用户名: 密码: 验证码:
双排桩土拱效应及嵌固段受力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双排桩作为一种以横向受荷为主的支挡结构由于其具有抗滑能力强、抗侧移刚度大、结构受力合理、节约建筑用地、施工便捷等突出优点被广泛应用于滑坡地质灾害防治、边坡加固工程等领域中。尽管抗滑桩的设计理念、计算理论、施工技术正不断得到发展,但由于岩土性质的复杂性,抗滑桩的设计和施工中涌现出一些新的问题,目前,双排桩土拱效应的形成机理以及其空间表现形式,嵌固段桩身与岩(土)体相互作用等问题仍有待进一步深入研究。鉴于此,论文依托“长江学者和创新团队发展计划:山区岩土工程(NO:IRT1045)”、国家自然科学基金“岩土支挡结构健康诊断仪的研制(NO:51027004)”、重庆市百名工程技术高端人才计划项目“悬臂式抗滑桩三维土拱效应及其动力灾变研究计划(NO:0218002432010)”以及重庆市科技攻关项目“基于三维土拱效应的桩锚支护结构关键技术研究与应用”(CSTC-2010AC0109)。通过现场调查,室内试验,数值模拟、室外试验和理论研究等手段,对双排桩土拱效应成拱机理及影响因素和基于Wieghardt地基模型对嵌固段桩身受力进行了深入研究,主要工作及研究结论:
     1)在现场调查和总结相关文献的基础上,设计了悬臂单排桩室内模型试验,试验重点研究了悬臂桩桩周土内部的应力分布特征及桩周土拱效应的作用程度、作用范围,通过改变滑体含水量和悬臂桩桩长的方式研究了其对土拱效应的影响,并指出,随着含水量的增加,土拱效应的影响范围呈现出先增强后减弱的趋势,悬臂段桩长越长,起拱效应越明显。
     2)在悬臂单排桩室内模型试验研究的基础上,设计了双排桩室内模型试验,按“矩形”和“梅花形”布置,研究了前、后排桩受力分配模式和相应的起拱效应,通过改变前后排桩桩排距的方式,研究桩排距、布桩方式对前后桩桩周土拱效应的变化影响并指出悬臂双排桩前后土拱效应呈现出中下部强、上部弱的表现形式,前排桩与后排桩相比,前排桩桩周土拱效应的形成具有一定的滞后性,并对考虑土拱效应的双排桩设计给出了桩排距的建议值。
     3)通过对埋入式双排模型桩进行试验,对比分析了埋入式双排桩和悬臂式双排桩两种结构形式前、后桩周土的应力分布、前后桩内力及变形,发现埋入式双排桩前排桩桩周土拱效应表现较弱,并在试验研究的基础上,进而分析了悬臂双排桩前、后桩周土拱的形成及破坏过程,可将其分为局部受压阶段、形成阶段、稳定发展阶段、拱脚剪切破坏阶段四个阶段。
     4)运用有限元分析程序ABAQUS对矩形布置和梅花形布置的悬臂双排桩进行了数值分析,取得了与室内试验大致相同的规律:前排桩与后排桩桩周土拱效应均随土体高度的增加呈先增强后减弱的规律。并探讨双排桩的桩排距、挡土板刚度,布桩方式,埋置方式,连梁方式对前后桩桩间土拱效应的影响、前后排桩内力的影响。
     5)引入wieghardt地基模型,通过理论推导建立了基于wieghardt地基模型的悬臂桩嵌固段受力计算方法。通过普通K法、三角级数法及已有嵌固段桩-岩接触应力试验监测资料与本文wieghardt地基模型法理论计算结果进行比较分析,指出对于抗滑桩桩身嵌固段嵌入完整或较完整的砂岩地基时,采用wieghardt地基模型进行弹性计算较为合理。
Double-row piles, as a predominant structure to resist horizontal sliding, has beenwidely used in landslide prevention, slope engineering reinforcement and other fieldsbecause of its significant advantages, such as its strong anti-sliding ability, large lateralstiffness, reasonable structure, conservation of building land and constructionconvenience, etc. Although the design concept, calculation theory and constructiontechnology of anti-sliding pile are developing continuously, in the design andconstruction of anti-slide pile, some new problems emerge because of the complexity ofgeotechnical properties. At present, it is necessary to do further research to study theformation mechanism and space form of soil arching effect of double-row piles and theinteraction of anchored segment of anti-sliding pile and rock or soil. This dissertation issupported by the program ‘Yangtze scholars and innovative research team: mountainousgeotechnical engineering(No.IRT1045)’; the project ‘Development of HealthyDiagnosis Instrument for Geotechnical Retaining Structure(No.51027004)’ of NationalNatural Science Foundation; the project ‘Plan of three-dimension soil arch effect andresearch on dynamic disaster of cantilever anti-slide piles(NO.0218002432010)’ ofHundreds of Engineering Technique Talents Project of Chongqing; the program ‘theresearch and application of key technology of pile anchor retaining structure based onthree-dimension soil arching effect(CSTC.2010AC0109)’ of Chongqing scientific andtechnological projects. The author carried out systematic studies on the formingmechanism and influential factors of soil arching effect of double-row piles, also theforce of anchored segment of piles based on wieghardt elastic foundation model byimplementing field investigation, laboratory test, numerical simulation, outdoorexperiments theoretical research and other technical methods. The main work andconclusion of this dissertation are listed as below:
     1) Based on the field investigation and summarize of related literature, an indoorcantilever one-row piles model test was designed to study the internal stress distributioncharacteristics of the piles and the degree and scope of arching effect of soil around thepiles. The author studied how the water percentage of landslide mass and the length ofcantilever pile affect the soil arching effect and point out that with the increasing levelof water percentage, the range of soil arching effect enhance, followed by theweakening trend. The longer the pile’s cantilever segement is, the more obvious soil arching effect is.
