用户名: 密码: 验证码:
光纤智能材料、器件与智能锚索结构系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能材料与结构是近年来在世界上兴起并迅速发展的材料科学的一个新领域,是高技术新材料领域中正在形成的一门新的分支学科,也是当前工程学科发展的国际前沿。智能材料与结构是一门交叉学科,它的发展不仅是材料学科本身的需要,而且可以带动许多相关学科的发展,也是国民经济建设发展的需要。
     本研究首先通过对当今光纤智能材料与器件的发展和光纤传感器研究应用现状的论述,从实际工程应用的角度出发,提出了智能锚索结构的概念。然后从这一概念出发,对强度调制光纤传感器和光纤布喇格光栅传感器的基本理论进行了回顾与论述。提出了基于微弯原理和基于光纤布喇格光栅的两种旨在实现分布应变传感的实用传感器结构型式。
     针对所提出的缠绕式分布应变光纤传感器结构,进行了拉伸试验和三点弯曲混凝土梁试验,对传感器的制作工艺、应变反应特性和应用技术进行了系统论证。试验说明,所开发的强度调制分布应变传感器具有良好的应变反应特性和较高灵敏度,可以有效识别结构拉伸应变超过极限后所产生的裂缝,对结构应变可实现定性分布测量。
     论文对掺锗光纤和光纤渗氢后的光敏性进行了分析。在此基础上,通过光纤渗氢,并利用准分子激光器和相位掩膜板技术制作了1300nm的光纤布喇格光栅,用于光栅温度和应变特性的试验研究。
     从光纤光栅理论的模型出发,采用耦合波理论和弹性力学定理对光纤光栅的应变和温度传感特性进行了分析,简述了光栅的温度和应变传感模型。在此基础上,进行了光栅温度和分布应变的传感特性试验研究。通过钢筋拉伸和钢板挠曲试验,说明所制作的光栅具有良好应变反应特性,利用光纤光栅所制作的应变传感器具有非常好的线性、一致性及非常高的灵敏度。
     最后,在以上理论分析和试验研究的基础上,结合岩土工程中典型的锚索结构型式,综合考虑设计、施工因素和锚索监测要求,提出了两种分别基于微弯强度调制光纤传感器和光纤布喇格光栅分布应变传感器的智能锚索结构设计方案。
Smart materials and structures is a new field of material technology that develops rapidly in recent years. It is also a new discipline in high-tech material field. It is the advanced material in 21st century and the international development front of Engineering Science. Smart materials and structures is a cross-discipline. Its development is not only the demands of material science, but also the development requirements of other related disciplines and national economy.
    Based on the discussions about the recent development of fiber optical based smart materials and components, as well as the status of fiber optical sensor studies and applications, the concept of smart rock bolt is put forward according to engineering requirements. Following this concept, two kinds of practical structures of distributed strain sensors are brought forward upon the modulation principles of optical fiber micro-bend and fiber Bragg grating. In the mean time, the fundamental principles of these two types of fiber optical strain sensors are reviewed.
    In order to systematically evaluate the process technics, sensing ability to strain and application techniques of the suggested distributed micro-bend strain sensor adopting the winded structure of optical fiber around a small-diameter steel wire rope, some tensile tests of sensor and 3-point bend tests of concrete beams were conducted. The experiment results show that this kind of distributed strain sensor has good sensing property and high sensitivity. It can effectively identify the internal cracks of structure that occurs when the tensile stress exceed the tensile strength. Therefore it can be practically used for the real-time monitoring of rock bolt. This will make the rock bolt intelligent.
    Photosensitivity in Ge-doped optical fibers and high pressure HI loading as a technique for achieving ultrahigh UV photosensitivity is briefly discussed. 1300 nm FBGs were produced by using phase mask and KrF excimer laser on the Hi-loaded single-mode optical fibers. The strain and temperature sensing properties of FBG were discussed based on coupled-wave theory and elastic mechanics theory. Experiments were conducted to perform the study on their strain and temperature sensing characteristics. The tensile tests of rebar and bend tests of armor plates show that the produced FBGs have very good strain sensing attributes. The developed strain sensors using FBGs have good linearity, coincidence and high sensitivity.
