).
    湖南地质矿产勘查开发局.湖南省区域地质志[M].北京:地质出版社,1988.
    湖南地质研究所.宝山—香花岭以铅锌为主的多金属矿成矿规律及隐伏矿床预测研究,1990.
    黄革非,龚述清,蒋希伟,等.湘南骑田岭锡矿成矿规律探讨[J].地质通报, 2003,22(6):445~451
    黄革非,曾钦旺等.湖南骑田岭芙蓉矿田锡矿地质特征及控矿因素初步分析[J].中国地质, 2001,28 (10): 30~34
    季克俭,吴学汉,张国柄.热液矿床的矿源、水源和热源及矿床分布规律,北京科学技术出版社,1991.
    贾大成,胡瑞忠.湘东南汝城盆地火山岩的元素地球化学及源区性质讨论[J].现代地质, 2003,17(2):131-136.
    简平,刘敦一,孙晓猛.滇川西部金沙江石炭纪蛇绿岩SHRIMP 测年:古特提斯洋盆演化的同位素年代学制约[J].地质学报, 2003,77(2): 217~228
    李昌年,钟称生,等.桂北湘南中生代玄武质岩石及其深源包体的地球化学性质和岩石成因探讨[J].岩石矿物学杂志, 2001,20(2):112~122
    李红艳,毛景文等.柿竹园钨多金属矿床的Re-Os 同位素等时线年龄研究[J].地质论评, 1997,42(3):261~267
    李金冬,柏道远,伍光英,等.湖南郴州地区骑田岭花岗岩的锆石SHRIMP 定年及其地质意义[J].地质通报, 2005,24(5).411-414
    李龙,郑永飞,王峙峡.铅同位素动力学模型及其在示踪花岗岩成因中的应用,地学前缘, 2000,7(2):413-429.
    李献华,周汉文,等.桂东南钾玄质侵入岩带及其岩石学和地球化学特征.科学通报, 1999,44(18):1992~1998
    李献华,周汉文,刘颖,等.粤西阳春中生代钾玄质侵入岩及其构造意义[J].地球化学, 2000,29(6):513~520
    李献华.华南地壳增长和构造演化的年代学格架与同位素体系制约.矿物岩石地球化学通报,1993,(3):111~115
    梁新权,范蔚茗,王岳军.湖南中生代陆内构造变形的深部过程:煌斑岩地球化学示踪[J].地球学 报,2003,24(6):603-610.
    廖兴钰.湘南地区云英岩化作用及云英岩体型矿床特征[J].地质与勘探, 2001,37(4):18~22
    刘义茂,戴童谟,卢焕章,等.千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄[J].中国科学(D 辑), 1997,27(5): 425~430
    刘义茂,许继峰,戴童摸.骑田岭花岗岩40Ar/39Ar 同位素年龄及其地质意义[J].中国科学(D 辑), 2002,32(增刊):41-48
    马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学:理论方法及鄂东花岗岩类例析[M].武汉:中国地质大学出版社,1994.
    马铁球,伍光英,柏道远等.南岭中段中、晚侏罗世花岗岩浆混合作用:来自镁铁质微粒包体的证据[J],地质通报,2005,24(7):415~419. 
    毛景文,李红艳.湖南千里山花岗岩体的Nd-Sr 同位素及岩石成因研究[J].矿床地质, 1995,14(3):235~242
    毛景文,李红艳,宋学信,等.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学[M].北京:地质出版社,1998.
    毛景文,李晓峰,Bernd Lehmann,等.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar 年龄及其地球动力学意义[J]. 矿床地质, 2004,23(2): 164~174
    毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 2004,11(1):45-54
    莫柱孙,叶伯丹.南岭花岗岩地质学[M].北京:地质出版社, 1980.
    南京大学地质系.华南不同时代花岗岩类及其与成矿的关系[M].北京:科学出版社,1981.
    彭和求,伍光英.湘南“大义山式构造”的厘定及地质意义[J].湖南地质,2000,(2):87-90. 
    邱瑞照,邓晋福,等.湖南香花岭430 花岗岩体Nd 同位素特征及岩石成因.岩石矿物学杂志, 2003,22(1): 41~46
    邱瑞照,周肃,常海亮,等.香花岭花岗岩稀土元素演化[J].现代地质, 2002,16(1):53~58
    饶家荣,谭宜和,邹麦秀.区域重力资料在湖南省郴桂地区成矿预测中的应用.见:孙文珂,金宜声,
    涂承林,主编,勘查地球物理勘查地球化学文集,区域重力调查专辑,第22 集,2001,155-172
    饶家荣,王纪恒,曹一中.凤凰茶陵地学断面及湖南深部地质地球物理综合研究(内部). 1991.