     2) Based on the indoor cantilever one-row pile model tests, an indoor double-rowpiles model test by arranging with rectangle and quincunx was designed to study theinternal force distribution pattern of front row piles and back row piles and the formingmechanism of soil arching effect. The author studied how layout of piles and pile rowdistance affect the change rule of soil arching effect with front row piles and back rowpiles and the internal force distribution pattern of front row piles and back row piles,and pointed out that the soil arching effect of cantilever double-row piles performs astrong effect on the middle and bottom of the soil, performs a weak effect performanceon the upper layer of the soil. Compared with the back row piles, the forming of soilarching effect of the front row piles has certain hysteresis. The author also finds that thedesign value of the pile row distance of double-row piles was suggested by consideringthe soil arching effect.
     3) Based on the indoor double-row piles model tests, an indoor embededdouble-row piles model test is also designed to compare with the cantilever double-rowpiles about the results of the stress distribution of the soil, the internal force distributionpattern and deformation of front row piles and back row piles and the formingmechanism of soil arching effect. The author found that the performance of soil archingeffect of the front row piles is weaker in the embedded double-row piles test. Theformation and destruction of soil arching effect which is analyzed on the basis ofexperimental study could be divided into four stages: local compression stage, formingstage, stable and development stage and failure stage.
     4) Based on the indoor double-row piles model tests, double-row piles byarranging with rectangle and quincunx have been carried on the numerical analysis byusing the finite element program ABAQUS. Same rules are acquired approximately. It isdiscussed that the influence of the internal force distribution pattern of front row pilesand back row piles and the forming mechanism of soil arching effect with changing thepile row distance, layout of piles, embedment method, plate stiffness and coupling beamwith front row piles and back row piles.
     5) The wieghardt elastic foundation model is introduced in this dissertation, acalculation method of ground resisting force acted on build-in zone of cantilever piles isderivated based on the wieghardt foundation model. By comparing the testing results ofcompression stress which acts on the contact surface between pile and ground with thecalculation value which are calculated with K method, trigonometric series method and the theoretical derivation method based on wieghardt foundation model, the authoranalyzes the results and points out that it is reasonable to use the method based onwieghardt elastic foundation model when the socketed segment is embedded in relativeintegrity or integrity sandstone foundation.
引文
[1]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [2]郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007.
    [3]李海光.新型支挡结构设计与工程实例[M].北京:人民交通出版社,2004.
    [4]章勇武,马惠民.山区高速公路滑坡与高边坡病害防治技术实践[M].北京:人民交通出版社,2007.
    [5] Robert W. Day, Fellow. Design and repair for surficial slope failures[J]. Practice Periodicalon Structural Design and Construction,1996,1(3):83-87.
    [6] Yong Tan, Samuel G. Paikowsky. Performance of sheet pile wall in peat[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2008,134(4):445-458.
    [7] Hassiotis, S., Chameau, J., Gunaratne, M.. Design method for stabilization of slopes withpiles[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(4):314-323.
    [8] D. Matthew Stuart. Project-specific steel sheet piling applications[J]. Practice Periodical onStructural Design and Construction,2004,9(4):194-201.
    [9] Thomas L. Brandon, Steohen G. Wright, J. Michael Duncan. Analysis of the stability ofl-walls with gaps between the1-wall and the levee fill[J]. Journal of Geotechnical andGeoenvironmental Engineering,2008,134(5):692-700.
    [10]祝辉,唐红梅,李明,等.重庆-贵州高速公路向家坡滑坡稳定性分析及防治对策研究[J].岩石力学与工程学报,2006,25(增1):2687-2693.
    [11]应宏伟,初振环,李冰河,等.双排桩支护结构的计算方法研究及工程应用[J].岩土力学,2007,28(6):1145-1150.
    [12]王凯,郑颖人,王其洪,等.捆绑式抗滑桩优越性初步研究[J].地下空间与工程学报,2008,4(3):2668-2673.
    [13] Sun Hong-yue, Wong Louis Ngai Yuen, Shang Yue-quan, et al. Evaluation of drainagetunnel effectiveness in landslide control [J]. LANDSLIDES.2010.7(4):445-454.
    [14]熊治文,马辉,朱海东.全埋式双排抗滑桩的受力分布[J].路基工程,2002,30(7):1033-1037.
    [15]吕美君,晏鄂川.埋入式双排抗滑桩滑坡推力分配研究[J].岩石力学与工程学报,2005,24(S1):4866-4871.