    On the basis of above theoretical analyses and experiments, two kinds of smart rock bolt structures that based on distributed micro-bend strain sensor and FBG are put forward. The smart structures that take design, construction and monitoring of rock bolts as priority is suitable for application in rock bolt engineering.
引文
1. M.G. Xu, L.Reekie, Y.T. Chow, et al., Optical in-fiber grating high pressure sensor, Electron Lett., Vol.29, No.4, 1993, P398
    2. Tino Alavie, Andreas Othonos, Serge Melle, et al., Bragg fiber laser sensor, SPIE Proceedings, Optical fiber and laser sensors X, Vol.1792, 1992, P194.
    3. A.D.Kersey, T.A.Berkoff, W.W. Morey, High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection, Electron Lett., Vol.28, No.3, 1992, P236
    4.陶宝祺主编,智能材料结构,国防工业出版社,1997年4月
    5.导波光学传感器:原理与技术,靳伟、廖延彪、张志鹏等著,科学出版社,1998年
    6.介质光波导及其应用,秦秉坤、孙雨南编著,北京理工大学出版社,1991年
    7. "Photonics Spectra" 1997, 51(5): 112-128
    8. "Optical Engineering", 1990, 1, 237-240。
    9. "O Plus E", 1999, 21(4): 364-365
    10. Multiplexing Techniques for Noninterferometric Optical Point-Sensor Networks: A Review, J. M. Senior, et al. Fiber and Integrated Optics, 17:3-20, 1998.
    11. Areas, John P. Dakin, et al. Distributed and Multiplexed Fibre Grating Sensors, Including Discussion of Problem IEICE Trans. Electron., Vol. E83-C, No.3 March, 2000.
    12. Sandeep Vohra, et al. Distributed Strain Monitoring with Arrays of Fiber Bragg Grating Sensors on an In-Construction Steel Box-Girder Bridge, IEICE Trans. Electron., Vol. E83-C, No.3 March, 2000.
    13. Norifumi Yasue, et al. Concrete Pipe Strain Measurement Using Optical Fiber Sensor, IEICE Trans. Electron., Vol. E83-C, No.3 March 2000.
    14. W. F. Bawden, et al. Towards a methodology for performance assessment in cable design, Rock Support in Mining and Underground Construction, Kaiser & McCreath(eds)@ 1992, Balkema, Rotterdam, p277-285.
    15. Kaiser & McCreath(eds), Tensioning reinforcing cables, Alan G. Thompson, Rock Support in Mining and Underground Construction, 1992, Balkema, Rotterdam, p286-294.
    16. Lawrence Craig M., Measurement of process-induced strains in composite materials using embedded fiber, Proceedings of SPIE, Smart Structures and Materials, 1996: Smart Sensing, Processing, and Instrumentation, San Diego, CA, USA.
    17.张兴周,光纤光栅与光纤传感技术,光学技术,1998年7月
    18.光纤光栅技术的发展与现状,上海国润通信技术有限公司。
    19.葛璜等,紫外写入光纤布喇格光栅的实验研究,光子学报,1997年3月。
    20.程良奎著,岩土锚固的若干力学问题,工业建筑,1993
    
    
    21.彭振斌,锚固工程设计计算与施工,中国地质大学出版社,1997
    22.梁炯筠,我国岩土工程预应力锚索的发展与问题。北京国际岩土锚固技术交流会论文集,1993,北京,地震出版社
    23.朱红五,丰满大坝加固—预应力锚索设计、施工与监测,北京国际岩土锚固技术交流会论文集,1993,北京,地震出版社
    24.孙东亚,光纤测量技术及其在土木工程中的应用,中国水利水电科学院,1996
    25.程良奎著,岩土加固实用技术,北京地震出版社,1994
    26.程良奎著,岩土工程中的锚固技术,地震出版社,1992
    27. Liqun Tang, et al. Effectiveness and optimization of fiber Bragg grating sensor as embedded strain sensor, Smart Mater. Struct. No.8, 1999, p. 154-160.