    沈渭洲,凌洪飞,李武显.中国东南部花岗岩类的Nd 模式年龄与地壳演化[J].中国科学D 辑:地球科学, 2000,30(5): 471~478
    史明魁等.湘桂赣粤地区有色金属隐伏矿床综合预测[M].北京:地质出版社,1993.
    孙文珂,黄崇轲.区域物探资料在研究区域构造和成矿、控矿构造方面的作用.见:孙文珂,黄崇轲,丁鹏飞,主编, 重点成矿区带的区域构造和成矿构造文集.地质出版社,2001,1-7
    陶奎元,毛建仁,等.中国东南部中生代岩石构造组合和复合动力学过程的记录.地学前缘,1998,5(4),183-191
    童潜明,李荣清,张建新.郴临深大断裂带及其两侧的矿床成矿系列[J].华南地质与矿产, 2000, (3):34~41
    童潜明,伍仁和,彭寄来,等.郴桂地区钨锡铅锌金银矿床成矿规律[M].北京:地质出版社,1995.1-98
    童潜明.湖南主要有色金属贵金属矿床成矿系列与成矿模式[J].湖南地质, 1997(增刊9).
    王昌烈,罗仕徽,胥友志,等.柿竹园钨多金属矿床地质[M].北京:地质出版社,1987.
    王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘, 2003,10(3):209~220
    王登红,陈毓川,李华芹,等..湖南芙蓉锡矿的地质地球化学特征及找矿意义[J].地质通报, 2003,22(1):50~56
    王方正,李红丽,朱勤文,等.湘南火山岩深源包体组合及岩石圈岩石学模型[J].地质科技情报, 1997,16(3):1~7
    王立华,张德全.湖南香花岭锡矿床地质特征及成矿机理[M].北京:北京科学技术出版社,1988.
    王岳军,范蔚茗,郭锋等.湘东南中生代花岗闪长质小岩体的岩石地球化学特征.岩石学报,2000,17(1):169~175
    王岳军,范蔚茗,郭锋,等.湘东南中生代花岗闪长岩锆石U-Pb 法定年及其成因指示[J].中国科学(D 辑),2001,31(9): 745~751
    王岳军,廖超林,范蔚茗等.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义[J].地球化学, 2004,33(2):109~117
    魏绍六, 曾钦旺, 许以明, 等. 湖南骑田岭地区锡矿床特征及找矿前景[J]. 中国地质,2002,29(1):67~75
    魏绍六.芙蓉矿田锡矿的发现及启示[J].湖南地质科技信息, 2000, (1):17~20
    吴开兴, 胡瑞忠,毕献武等.矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 2002,30(3):73-81.
    伍光英,马铁球,柏道远,等.湖南宝山花岗闪长质隐爆角岩的岩石学地球化学特征与锆石SHRIMP 定年[J].现代地质, 2005,19(2).198-204
    伍光英,潘仲芳,侯增谦等.湖南大义山锡多金属矿矿体分布规律控矿因素及找矿方向[J],地质与勘探, 2005,41(2):6~11.
    伍光英,潘仲芳,李金冬,等.湘南大义山花岗岩地质地球化学特征及其与成矿的关系[J].中国地质, 2005,32(3):434~443.
    伍光英,彭和求,贾宝华.2000.湘南大义山岩体构造及其侵位机制分析[J].华南地质与矿产, (3):1~7.
    肖红全,赵葵东,蒋少涌,等.湖南东坡矿田金船塘锡铋矿床铅同位素地球化学及成矿年龄[J].矿床地质, 2003,22(3): 264~268
    肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002.
    肖庆辉,卢欣祥,王菲,等.柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J].中国科学D 辑, 2003,33(12):1193-1200
    肖庆辉,邢作云,张昱,等.当代花岗岩研究的几个重要前沿[J],地学前缘, 2003,10(3):221~229. 
    肖庆辉,周玉泉,李晓波,等.国外花岗岩体构造研究[M].地质矿产部情报研究所, 1988,2~166
    肖庆辉.大陆动力学研究中值得注意的几个重大科学前沿[M].北京:地质出版社,1998.