    [16]史海莹,龚晓南.深基坑悬臂双排桩支护的受力性状研究[J].工业建筑,2009(10):67-71.
    [17]申永江,孙红月,尚岳全,等.滑坡推力在悬臂式双排抗滑桩上的分配[J].岩石力学与工程学报,2012,31(增1):2687-2693.
    [18]聂庆科,梁金国,韩立君等.深基坑双排桩支护结构设计理论与方法[M].北京:中国建筑工业出版社,2008.
    [19]杨光华.深基坑支护结构的实用计算方法及其应用[M].北京:地质出版社,2004.
    [20]中国建筑科学研究院(主编). JGJ120-2012, J1412-2012.建筑基坑支护技术规程[S].北京:中国建筑工业出版社,1999.
    [21]重庆市地方标准编写组. DB50/5029–2004地质灾害防治工程设计规范[S].重庆:[s.n.],2004.
    [22]中华人民共和国国家发展和改革委员会. L/T5353-2006水电水利工程边坡设计规范[S].北京:中国电力出版社,2006.
    [23]铁道第二勘察设计院(主编). TB10025-2006, J127-2006铁路路基支挡结构设计规范(2009局部修订版)[S].北京:中国铁道出版社,2006.
    [24] Leung C F, Lim J K, Shen R F, et al. Behaviors of pile groups subject to excavation-inducedsoil movement [J]. Journal of Geotechical and Geoenvirone Engineering. ASCE,2003,129(1):58–65.
    [25]中交公路规划设计院有限公司. JTG63-2007.公路桥涵地基与基础设计规范[S].北京:人民交通出版社,2007.
    [26]铁道部第三勘察设计院. TB10002.5-2005. J464-2005.铁路桥涵地基和基础设计规范
    [S].].北京:中国铁道出版社,2005.
    [27]孙勇.滑坡面下双排抗滑结构的计算方法研究[J].岩土力学,2009,30(10)2971-2984.
    [28]唐芬,郑颖人,杨波.双排抗滑桩的推力分担及优化设计[J].岩石力学与工程学报,2010,29(z1):3162-3168.
    [29]刘鸿.双排抗滑桩计算方法研究:[D].成都:西南交通大学,2007,2-14.
    [30]王丰.门架式双排桩结构理论研究:[D].重庆:重庆交通大学,2008,1-20.
    [31]夏晓勇.成都地区基坑排桩支护极限桩间距研究:[D].成都:西南交通大学,2009,3-10.
    [32]厚美英,陆坤权.奇异的颗粒物质[J].新材料产业,2001,(20):26-28.
    [33] H. A. Janssen. Versuche uber getreidedruck in silozellen [J]. Zeitschrift des VereinesDeutscher Ingenieure,1895,39(35):1045-1049.(in Deutsch)
    [34]达维多夫.地下结构的计算和设计军事工程学院科学研究部译[M].北京:高等教育出版社,1953.
    [35] Stroyer. P. R N. Earth pressure on flexible walls. Institution of Civil Engineers,1935,(1):94-138.
    [36] Terzaghi K. Stress distribution in dry and in saturated sand above a yielding trap-door[C].Proceedings of1st Conference of Soil Mechanics and Foundation Engineering, Boston,1936,1:307-316.
    [37] Terzaghi K. Theoretical soil mechanics[M]. New York: John Wiley&Son,1943.
    [38] Peck. R. B. Earth pressure measurements in open cuts, Chicago (Ⅲ) Subway. AmericanSociety of Civil Engineering Proceedings,1942,68(6):900-928.
    [39] Rowe P W. Anchored sheet-pile walls[J]. Institution of Civil Engineers, London, Proceedings,1952,(1):27-70.
    [40] Rowe P W. A theoretical and experimental analysis of sheet-pile walls[J]. Institution ofCivil Engineers, London, Proceedings,1955,(4):32-69.
    [41] Rowe P W. Sheet-pile walls encastre at the anchorage[J]. Institution of Civil Engineers,London, Proceedings.1955,(4):70-87.
    [42] Rowe P W. Sheet-pile walls at failure. Institution of Civil Engineers, London, proceedings.1956,(5):276-315.
    [43] Rowe P W. Sheet-pile walls subject to line resistance above the anchorage.[J]. Institution ofCivil Engineers, London, Proceedings,1957,(7):879-896.
    [44] Finn, W. D. L. Boundary value problems of soil mechanics[J]. Journal of the soil Mechanicsand Foundations Division, ASCE,1963,89:39-72.
    [45] Bjemim L, Clausen C J F, Dunean J M. Earth pressure on flexible structures-A state of the artreport. Proeeedings[J]. Fifth European conference on Soil Mechanics and FoundationEngineering,1972, II:169-196.
    [46] Clough G W, Tsui Y. Performance of tied-back walls in clay[J]. Journal of the GeotechnicalEngineering Division, Proceedings of the American Society of Civil Engineering,1974,100(12):1259-1273.
    [47] Wang W L, Yen B C. Soil arching in slopes[J]. Journal of Geotechnical Engineering,American Society of Civil Engineering,1974,100(GT1):61-78.
    [48] Handy R L. The Arch in Soil Arching[J]. Journal of Geotechnical Engineering, ASCE,1985,111(3):302-318.