    28. H., Brand, Ground Support-Reinforcement, Composite Structures, International Conference on Geotechnical & Geological Engineering, GeoEng 2000, Nov. 12-24, 2000, Melbourne, Australia
    29. L, Hobst, J, Zajic, Anchoring in Rock and Soil, Elsevier Scientific Publishing Company, New York, 1983
    30. Nicholns Leakos, Microbend, Fiber-optic Sensor, Applied Optics, vol.26, No11,1987.
    31. Reinhardt Willsch, Application of optical fiber sensors: Technical and market trends, In Applications of Optical Fiber Sensors, Proceedings of SPIE, Vol.4074, 2000
    32. Graham Thomas, Overview of Nondestructive Evaluation Technologies, SPIE Vol. 2457 1995Daniele Inaudi et al., Embedded and surface mounted fiber optic sensors for civil structural monitoring, SPIE Vol. 3044,1997
    33. Daniele Inaudi etc, Railway bridge monitoring during construction and sliding, SPIE Vol. 3043,1997
    34. Peter L. Fuhr et al.., Fiber Optic Chloride Sensing: If Corrosion's the Problem, Chloride Sensing is the Key, SPIE Vol. 3180,1997
    35.孟晶等,线形啁啾光纤光栅的优化设计,光明学服 Vol.17,No.10 October,1997
    36. C.Y. Poon et al, Automated Fringe Pattern Analysis for Moire Interfermotry Experimental Mechanics September, 1993
    37. P.K.Rastogi et al. Measurement of the Length of Fracture Process Zone in Fiber Reinforced Concrete Using Holographic Moire, Experimental Techniques 1994
    38. Farhad Ansari et al, Real-Time Condition Monitoring of Concrete Structures By Embedded Optical Fibers, Civil & Environmental Engrg., New Jersey Institute of Technology, Newark, NJ 07102
    39. S. Poh and A. Baz, Distributed Sensor For Rectangular Plates, SPIE Vol. 2718, 1996
    40. S C Liu et al, Civil infrastructure systems research: hazard mitigation and intelligent material systems, National Science Foundation, Washington, DC 20550
    
    
    41. Michel Le Blanc et al, Fiber Optic Damage Assessment, Fiber Optic Smart Structure, 1995
    42. Kazuo Hotate, Invited Paper Fiber Sensor Technology Today, Optical Fiber Technology 3,356-402(1997)
    43. Charles H. Dowding and Charles E. Pierce, Measurement of water pressure and deformation with time domain reflectometry cables, SPIE Vol. 2457, 1995
    44. William B. Spillman et al, Methods of Fiber Optic Ingress/Egress for Smart Structures, Fiber Optic Smart Structure, 1995
    45. A. Baz et al, A Multi-Mode Distributed Sensor for Vibrating Beams, Journal of Sound Vibration, 1993 165(3) 481-495
    46. Arun Shukla et al, Fiber-Optic Sensor and Fracture Mechanics
    47. Farhad Ansari et al, A Fiber Optic Sensor for The Determination of dynamic Fracture Parameters in Fiber Reinforced Concrete
    48. F. Sienkiewicz and A. Shukla, Evaluation of a Fiber Optic Sensor for Strain Measurement and an Application to Contact Mechanics, Experimental Techniques, 1994
    49. John W. Berthold, Introduction to industrial application, SPIE Vol 1584 Fiber Optic Sensors, 1991
    50. Dr. Barry G. Grossman and Jorge E. Franke,Shape Memory Alloy Actuators Energized Optically Through Optical Fiber for Smart Civil Structures
    51. S. M. Yang and G. S. Lee, Vibration Control of Smart Structures by Using Neural Networks, Transactions of the ASME Vol. 119, March, 1997
    52. Steve Hiles et al, Serpentine Optical Fiber Strain Gauge Evaluation
    53. Satoru Aizawa et al, Case studies of smart materials for civil structures, Smart Mater. Struct. 617-6267, 1998
    54. A Baz and S Poh Modal and Physical Deflections of beams using distributed wire sensors, Smart Mater. Struct 261-271 5 1996
    55. Graham Duck et al, The mechanical load transfer into a distributed optical fiber sensor due to a linear strain gradient: embedded and surface bonded cases, Smart Mater. Struct 175-1818 1999
    56. Samuel Vurpillot et al Bridge spatial displacement monitoring with 100 fiber optic sensors deformations: sensors network and preliminary results, SPIE, Vol 3043, 1997
    57. N. Narendran et al, Optical-Fiber Interferometric Strain Sensor using a Single Fiber, Experimental Techniques, 1992
    58. J.C. Moulder et al, Two-Dimension Strain Analysis Using a Video Optical Diffractometer, Experimental Techniques, 1993
    59 S. H. Smith, et al, A calibration approach for smart structures using embedded sensors, Experimental Techniques, Vol. 16, No.2, March, 1992
    
    
    60 D. R. sanders, et al, Nondestructive Evaluation of Damage in Composite Structures using Modal Parameters, Experimental Mechanics, September, 1992.