    肖庆辉.花岗岩构造环境判别方法[M].北京:地质出版社, 2001.
    谢湘雄.湖南省区域重力调查成果及其研究.见:孙文珂主编,勘查地球物理勘查地球化学文集,区域重力调查专辑, 2001,22:140-154
    徐克勤等.华南花岗岩成因与成矿[J].江苏科技出版社, 南京, 花岗岩地质与成矿关系论文集, 1984,1~20
    徐文炘,陈民杨等.湖南柿竹园钨锡多金属矿床同位素地球化学研究.华南地质与矿产, 2002,(3):78~84
    徐夕生,周新民,唐红峰.玄武岩浆的底侵作用与花岗岩的形成.见:王德滋,周新民,主编.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化.北京:科学出版社, 2002,219-229
    徐夕生,周新民,王德滋.壳幔作用与花岗岩成因——以中国东南沿海为例[J].高校地质学报.1999,5(3):241-250
    许以明,侯茂松,廖兴钰,等.郴州芙蓉矿田锡矿类型及找矿远景[J].湖南地质, 2000,19(2):95~100
    杨国高,陈振强.湖南宝山铀钼铅锌银多金属矿田围岩蚀变与矿化分带特征.矿产与地质. 1998,12(2): 96~100
    杨巍然,等.华南加里东阶段古构造特征.见华南地区大陆边缘构造史[M].武汉:地质出版社,1986.
    於崇文,岑况,龚庆杰.湖南郴州柿竹园超大型钨-多金属矿床的成矿复杂性研究.地学前缘, 2003,10(3):15~39
    翟裕生,邓军,崔彬,等.成矿系统及综合地质异常[J].现代地质, 1999,13(1):6~12.
    翟裕生.大型构造与超大型矿床[M].北京:地质出版社,1997.
    翟裕生.古陆边缘成矿系统[M].北京:地质出版社, 2002,5~28
    张建新,童潜明,李荣清.郴临深大断裂带及其两侧的地球化学特征[J].华南地质与矿产, 2000, (3):17~24
    张理刚.长石铅和矿石铅同位素组成及其地质意义.矿床地质, 1988,7(2):55-64.
    张理刚.东亚岩石圈块体地质—上地幔、基底和花岗岩同位素地球化学及其动力学.北京:科学出版社,1995.
    张庆华.湖南水口山铅锌矿田地质特征及找矿思路[J].有色金属矿产与勘查, 1999,8(3):141~146
    赵劲松,R.J.Newberry. 对柿竹园矽卡岩成因及其成矿作用的新认识[J]. 矿物学报, 1998,16(4):442~449
    赵振华,包志伟,张伯友等.柿竹园超大型钨多金属矿床形成的壳幔相互作用背景[J].中国科(D辑). 2000,30(增刊):161~168
    赵振华,包志伟,张伯友.湘南中生代玄武岩类地球化学特征[J].中国科学(D), 1998,28(增刊): 7~14
    赵振华包志伟张伯友,等.柿竹园超大型矿床形成的壳幔相互作用背景[J].中国科学(D),2000,30(增刊):161-168
    郑基俭,贾宝华.骑田岭岩体的基本特征及其与锡多金属成矿作用关系[J].华南地质与矿产, 2001,(4): 50~57
    周金城,陈荣,邱检生.东南沿海晚中生代壳幔作用.见王德滋和周新民主编‘中国东南部中生代花岗质火山-侵入杂岩成因与地壳演化’. [M].北京:科学出版社, 2002,131-159
    周旬若,任进.长江中下游中生代花岗岩[M].北京:地质出版社,1994,1~119
    朱金初,黄革非,张佩华,等.湖南骑田岭岩体菜岭超单元花岗岩侵位年龄和物质来源研究[J].地质论评, 2003,49(3): 245~252
    朱金初,刘昌实等.从Nd 模式年龄谈华南地壳的形成时间.南京大学学报(地球科学), 1989, (3):82-90
    朱金初等.广西花山复式花岗岩体成出的锶、钕和氧同位素研究.地质学报,1989,(3):225-235.
    庄锦良,刘钟伟,谭必祥,等.湘南地区小岩体与成矿关系及隐伏矿床预测[J].湖南地质,1988,(增刊4): 1~98
    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999.46; 605-626.