    [49] Bosscher. J, Gray H. Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering,1986,112(6):626-645.
    [50] Kellogg C G. Discussion-the arch in soil arching. Journal of Geotechnical Engineering,1987,113(3):269-271.
    [51] Hewlett W J, Randolph M F. Analysis of piled embankments[J]. Ground Engineering,1988,21(3):12-18.
    [52] Kingsley Harop-Williams. Arch in soil arching[J]. Journal of Geotechnical Engineering,1989,115(3):415-419.
    [53] Ono. K, Yamada M. Analysis of the arching action in granular mass[J]. Geotechnique1993,43(l):105-120.
    [54] Low B K, Tang S K, Choa V. Arching in piled embankments[J]. Journal of GeotechnicalEngineering,1994,120(11):1917-1937.
    [55] Vaziri. H. H. Numerical study of parameters influencing the response of flexible retainingwalls[J]. Canadian Geotechnical Journal,1996,33:290-308.
    [56] Vaziri. H. H. A simple numerical model for analysis of propped embedded retaining walls[J].International Journal of Solids Structures,1996,33(16):2357-2376.
    [57] Russell D, Pierpoint N. An assessment of design methods for piled embankments[J]. GroundEngineering,1997,30(11):39-44.
    [58] Chen C Y&Martin G R. Soil-structure interaction for landslide stabilizing piles[J].Computers and Geotechnics,2002,29(5):363-386.
    [59] Liang R, Zeng S. Numerical study of Soil Arching Mechanism in Drilled Shafts for SolpeStabilization. Soil and Foundation,2002,42(2):83-92.
    [60] Lawrence. The mechanism of load transfer in granular materials utilizing tactile pressuresensor[D]. University of Massachusetts Lowell,2002.
    [61] Paik K H, Salgado R. Estimation of active earth pressure against rigid retaining wallsconsidering arching effect[J]. Geotechnique,2003,53(7):643-645.
    [62] Deutsche Gesellschaft fur Geotechnike. E V entwurf derempfeblung, bewehrte erdkorperauf punkf-order linienfomigen traggliendern[S]. Berlin: Ernst and Sohn,2004.(inDeutsch)
    [63] Gabr, M., Han, J., Geosynthetic reinforcement for soft foundations: US perspectives.[J]International Perspectives on Soil Reinforcement Applications, ASCE Geotechnical SpecialPublication.2005.141,73-92.
    [64] Ellis E and Aslam R. Arching in piled embankments: comparison of centrifuge tests andpredictive methods[J]. Ground Engineering,2009,42(6):.34-38.
    [65] Potts V J and Z dravkovic L. Finite-element study of arching behavior in reinforced soils[J].Ground improvement.2010,163(4):217-229.
    [66] Chen R P, Xu Z Z and Chen Y M et al. Field Tests on Pile-Supported Embankments over SoftGround [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(6):777-785.
    [67] Sloan J A, Filz G M and Collin J G. A generalized formulation of the Adapted TerzaghiMethod of arching in column-supported embankments[C]. Proc. of GeoFrontiers, GSP211Advanced in Geotechnical Engineering, Dallas, Texas, USA,2011:798-805.
    [68] Van Eekenlen S J M, Bezuijen A, Lodder H J. Model experiments on piled embankments:part I[J]. Geotextiles and Geomembranes,2012,32:69-81.
    [69] CUR226. Ontwerprichtlijn paalmatrassy stemen(design guideline for piledembankments)[M]. Netherlands:[s. n.],2010. ISBN978-90-376-0518-1.(in Dutch)
    [70] British Standards Institute. British Standard8006-1Code of practice for strengthened/reinforced soils and other fills[S]. London, UK: British Standards Institute,2010.
    [71]周应英.刚性挡土墙土压力研究[J].长沙交通学院学报,1988,4(1):48-55.
    [72]李海深.土工建筑中的土拱效应[J].湘潭矿业学院学报,1990,5(2)164-167.
    [73]杨雪强,何世秀,庄心善.土木工程中的成拱效应[J].湖北工学院学报,1994,9(1):1-7.
    [74]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报,1995,(2):15-19.
    [75]胡敏云.深基坑桩排式支护桩侧土压力及设计方法研究[D].成都:西南交通大学博士学位论文,1998.
    [76]叶晓明.柱板结构挡土墙板上的土压力计算方法[J].地下空间,1999,19(2):142-146.
    [77]胡敏云.深基坑护壁桩桩间距确定方法探讨[J].中国公路学报,2000,14(2):27-29.
    [78]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大桩间距分析[J].山地学报,2001,19(6):556-559.
    [79]代军,胡岱文,吴曙光.桩锚支挡结构体系挡板土压力试验研究[J].重庆建筑大学学报,2001,23(4):48–54.
    [80]叶晓明,孟凡涛,许年春.土层水平卸荷拱的形成条件[J].岩石力学与工程学报,2002,21(5):745-748.
    [81]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402.
    [82]周德培,肖世国,夏雄.边坡工程中抗滑桩合理间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [83]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174–178.
    [84]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699-703.