    61 M. A. Putnam, et al, Method for Recoating Fiber Bragg Gratings with Polyimide, Proceedings of SPIE,Vol. 3044, 1997
    62 M. B. Kodindouma, et al, Damage assessment of a full scale bridge using an optical fiber monitoring system, Proceedings of SPIE, Vol. 2719,1996
    63 Pascal Kronenberg, et al, Dam monitoring with fiber optics deformation sensors, Proceedings of SPIE, Vol. 3043, 1997
    64 Mendez and T. F. Morse, Overview of Optical Fiber Sensors Embedded in concrete, Proceedings of SPIE, Fiber Optic Smart Structures and Skins V, Vol. 1798, 1993
    65 Farhad Ansari, Real-time condition monitoring of concrete structures by embedded optical fibers, Nondestructive Testing of Concrete.
    66 D. Huston, et al, Concrete Beam Testing with optical fiber sensors, Nondestructive Testing of Concrete.
    67 Reinhard Wolff, Monitoring of prestressed concrete structures with optical fiber sensors, Proceedings of the 1st European Conference on Smart Structures and Materials, 1992.
    68 Raymond M. Measures, Fiber Optic Strain Sensing, Fiber Optic Smart Structures, Edited by Eric Udd, 1995.
    69 M. H. Maher, et al, Evaluation of Fiber Optic Bragg grating Strain Sensor in High Strength Concrete Beams, in Fiber Optic Sensors.
    70 Keith H. Wanser, Distributed fiber optic sensors for civil structure using OTDR, in Fiber Optic Sensors.
    71 M. A. Davis, Dynamic Strain Monitoring of an in-use interstate bridge using fiber Bragg grating sensors, Proceedings of SPIE, Vol. 3043, p87-95
    72 G Meltz and W. W. Morey, Bragg grating formation and germanosilicate fiber photosensitivity, Proceedings of SPIE, Vol. 1516, International Workshop on Photoinduced Self Organization Effects in Optical Fiber, 1991, p185-199
    73 Anbo Wang, et al, Two-mode elliptical-core fiber sensors for measurement of strain and temperature, Proceedings of SPIE, Vol. 1584, Fiber Optic and Laser Sensors IX, 1991
    74 C. Capelo, Qualitative interpretation of creep and relaxation experimental data, in Artifical Intelligence in Engineering.
    75 R. Sanz, et al, A knowledge-based system for daily generation scheduling of a small hydropower plant, in Artifical Intelligence in Engineering.
    76 Craig McGarrity and David A. Jackson, A network for large numbers of interferometric sensors and fiber Bragg gratings with high resolution and extended range, Journal of Lightwave Technology, Vol.16, No.1, 1998.