    Betchelor,R.A.and.Bowden,P., Petrogenetic interplation of granitoid rock series using multication Parametes. Chemical Geology,1985,48: 43—45
    Brown G C. Calc-alkaline intrusive rocks:their diversity, evolution and relation to volcanic arcs. In: Thorpe R S, ed. Andesites-Orogenic Andesites and Related Rocks. New York:John Wiley and Sons: 1982, 437~464
    Brown M. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Science Review, 1994,36: 83-130.
    Castro A, Moreno-Ventas I and de la Rosa J D. H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Science Reviews, 1991,31:237~253
    Castro A. Plagioclase morphologies in assimilation experiments. Implications for disequilibrium melting in the generation of granodiorite rocks. Mineral and Petrol,2001,71:31-49
    Chappell B W & White A J R. I and S-type granites in the Lachlan Fold Belt. Trans. Royal Soc. Edinburgh: Earth Sci.,1992, 83:1-26
    Chappell B W and White A J R. Two contracting granite types. Pacific Geol, 1974, 8: 173~174
    Chappell B W, White A J R, Wyborn D. The importance of residual source material(restite) in granite Petrogenesis. J. Petrol, 1987,28:1111-1138
    Charvet J, Lapierre H, Yu Y W. Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences, 1994, 9: 387~396
    Chen J F, Jahn B M. Crustal evolution of southeastern China: Evidence from Nd and Sr isotopic compositions of rocks. Tectonophysics, 1998, 284:101-133
    Chen Wen, Zhang Yan,Ji Qiang,et al. The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain.Science in China(Series B), 2002.45(Supp.): 20~27
    Chow T J, Patterson C C. The occurrence and significance of lead isotopes in pelagic sediments. Geochim cosmocdhim Acta, 1962,26:263-308
    Chung S L,Chen C H,Jahn B M. Formation of mafic crust in continental extension provinces: Evidence of granulite xenoliths from southeast China.30th IGC abstract, 1996,1:118
    Collins W J. S-and I-type granites of the eastern Lachlan Fold Belt: Products of three-component mixing.Trans.Royal. Soc.Edinburgh, Geol.Soc,1992,149:171~184.
    Compston W, Williams I S,Kirschvink J L,et al.Zircon U-Pb ages of early Cambrian time-scale.Contrib.Mineral.Petrol,1987,97:205~217.
    Debon,F.and Lefort.P. A., Cationicclassification of common plutonic rocks and their magmatic associations:principles, method,application. Bulletin de Mineralogie, 1982, Ⅲ,493—510
    Depaolo D J and Wasserberg G J. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta, 1979, 43:615-627
    DePaolo D J, Wasserburg G J. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim. Cosmochim. Acta 1979.43: 615~627.
    Didier J. Granites and their enclaves. The bearing of enclaves on the origin of granites. In Developments in Petrology. Vol.3, Elsevier, Amsterdam. 1973.
    Dostal J and Chatterjee A K. Origin of topaz-bearing and related peraluminous granites of the Late Devonian Davis Lake plution, NovaScotia,Canada:crystal versus fluid fractionation. Chemical Geology,1995,123:67-88
    Dostal J,Chatterjee. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton. Chemical Geology, 2000, 163:207-218
    Downes H, Kostoual T,Jones A P, et al. Geochemistry and Sr-Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite-melilitite volcano,central southern Italy. Contrib Mineral Petrol, 2002, 144:78-92
    Farmer GL, DePaolo DJ. Sources of hydrothermal components: heavy isotopes. In Barnes HL ed: Geochemistry of Hydrothermal Deposits, 1996.31-61.
    Feeley T C and Dungan M A. Compositional and dynamic controls on mafic-silicic magma interactions at continental arc volcanoes:evidence from Cordon El Guadal,Tatara-San Pedro complex, Chile. J Petrol, 1996, 37(6):1547-1577
    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks. Journal of Petrology, 2001, 42(11): 2033~2048
    Frost T P and Mahood G A. Field.chemical and physical constrains on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Bull Geol Soc Am , 1987, 99:272-291
    Gilder S A,Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China.J Geophys research, 1996,101(B7):16137-16154
    Green T H and Pearson N J. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochem Cosmochim Acta,1989,51:55-62
    Hibbard M J. Textural anatomy of twelve magma-mixed granitoid systems. In:Didier J, Barbarin B(eds)Enclaves and granite petrology. Elsevier, Amsterdam, 1991, 431-44(Dev Petrol 13) Hibbard M J. The magma mixing origin of mantled feldspars. Contrib Mineral Petrol, 1981, 76:158-170
    Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol, 1988, 29:599-624
    Ishihara S. The magnetite-series and ilmenite-series granititc rocks. Mining Geol., 1977, 27: 293-305
    Leake B E and 21 others. Nomenclature of amphiboles, report of the subcommittee on amphiboles of the Internation Minernation Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag,1997,61:295-321.