    [85]吴汉辉.埋入式抗滑桩模型试验及其工作机理研究[D].重庆:重庆大学硕士学位论文,2004.
    [86]陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析[J].中国公路学报,2004,17(4):1-6.
    [87]韩爱民,肖军华,梅国雄.被动桩中土拱形成机理的平面有限元分析[J].南京工业大学学报,2005,27(3):89-92.
    [88]韩爱民,肖军华,梅国雄.横向流动土体作用下的群桩反应性状[J].岩土工程学报,2005,27(12):1463-1467.
    [89]蒋波,应宏伟,谢康和.挡土墙后土体拱效应分析[J].浙江大学学报,2005,39(1):131-136.
    [90]加瑞,朱伟,钟小春.砂土拱效应的室内模型试验研究[C].第二届全国岩土与工程学术大会论文集(下),北京:科学出版社,2006.
    [91]李忠诚,杨敏.被动受荷桩成拱效应及三维数值分析[J].土木工程学报,2006,39(3):114-117.
    [92]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [93]周应华,周德培,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学,2006,27(3):455-457.
    [94]吕庆.边坡工程灾害防治技术研究[D].杭州:浙江大学博士学位论文,2006.
    [95]陈福全,侯永峰,刘毓氚.考虑桩土侧移的被动桩中土拱效应数值分析[J].岩土力学,2007,28(7):1333-1337.
    [96]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J].岩土工程学报,2007,29(10):1477-1482.
    [97]吕涛,齐美苗,彭良泉.抗滑桩的土拱效应及数值模拟[J].人民长江,2007,38(1):42-45.
    [98]吴昌将,张子新.边坡工程中抗滑桩群桩土拱效应的数值分析[J].地下空间与工程学报。2007,12(3):1306-1333.
    [99]叶代成.抗滑桩桩间土拱效应及合理桩间距的研究[J].土工基础,2008,2(4):75-79.
    [100]章瑞文,徐日庆.土拱效应原理求解挡土墙土压力方法的改进[J].2008,29(4):1057-1066.
    [101]郭院成,郭呈祥,叶永峰.基于水平土拱效应的排桩支护结构合理桩间距的研究[J].四川建筑科学研究,2008.34(8):136-139.
    [102]秦立科,王晓谋,李云璋.基于水平土拱效应的桩间挡土板土压力计算研究[J].工程地质学报,2009,17(2):274-279.
    [103]张永兴,董捷,文海家,谭捍华.考虑自重应力的悬臂式抗滑桩三维土拱效应及合理间距研究[J].中国公路学报,2009,22(2):18-25.
    [104]董捷.悬臂桩三维土拱效应及嵌固段地基反力研究[D].重庆:重庆大学博士学位论文,2009.
    [105]刘金龙,王吉利,袁凡凡.不同布置方式对双排抗滑桩土拱效应的影响[J].中国科学院研究生院学报.2010.27(5):364-369.
    [106]祁斌,常波.单、双排抗滑桩在滑坡治理中的对比分析[J].三峡大学学报(自然学科版).2010.32(2):52-55.
    [107]向先超,张华,蒋国盛,涂鹏飞.基于颗粒流的抗滑桩土拱效应研究[J].岩土工程学报.2011.3(33):387-391.
    [108]杨明辉,汪罗成,赵明华.考虑土拱效应的双排抗滑桩桩侧土压力计算[J].公路交通科技.2011.28(10):12-17.
    [109]汪罗成.基于土拱效应的双排抗滑桩内力与位移计算方法及试验研究[D].长沙:湖南大学硕士学位论文,2012.
    [110]谢泻.考虑土拱效应的双排桩支护结构设计研究及工程应用[D].长沙:湖南大学工程硕士学位论文,2012.
    [111]申永江,吕庆,尚岳全.桩排距对双排抗滑桩内力的影响[J].岩土工程学报.2008.30(7):1033-1037.
    [112]申永江,黄立,严克伍.悬臂双排桩桩排距的计算方法研究[J].水文地质工程地质.2012.39(5):59-63.
    [113]黄学龙.基于土拱理论的基坑双排桩支护结构的受力特性分析[D].广州:广东大学硕士学位论文,2013.
    [114]万智,杨明辉,汪罗成.双排抗滑桩承载机理及土拱效应模型试验研究[J].湖南交通科技.2013.39(6):1-4.
    [115]竺明星,龚维明,何小元,徐国平.堆载作用下考虑土拱效应的被动桩变形内力半解析解[J].岩土工程学报.2013.
    [116]杨雪强,吉小明,张新涛.抗滑桩桩间土拱效应及其土拱模式分析[J].中国公路学报.2014.27(1):30-37.
    [117] Hetenyi, M.. Beams on elastic foundations[M]. Michigan: University of Michigan Press,1946.
    [118] Bowles, J. E.. Foundation design and analysis[M]. New York: McGraw-Hill,1988.
    [119] Broms, B. B.. Lateral resistance of piles in cohesive soils[J]. Journal of Soil Mechanics andFoundation Engineering,1964,90(2):122-155.
    [120] Lianyang Zhang, Francisco Silva, Ralph Grismala. Ultimate lateral resistance to piles incohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):78-83.