    
    
    77 B. Chen, et al, Use of fiber optic sensors for remote deformation evaluation of existing and new structures, in Fiber Optics
    78 P. Escobar, et al, Fiber-optic interferometric sensors for concrete structures, Proceedings of the 1st European conference on Smart structures and Materials, 1992. p215-218
    79 Axel Hoist, Wolfgang Habel, Fiber-optic intensity-modulated sensors for continuous observation of concrete and rock-fill dams, Proceedings of the 1st European conference on Smart structures and Materials, 1992. p215-218.
    80 R. T. Jones, et al, Determination of cantilever plate shapes using wavelength division multiplexed fiber Bragg grating sensors and a least-squares strain-fitting algorithm, Smart Materials and Structures, Vol. 7, 1998. p178-188
    81 L. A. Ferreira, et al, Simultaneous displacement and temperature sensing using a white light interrogated low finesse cavity in line with a fiber Bragg grating, Smart Materials and Structures, Vol. 7, 1998. p189-198
    82 J. L. Grace, et al, Embedded fiber optic sensors for structural damage detection, Proceedings of SPIE,Vol. 2718,p196-200
    83 Ken P. Chong, et al, Nondestructive evaluation of civil infrastructures, Proceedings of SPIE, Vol. 2457, p34-44
    84 Zone-Ching Lin and Tsang-Jen Shieh, A study of the application of artificial neural network in the expert system of sheet bending design, Journal of the Chinese Society of Mechanical Engineers, Vol.16, No.3, p283-291, 1995
    85 Raymond M. Measures, Smart structure technology and its potential for civil engineering, in Fiber Optic Sensors.
    86 R. L. Idriss, et al, Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges, Smart Materials and Structures, Vol. 7, 1998. p209-216
    87 Brian Culshaw, The OSTIC programme-its achievements and their impact on instrumentation in civil engineering, in Fiber Optic Sensors.
    88 C. I. Merzbacher, et al, Fiber optic sensors in concrete structures: a review, Smart Materials and Structures, Vol.5, 1996. p196-208
    89 Eric Udd, The evaluation of fiber optic smart structures, Fiber Optic Smart Structures, edited by Eric Udd, 1995.
    90 James S. Sirkis, Interpretation of embedded optical fiber sensor signals, in Fiber Optic Sensors.
    91 O. Lisbot, et al, Thick-alumininum-coated optical fibers: fabrication and sensor application, Smart Materials and Structures, Vol.5,1996. p187-195.
    92 R. M. Measures, A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge, Smart Materials and Structures, Vol.4, 1995
    
    
    93 Bruce A. Ferguson and Richard A. Young, A new method for making fiber optic Bragg gratings, Proceedings of SPIE, Vol.3180, p73-90.
    94 Keith H. Wanser, et al, Distributted fiber optic sensors for civil structures using OTDR, in Fiber Optic Sensors.
    95 Liqun Tang, et al, Effectiveness and optimization of fiber Bragg grating sensors as embedded strain sensor, Smart Materials and Structures, Vol.8, 1999, p154-181
    96 W. F. Bawden, An experimental procedure for the in situ testing of cable bolts, Int. J. Rock Mech. Sci. & Geomech. Abstr. Vol.29, No.5, 1992, p525-533
    97 P.J. Lemaire, et al, High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers, Electron. Lett. Vol.29, No.l3,June24, 1993, p1191
    98 J.L. Arcgambult, et al, 100% reflectivity Bragg reflectors produced in optical fibers by single excimer pulse, Electron. Lett. Vol.29, No.1, Jan.7, 1993, p28
    99 J. Albert, et al, Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser, Opt. Lett. Vol.19, No.6, Mar. 15, 1994, p387
    100 P. Bernadin and Lawandy, Dynamics and the formation of Bragg gratings in germanosilicate optical fibers, Opt. Commun., Vol.79, No.3-4, 1990, p194