    Li X H. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian earth Sciences, 2000, 18: 293~305
    LiewTC, Hofmann A W. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr study. Contrib Mineral Petrol, 1988,98: 129-138.
    Ludwig K R. Using Isoplot/EX,version 2,a Geolocronolgical Toolkit for Microsoft Excel[M]. Berkeley Geochronological Center Special Publication 1999, 1a, 47.
    Nardi L V S, Lima E F D.Hybridisation of mafic microgranular enclaves in the Lavras granite compelx,southem Brazil. J South Ame Earth Sci , 2000,13:67-78
    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 1984, 25(4):956-983
    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey. Contrib Mineral Petrol, 1976, 58(1): 63~81
    Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. J Petrol, 1996, 37(6): 1491~1521
    Pitcher WS. Granite type and tectonic environment.In: Hsu K.Ed., Mountain Building Processes. Academic Press, London, 1983, 19-40
    Pitcher WS. The nature and origin of granite. 1993.
    Puziewcz,J.and Johannes,W. , Experimentol study of a biotite-bearing grantic system under wafersaturated contr: b. Mineral Petrol,1990, 435—452
    Rudnick R L and Fountain D M. Nature and composition of the continental crust:A lower crustal perpective. Rev Geophys,1995,33:267-309
    Sakoma E M, Martin R F and Williams-Jones A E.The late stages of evolution of the Kwandonkaya A-type granite complex, Nigeria, as dedued from mafic minerals. Journal of African Earth Sciences, 2000, 30(2):329-350
    Silva M M V G, Neiva A M R, Whitehouse M J. Geochemistry of enclaves and host granties from the Nelas area, central Portugal. Lithos, 2000,50:153-170
    Smith D .Stability of the assemblage iron-rich orthopyroxene-olivinequartz. American Journal of Science, 1971,271:370-382.
    Spards R S J, Marshall L A. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Jour Volcan Geotherm Res, 1986.29: 99~124
    Strckeisen A. A chemical approximation to the modal QAPF classification of the igncous rocks. N Jb Miner Abh, 1979,136: 169-203
    Sun S S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil Tans Roy Soc Lond A,1980,297:409-445
    Talylor S R and Mclennan S M. The continental Crust:Its Compisition and Evolution.Oxford:Blackwells Scientific,1985,312
    Vernon R H. Shape and microstructure of microgranitoid enclaves:indicators of magma mingling and flow.Lithos, 1988, 22:1-11
    Vernon R H. Crystallization and hybridism in microgranditiod enclave magmas:microstructure evidence.J.Geophys.REs.,1988, 95(B11):17849-17859
    Vigneresse JL. Intrusion level of granitic massifs along the Hercynian belt: balancing the eroded crust. Tectonophysics, 1999.307: 277-295.
    Waight T W, Maas R and Nicholls. Geochemical investigations of microgranitoid enclaves in the S-type Cowra granodiorite, LFB,SE Australia. Lithos, 2001,56:165-186
    Wallace P J and Carmicheal I S E. Petrology of Volcan Tequila Jalisco, Mexico:disequilibrum phenocryst assemblages and evolution of the subvolcanic magma system. Contrib Mineral Petrol ,1994,117:345-361
    Whalen J B, Currie K L, Chappell B W. A-type granites :Geochemical characteristics, discrimination and petrogenisis.Contrib Mineral Petrol, 1987,95: 407~419
    Wilcox R E. The idea of magma mixing: history of a struggle for acceptance. J Geol, 1999,107:420-432
    Williams I S, Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, Ⅱ.Ion microporbe zircon U-Th-Pb. Contrib. Mineral. Petrol., 1987,97:205~217
    Wones D R& Eugster H P. Stability of biotite: experiment, theory, and application. American Mineralogist, 1965, 50(9): 1228-1272.
    Zartman RE, Doe BR. Plumbotectonics—the model.Tectonophysics, 1981, 75: 135~162
    Zindler E. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrologic constraints. Journal of Petrology, 1986. 27: 1095~1117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700