    [121] Assaf Klar, Sam Frydman. Three-dimensional analysis of lateral pile response usingtwo-dimensional explicit numerical scheme[J]. Journal of Geotechnical andGeoenvironmental Engineering,2002,128(9):775-784.
    [122] W. Y. Shen, C. I. Teh. Analysis of laterally loaded piles in soil with stiffness increasing withdepth[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(8):878-882.
    [123] Phillip S. K. Ooi, Brian K. F. Chang, Shuohang Wang. Simplified lateral load analyses offixed-head piles and pile groups[J]. Journal of Geotechnical and GeoenvironmentalEngineering,2004,130(11):1140-1151.
    [124] San-Shyan Lin, Jen-Cheng Liao. Lateral response evaluation of single piles usinginclinometer data[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(12):1566-1573.
    [125] M. Ashour, G. Norris. Modeling lateral soil-pile response based on soil-pile interaction[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(5):420-428.
    [126] M. Ashour, P. Pilling, G. Norris. Lateral Behavior of Pile Groups in Layered Soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2004,130(6):580-592.
    [127] S. Kü ükarslan, P. K. Banerjee. Inelastic analysis of pile-soil interaction[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2004,130(11):1152-1157.
    [128] Hsiung, Y. M., Chen, Y. L.. Simplified method for analyzing laterally loaded single piles inclays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(11):1018-1029.
    [129] Hsiung, Y. M.. Theoretical elastic-plastic solution for laterally loaded piles[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2003,129(6):475-480.
    [130] Hsiung, Y. M., Chen, S. S., Chou, Y. C.. Analytical solution for piles supporting combinedlateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1315-1324.
    [131] S. L. Chen, L. Z. Chen. Note on the interaction factor for two laterally loaded piles[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(11):1685-1690.
    [132] Adachi T., Kimura M., Tada S. Analysis on the preventive mechanism of landslidestabilizing piles[J]. Numerical Models in Geomechanics,1989,15(3):691-698.
    [133] J. L. Pan, A. T. C. Goh, K. S. Wong, et al. Ultimate soil pressures for piles subjected to lateralsoil movements[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(6):530-535.
    [134] Tara C. Hutchinson, Y. H. Chai, Ross W. Boulanger. Simulation of full-scale cyclic lateralload tests on piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(9):1172-1175.
    [135] Nina H. Levy, Itai Einav, Mark F. Randolph. Effect of recent load history on laterally loadedpiles in normally consolidated clay[J]. International Journal of Geomechanics,2007,7(4):277-286.
    [136] David J. White, Mark J. Thompson, Muhannad T. Suleiman, et al. Behavior of slender pilessubject to free-field lateral soil movement[J]. Journal of Geotechnical and GeoenvironmentalEngineering,2008,134(4):428-436.
    [137] Mostafa EI Sawwaf. Strip footing behavior on pile and sheet pile-stabilized sand slope[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):705-715.
    [138] Mostafa EI Sawwaf. Lateral resistance of single pile located near geosynthetic reinforcedslope[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1336-1345.
    [139] Mostafa EI Sawwaf. Lateral behavior of vertical pile group embedded in stabilized earthslope[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(7):1015-1020.
    [140] Lenart Gonzalez, Tarek Abdoun, Ricardo Dobry. Effect of soil permeability on centrifugemodeling of pile response to lateral spreading[J]. Journal of Geotechnical andGeoenvironmental Engineering,2009,135(1):62-73.
    [141] Rollins, K. M., Peterson, K. T., Weaver, T. J.. Lateral load behavior of full-scale pile groupin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6):468-478.
    [142] Rollins, K. M., Sparks, A.. Lateral resistance of full-scale pile cap with gravel backfill[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(9):711-723.
    [143] Rollins, K. M., Lane, J. D., Gerber, T. M.. Measured and computed lateral response of apile group in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):103-114.
    [144] Rollins, K. M., Gerber, T. M., Lane, J. D., et al. Lateral resistance of a full-scale pile groupin liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):115-125.
    [145] Rollins, K. M., Olsen, R. J., Egbert, J. J., et al. Pile spacing effects on lateral pile groupbehavior load tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1262-1271.
    [146] Rollins, K. M., Olsen, K. G., Jensen, D. H., et al. Pile spacing effects on lateral pile groupbehavior: analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1272-1283.
    [147] K. S. Chae, K. Ugai, A. Wakai. Lateral resistance of short single piles and pile groups locatednear slopes[J]. International Journal of Geomechanics,2004,4(2):93-103.
    [148] Kjell Karisrud, Lars Andresen. Loads on braced excavations in soft clay[J]. InternationalJournal of Geomechanics,2005,5(2):107-113.
    [149] Zhaohui Yang, Boris Jeremi. Study of soil layering effects on lateral loading behavior ofpiles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):762-770.
    [150] Ke Yang, Robert Liang. Numerical solution for laterally loaded piles in a two-layer soilprofile[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1436-1443.
    [151] S. Karthigeyan, V. V. G. S. T. Ramakrishna, K. Rajagopal. Numerical investigation of theeffect of vertical load on the lateral response of piles[J]. Journal of Geotechnical andGeoenvironmental Engineering,2007,133(5):512-521.