    101 L. Dong, et al, Photosensitivity in Ge3+-doped optical fibers, J.O.S.A.,Vol.10, No.1, Jan., 1993, p89
    102 K. Tanaka, N. Toyosawa and H. Hisahuni, Hotoinduced Bragg gratings in As2S3 optical fibers, Opt. Lett. Vol.20, No. 19, Oct.1, 1995, p1976
    103 L. Dong, et al, Strong photosensitivity gratings in tin-doped phosphosilicate optical fibers, Opt. Lett. Vol.20, No. 19, Oct.1, 1995, p1982
    104 T. Erdogan and V. Mizrahi, Fiber phase gratings reflected advances in lightwave technology, Laser Focus World, Feb. 1994, p73-80
    105 A. J. Cohen and H.L. Smith, Ultravolient and infrared absorption of fused germania, J. Phy. Chem., Solids Pergamon Press, Vol.7, 1958, p301-306
    106 M.J. Yeun, Ultraviolet absorption studies of germanium silicate glasses, Applied Optics, Vol.21, No.1, 1982, p136-140
    107 D.K. Lam, and B. K. Garside, Characterization of single mode optical fiber filters, Appl. Opt. Vol.20, No.3, 1981,p440
    108 G. Meltz, et al, Fiber optic and strain sensors, Proc. SPIE, Vol.798, Fiber Optics Sensors Ⅱ, 1987, p104
    109 D.P. Hand and Russell, P. St. J., Photoinduced refractive index changes in germanosilicate optical fibers, Opt. Lett. Vol.15, No.2, 1990, p102
    110 G. Meltz, et al, Formation of fiber Bragg gratings in optical fibers by a tranverse
    
    holographic method, Opt. Lett. Vol.14, 1987, p823
    111 T.E. Tsai, et al, Correlation of defect center with second-harmonic generation in Ge-doped and Ge-P-doped silicate-core single-mode fibers, Opt. Lett. Vol. 14, 1989
    112 K. D. Simmons, et al, Correlation of defect centers with wavelength-dependent photosensitive in Ge-doped silicate optical fibers, Opt. Lett. Vol.16, 1991, p141
    113 D. P. Hand, et al, Photoinduced refractive index changes in germanosilicate optical fibers, Opt. Lett. Vol.15, No.2, 1990, p102
    114 J. Bures, et al, Photosensitivity effect in optical fibers: a model for the growth of an interference filter, Appl. Phys. Lett. Vol.37, No.10, Nov.15, 1980, p860
    115 F.P. Payne, Photorefractive gratings in single-mode optical fibers, Electron. Lett. Vol.25, No.8, 1989
    116 V. Mizrahi, et al, Physics of photo-sensitive-grating formation in optical fibers, Physics Review A., Vol.43, No.1, Jan., 1991, p433
    117 R.M. Atkins and V. Mizrahi, Observations of changes in the UV absorption bands of single-mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings, Electron. Lett. Vol.28, 1992, p1743
    118 R.M. Atkins, et al, 248nm induced vacuum UV special changes in optical fiber perform cores: support for a colour center model of photosensitivity, Electron. Lett. Vol.29, No.4, Feb.18, 1993, P385
    119 P.J. Lemaire, et al, Refractive-indes changes in optical fibers sensitized with molecular hydrogen, OFC'94, San Jose, 1994, Technical Digest, Vol.4, p47
    120 B. Malo, et al, Photosensitivity in optical fiber and silicate-on-substrate waveguides, SPIE Vol.2044, 1993,p42
    121 M.G. Sceats, et al, Photolytic index changes in optical fibers, Annu. Rev. Mater. Sci., Vol.23, 1993, p381
    122 D. Wong et al, Stress-birefringence reduction in silicate optical core fibers under ultraviolet irradiation, Opt. Lett. Vol.17, 1992, p1773) (James P. Bernardin, Dynamics of the formation of Bragg gratings in germanosilicate optical fibers, Opt. Commu. Vol.79, No.3,Oct.15, 1990, p194
    123 P. J. Lemaire, et al, High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers, Electron. Lett. Vol. 29, No.13, June 24, 1993, p1191
    124 P.J. Lemaire, et al, Refractive-indes changes in optical fibers sensitized with molecular hydrogen, OFC'94, San Jose, 1994, Technical Digest, Vol.4, p47
    125 Fi Bilodeau, et al, Photosensitization of optical fiber and silica-on-silicon /silica waveguides, Opt. Lett., Vol.18, 1993, p1191
    
    