    [152] Wyllie D C. Foundation on Rock[M]. London: Chapman and Hall,1992.
    [153] Bica, A. V. D., Clayton, C. R. I.. An experimental study of the behaviour of embeddedlengths of cantilever walls[J]. Geotechnique,1998,48(6):731-745.
    [154] S. P. Gopal Madabhushi, V. S. Chandrasekaran. Rotation of cantilever sheet pile walls[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(2):202-212.
    [155]吴恒立.推力桩计算方法的研究[J].土木工程学报,1995,28(2):20-28.
    [156]吴恒立.计算推力桩的综合刚度原理和双参数法[M].北京:人民交通出版社,2000.
    [157]杨佑发.弹性抗滑桩内力计算的有限差“m-k”法[J].重庆建筑大学学报,2002,24(1):13-18.
    [158]杨佑发,许绍乾.锚索抗滑桩内力计算的有限差分“k-k”法[J].岩土力学,2003,24(1):61-64.
    [159]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报,2002,21(4):517-521.
    [160]戴自航,彭振斌.基于抗滑桩内力计算“m”法的有限差分法[J].中南工业大学学报,2001,32(5):461-464.
    [161]戴自航,彭振斌.地基系数法在岩体抗滑桩内力计算中的应用[J].湖南大学学报,2002,29(1):98-118.
    [162]戴自航,沈蒲生.抗滑桩内力计算悬臂桩法的改进[J].湖南大学学报,2003,30(3):81-85.
    [163]戴自航,沈蒲生,彭振斌.弹性抗滑桩内力计算新模式及其有限差分法[J].土木工程学报,2003,36(4):99-104.
    [164]张文居,赵其华,刘晶晶.抗滑桩锚固深度的可靠性设计[J].岩土工程学报,2006,28(12):2153-2155.
    [165]周春梅.三峡库区万州区滑坡抗滑桩设计研究[D].中国地质大学博士学位论文,2007.
    [166]周春梅,殷坤龙.三峡库区滑坡治理中抗滑桩锚固深度的研究[J].武汉理工大学学报,2006,28(2):38-41.
    [167]胡晓军,王建国.基于强度折减的刚性抗滑桩锚固深度确定[J].土木工程学报,2007,40(1):65-68.
    [168]年廷凯,栾茂田,郑德凤,等.基于极限分析下限方法的抗滑桩锚固深度验算[J].武汉理工大学学报,2007,29(8):82-86.
    [169]李忠诚,杨敏,张慧.侧移土体被动桩成拱效应及主动侧土压力计算[J].力学季刊,2006,27(3):505-510.
    [170]李忠诚,洪昌地.侧移土体被动桩成拱效应分析[J].岩土力学,2008,29(6):1711-1715.
    [171]张永兴,董捷,文海家,谭捍华.考虑自重应力悬臂式抗滑桩三维土拱效应及合理桩间距研究.[J].中国公路学报,2009.22(2):18-25.
    [172]李成芳,熊启东,孔凡林.锚拉桩三维土拱效应数值分析与试验研究[J].建筑结构.,2011.41(10):97-101.
    [173]李成芳.预应力锚拉桩三维土拱效应研究[D].重庆:重庆大学博士学位论文,2012.
    [174]重庆市建设委员会. DB505029-2004.重庆市地质灾害防治工程设计规范[S].重庆:中国建筑工业出版社,2004.
    [175] Chen Yun-min, Cao Wei-ping, Chen Ren-peng. An experimental investigation of soil archingwithin basal reinforced and unreinforced piled embankments [J]. Geotextiles andGeomembranes,2008,26:164–174.
    [176]陈建光.重庆地区土的工程地质特征及其利用价[J].第四届全国工程地质大会论文选集(二).1992:1005-1011.
    [177] Brwon D. A., Morr I. C., Reese L. C. Lateral load behavior of p ile group in sand[J]. Journalof Geotechnical Engineering, ASCE,1988,114(11):1261-1276.
    [178] Dunnavant T. W., Oneill M. W. Experimental p-y model for submerged, stiff clay [J]. Journalof Geotechnical Engineering, ASCE,1989,115(1):95-114.
    [179]樊友全.悬臂桩土拱效应模型试验及数值模拟研究[D].重庆:重庆大学硕士学位论文,2010.
    [180]李俊飞.双排埋入式抗滑桩工作机理分析与研究[D].重庆:重庆大学硕士学位论文,2009.
    [181]万智.深基坑双排桩支护结构体系受力分析与计算[D].长沙:湖南大学硕士学位论文2001,20-21.
    [182]熊治文,马辉,朱海东.深埋式抗滑桩的受力分布规律[J].铁道部科学研究院,中国铁道科学2000,3第21卷第21期.32-33.
    [183]谭永坚,何颐华.粘性土中悬臂双排护坡桩的受力性能研究[J].建筑科学,1993(4):28-34.
    [184]姚旭东.双排桩支挡结构试验与数值分析[D].成都.西南交通大学硕士学位论文.2008.
    [185]高超:基坑双排桩围护结构变形的有限元分析[D].西安.西安科技大学硕士学位论文.2012.