    126 Kohketsu, M. Awazu, et al, Photoluminescence in VAD SiO2: GeO2 glasses sintered under reducing or oxidizing conditions, Jap. Journ. Appl. Phys. Vol.28, No. 4, 1989, p622-631
    127 Maxwell, G.D. Kashyap, et al, UV written 1500nm reflection filters in single mode planar silica guides, Electron. Lett., Vol.28, No.22, p2106
    128 J. Crank, The mathematics of diffusion, Oxford, 1956
    129 P.J. Lemaire, Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases, Opt. Eng., Vol.30, No.6, 1991, p780
    130 D.P. Hand, et al, Photoinduced refractive index changes in germanosilicate optical fibers, Opt. Lett, Vol.15, No.2, 1990, p102
    131 J.F. Shackelford, et al, Solubility of gases in glass: He, Ne, H2 in fused silica, J. Appl. Phys. Voi.43, No.4, 1972, p1619
    132 B. Malo, et al, Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibers and its effect on Bragg grating fabrication, Electron. Lett. Vol.30, No.5, Mar.3, 1994, p442
    133 K. O. Hill, B. Bilodeau, et. Al., Bragg Gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys. Lett., Vol. 62, No. 10, 1993, P1035
    134 D. Z. Anderson, et al, Production of in-fiber gratings using a diffractive optical element, Electron. Lett., Vol.29, No.6, 1993, P566
    135王向阳,光纤布喇格光栅制作及其传感特性研究,[清华大学工学博士论文],北京:清 华大学,1997
    136N. Shibata, et al, Refractive index dispersion of light guide glasses at high temperature, Electron. Lett., Vol. 17, No.8, 1981, P3 10
    137N. Lagakos, et al, Temperature-induced optical phase shifts in fibers, Appl. Opt., Vol. 20, No. 13, 1981,p2305
    138 Shang-yuan Huang, et al, Perturbation effects on mode propagation in highly elliptical core two-mode fibers, J. Lightwave Tech., Vol.8, No.1, 1990, P23
    139 G. Meltz, et al, Fiber optical temperature and strain sensors, Proc. SPIE-Int Soc. Opt. Eng., Vol.798, 1978, p104)
    140 G. Z. Wang, et al, Two mode Fabry-Perot optical fibersensors for strain and temperature measurements, Electron. Lett., Vol.27, No.20, 1991, p1843
    141 M.G.Xu, et al, Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors, Electron. Lett., Vol.30, No.13, 1994, P1058
    142 H. J. Patric, et al, Hybrid fiber Bragg grating /long period fiber grating sensor for strain/temperature discrimination, IEEE Photonics Tech. Lett., Vol.8, No.9, 1996, P1223
    
    
    143 Sotiris E. Kanellopoulos, et al, Simultaneous strain and temoerature sensoring with photogenerated in-fiber gratings, Opt. Lett., Vol.20, No.3, 1995, P333
    144 J.M.Senior, et al. Multiplexing Techniques for Noninterferometric Optical Point-sensor Networks: A Review, Fiber and Integrated Optics, 17:3-20, 1998
    145 G. Meltz, et al, Fiber optical temperature and strain sensors, Proc. SPIE-Int Soc. Opt. Eng., Vol.798, 1978, p104
    146 G. Z. Wang, et al, Two mode Fabry-Perot optical fibersensors for strain and temperature measurements, Electron. Lett., Vol.27, No.20, 1991, p1843
    147M.G.Xu, et al, Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors, Electron. Lett., Vol.30, No.13, 1994, P1058
    148 H. J. Patric, et al, Hybrid fiber Bragg grating /long period fiber grating sensor for strain/temperature discrimination, IEEE Photonics Tech. Lett., Vol.8, No.9, 1996, P1223
    149 Sotiris E. Kanelloperature sensoring with photogenerated in-fiber gratings, Opt. Lett., Vol.20, No.3, 1995, P333
    150 A. D. Kersey, et al, High-resolution fiber-grating based strain sensor via fiber Bragg grating elements, Electron. Lett. Vol.28, No.3, 1992, p236
    151 A. D. Kersey, et al, Dual wavelength fiber interferometer with wavelength selection via fiber Bragg grating elements, Electron., Lett. Vol.28, No.13, 1992, p1215.