    [186]《工程地质手册(第四版)》编委会.《工程地质手册(第四版)》[M].北京:中国建筑工业出版社,2007.
    [187]戴自航,沈蒲生.推力长桩计算的综合刚度双参数法半数值解[J].福州大学学报:自然科版,2004,32(6):742-745.
    [188]宋东辉,徐晶.半无限弹性体地基上水平荷载桩的静力分析[J].土木工程学报,2004,37(11):89-96.
    [189]中国建筑科学研究院. JGJ-2008.建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.
    [190]中交公路规划设计院有限公司. JTG D63-2007.公路桥涵地基与基础设计规范[S].北京:人民交通出版社,2007.
    [191] ZHANG L M, MICHAEL C, LAI P W. Centrifuge modeling of laterally loaded singlebattered piles in sands [J]. Canadidian Geotechnical Journal,1999,36:1074-1084.
    [192] MEYERHOF G G, YALCIN A S. Behavior of flexible batter piles under inclined loads inlayered soil [J]. Candida Geotechnical Journal,1993,30:247-256.
    [193] SASTRY, MEYERHOF G G. Behavior of flexible piles in layered clays under eccentric andinclined loads [J]. Canadidian Geotechnical Journal,1995,32:387-396.
    [194] MEYERHOF. Behaviour of pile foundations under special loading conditions:1994R. M.Hardy keynote address [J]. Canadidian Geotechnical Journal,1995,32:204-222.
    [195] Wieghardt, K.: über den balken auf nachgiebiger Unterlage [J]. ZAMM1922,2(3):165–184(in German)
    [196] A. Walz. Anwendung des Energiesatzes von Wieghardt auf einparametrigeGeschwindigkeitsprofile in laminaren Grenzschichten. Ingenieur-Archiv,1948, Vol.16(3-4):-40-243(in German)
    [197] Sollazzo, A.: Equilibrio della trave su suolo di Wieghardt. Tecnica Italiana.1966,31(4),187-206.(in Italian)
    [198] A. Ylinen and M. Mikkola. A beam on a wieghardt-type elastic foundation [J]. InternationalJournal of Solids and Structures.1967,3:617-633,
    [199] T. E. Smith, Buckling of a beam on a Wieghardt-type elastic foundation [J]. ZAMM.1969,49(11):641–645.
    [200] G. L. Anderson, The influence of a Wieghardt type elastic foundation on the stability of somebeams subjected to distributed tangential forces [J]. Sound Vib.1976,44(1),103–118.
    [201] CELEP, Z., Semi-infinitely long beam on a Wieghardt-type elastic foundation [J]. Bull.Techn. univ. Istanbul.1977,30:69-82.
    [202] Celep, Z. A circular beam on a Wieghardt-type elastic foundation [J]. Bull. School ofEngineering and Architecture of Sakarya.1979,4:86-99.
    [203] Celep, Z. Dynamic response of a circular beam on a Wieghardt-type elastic foundation [J].ZAMM.1984,64(7):279–286.
    [204] M. L. De Bellis, G. C Ruta, I. Elishakoff. Influence of a Wieghardt foundation on thedynamic stability of a fluid conveying pipe.[J]. Archive of Applied Mechanics.2010, Vol.80(7):785-801.
    [205] M. L. Bellis, G. C. Ruta, I. Elishakoff. The influence of a wieghardt type elastic foundationon the stability of some beams subjected to distributed tangential forces [J]. Archive ofApplied Mechanics.2010.(80):785-801.
    [206]龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
    [207] Poulos, Davis. Pile foundation analysis and design [M]. New York: Willy,1980.
    [208]孙训方.材料力学[M].北京:高等教育出版社,1998.
    [209]张永兴,陈林.基于WIEGHARDT地基的桩弹性分析[J].工程力学.2010, vol.27(12),sup. Ⅱ:221-225.
    [210]陈林,张永兴.基于WIEGHARDT地基的桩弹性分析[C].第18届全国结构工程学术会议论文集第Ⅱ册.2009,11:219-223.
    [211] Wei Dong Guo, F. H. Lee. Load transfer approach for laterally loaded piles [J]. InternationalJournal for Numerical and Analytical Methods in Geomechanics,2001;25:1101-1129
    [212] Scott RF. Foundation analysis.[M]. Prentice Hall, Englewood Cliffs, NJ,1981.
    [213] Randolph MF, Wroth CP. Analysis of deformation of vertically loaded piles[J]. Journal ofGeotechnical Engineering Division ASCE1978;104(12):1465-1488.
    [214]杨维加.弹性地基梁的三角级数解法[M].北京:中国水利水电出版社,2005.
    [215]张永兴.岩土工程减灾(NO.50625824)[R].重庆,重庆大学土木工程学院.2009年.
    [216]张永兴.悬臂式抗滑桩三维土拱效应研究”(NO.50878218)[R].重庆,重庆大学土木工程学院.2009年.
    [217]中华人民共和国电力工业部. GB/T50266-99.工程岩体试验方法标准[S].北京:中国计划出版社,1999.
    [218]中国建筑科学研究院. GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [219]中国建筑科学研究院. GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [220]黄求顺,张四平,胡岱文.边坡工程[M].重庆:重庆大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700