    152 R. S. Weis, et al, Afour-element fiber grating sensor array with phase-sensitive detection, IEEE Photo. Tech. Lett. Vol.6, No. 12, 1994. p1469
    153 A. D. Kersey, et al, Multiplexed fiber bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter, Opt. Lett. Vol.18, No.16, 1993, p1370
    154 D. A. Jackson, et al, Simple multiplexing scheme for a fiber-optic grating sensor network, Opt. Lett. Vol. 18, No. 14, 1993, p1192
    155 M. A. Davis and A. D. Kersy, Matched-filter interrogation technique for fiber Bragg grating arrays, Electron. Lett. Vol.31, No. 10, p882
    156 L.A. Ferreira, et al, Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two marched gratings, IEEE Photo. Techn. Lett. Vol.9, No.4, 1997, p487
    157 Serge M. Melle, et al, A passive wavelength demodulation system for guided-wav Bragg grating sensors, IEEE Photo. Techn. Lett. Vol.9, No.4, p487
    158 M.A. Davis and A.D. Kersey, All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler, Electron. Lett. Vol.30, No.1, 1994, p7
    159 A.B. Lobo, et al, All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter, Electron. Lett. Vol.32, No.4, 1996, p382
    160 A. Melle, A Bragg grating-tunned fiber laser strain sensor system, Photo. Tech. Lett., Vol.5, No.3, 1993, p263
    
    
    161 A.D. Kersey, With model-locked interrogation, Electro. Lett, Vol.29, No.1,1993, p112
    162 G. A. Ball, Single and multipoint fiber-laser sensors, Photo. Tech. Lett., Vol.5, No.3, p267.
    163 王经五,我国水电工程预应力锚固技术的应用与发展,1993北京国际岩土锚固技术交流会论文集。
    164 田裕甲,丰满大坝加固——预应力锚索设计、施工与监测,1993年北京国际岩土锚固技术交流会论文集。
    165 梁炯錾等,工程地质体控制论,岩石力学与工程学报,1992年第11卷第2期。
    166 许文学等,大管棚施钻工艺流程,岩土锚固工程,1994年第1期。
    167 华代清,预应力锚索在漫湾水电站边坡加固中的应用,岩土锚固工程,1990年第3期。
    168 孙均,中国岩土工程锚固技术的应用与发展,熊厚金主编,国际岩土锚固与灌浆新进展,中国建筑工业出版社,1996。
    169 梁炯,我国岩土工程预应力锚索的发展与问题,熊厚金主编,国际岩土锚固与灌浆新进展,中国建筑工业出版社,1996。
    170 梁炯主编,锚固与注浆技术手册,中国电力出版社,1999。
    171 Martin Schroeck, Wolfgang Ecke, et al. Strain monitoring in steel rock bolts using FBG sensor arrays, In Application Optical Fiber Sensors, Proceedings of SPIE, Vol. 4074, 2000.
    172 John P. Dakin, Mark VOLANTHEN, Distributed and multiplexed fiber grating sensors, including discussion of problem areas, IEICE TRANS. ELECTRON., Vol. E83-C, No. 3, March 2000.
    173 Sandeep VOHRA, et al. Distributed strain monitoring with arrays of fiber Bragg grating sensors on an in-construction steel box-girder bridge, IEICE TRANS. ELECTRON., Vol. E83-C, No. 3, March 2000.
    174 中华人民共和国标准,冷拔钢丝预应力混凝土构件设计与施工规范,JGJ 19-92,1992
    175 中华人民共和国标准,无粘结预应力混凝土结构技术规范,JGJ/T 92-93,1993
    176 丁多文等,预应力长锚索锚固深度模型试验研究,工程勘察,No.4,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700