用户名: 密码: 验证码:
砂浆锚杆锚固体耐久性基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚杆锚固系统作为现代岩土支护结构的重要组成部分,在社会经济发展中起着重要的作用,因此其工作性能的好坏将直接关系到社会的安定以及人民群众生命财产的安全。然而,由于锚杆锚固体通常处于恶劣的工作环境中,且服役时间较长,因此各国锚固工程中因耐久性不足而导致的破坏甚至失效的事件时有发生,尤其是近年来随着工程规模的扩大以及数量的增多,加之其工作环境的进一步恶化,锚杆锚固系统的耐久性问题更是日渐突出。目前针对工程结构的耐久性,国内外学者做过大量的研究,但所研究的对象主要为地面钢筋混凝土结构,这些结构无论是工作环境还是受力状态均与岩土锚固系统存在明显的差异,因此以往研究的成果不能很好适用于岩土锚固工程,进而开展该领域的研究就显得非常紧迫同时也很必要。
     本文以国家杰出青年科学基金项目“岩土工程减灾”(50625824)、重庆市建设科技计划项目“地质灾害防治工程耐久性技术”(城科字2006第62号)以及重庆市自然科学基金项目“在役地灾抗滑支挡结构耐久性研究”(CSTC,2008BB0318)为依托,分别对腐蚀条件下砂浆、锚杆自身性能的退化以及相互之间接触界面粘结特性的变化情况等影响砂浆锚杆锚固体耐久性的因素进行了基础性的研究,具体的工作及成果如下:
     ①针对锚固系统中,腐蚀介质在砂浆中的扩散具有轴对称性且扩散路径长度有限的特点,利用数值分析方法模拟了砂浆锚固体内部腐蚀介质的传递规律,建立了以Fick定律为基础的砂浆内部腐蚀介质扩散模型。并考虑了砂浆开裂对内部介质运动规律的影响,建立了砂浆开裂情况下锚杆周边介质浓度变化规律模型。
     ②通过对无锚杆砂浆试件及带锚杆砂浆试件的同步腐蚀,获得了砂浆强度随腐蚀时间的变化规律,以及砂浆-锚杆界面和锚杆-基体界面的粘结强度和荷载位移关系随腐蚀时间的变化特性,建立了砂浆腐蚀程度与界面粘结强度的对应关系,并考虑了室内试验与自然腐蚀条件的差异,将实验结果进行了推广。
     ③通过对地下水存在条件下锚杆周围腐蚀电位的分析,给出了均匀腐蚀条件下锚杆的腐蚀电流密度,同时考虑了锚杆工作荷载对腐蚀电流密度的影响,建立了均匀腐蚀条件下工作锚杆的寿命计算公式;随后在考虑砂浆有缺陷的条件下,利用砂浆缺陷的几何特征以及阴阳极腐蚀电流密度关系,同时结合锚杆工作荷载在缺陷部位的应力集中,建立了砂浆缺陷条件下锚杆非均匀腐蚀的腐蚀寿命计算模型。
     ④分别对围岩存在不考虑围岩初始应力和围岩存在同时考虑围岩初始应力影响两种情况下,锚杆腐蚀体积膨胀导致的砂浆开裂过程进行了分析,建立了适合岩土锚固体特点的锚杆砂浆锚固体锈胀开裂模型,并利用有限元分析方法对模型进行了验证。
     ⑤利用粗糙度系数建立了锈蚀变形钢筋锚杆粘结强度参数随锚杆腐蚀程度的变化关系,并在此基础上采用数值分析方法对不同锈蚀程度下的锚杆在拔出过程中的极限荷载的变化情况,以及锚杆-砂浆界面、砂浆-围岩界面的粘结应力分布随锚杆的锈蚀程度的变化情况等进行了分析,对锚杆锈蚀以及砂浆的开裂对以上结果的影响过程进行了说明。
     以上研究过程对影响砂浆锚杆锚固体耐久性的各个方面分别进行了分析说明,研究成果以期能为以后展开更深入系统的研究起到抛砖引玉的作用。
As a vital part of modern geotechnical supporting construction, bolt anchoring system plays an important role on the development of society and ecoeomy, so the durability and safety performance are derectly related to the stability of society and safety of people’s life and wealth. However, because of the adverse working conditions where bolt anchoring system always locate in and the long term of its service life, cases of durability deterioration or even damage always happen, especially with the expanding of engineering scal and the increase of engineering quantity, together with the further worsening of working environment, problems of durability damage becomes more and more outstanding. Recently, much work about durability of engineerning structure has been done at home and abroad, but most of these research productions can not be goodly applied on the bolt anchorage system, because most of these subjects investigated are reinforced concrete structures, there exist distinct differences in no matter the service conditons or stressing state between reinforced concrete structure and bolt anchoring system, so it is very urgent and necessary to carry out research of this field.
     Relying on the national excellent young science fund project“disaster reduction of geotechnical engineering”(50625824)、construction technology plan project of ChonqQing“durability technology of geological hazards control”and natural science fund project of ChongQing“research on durability of anti-slide supporting structure”(CSTC,2008BB0318) the basic research on durability of mortar bolt anchorage body, such as the self degeneration of bolt and mortar under the condition of corrosion, the changes of bond performance in each interface are analyzed, is conducted in this dissertation during the research cours. the concretely works and results are as follows:
     ①Aiming at the characteristics of media erosion in anchoring system such as diffusing axial symmetrily and the limited length of diffusing. The movement characters of harmful medium diffusing in mortar is simulated by means of numerical analysis, the model of media diffusing in mortar which based in Fick’s law is built . Then the effection of cracks to media movement is considered, and the model of concentration distribution around bolt in cracked is also estamblished. The model results are highly agreed with the numerical results.
     ②Througth synchronous corrosion of mortar specimens with bolt and specimens without bolt, the relationship between mortar strength and corrosion time and the change of bond strength in bolt-mortar interface and mortar-rock interface alonge with the corrosion are achived.The relationship between mortar corrosion level and bond strength of each interface is built,beside that the difference between nature corrosion and laboratoury testing is considered and the test results is generalized.
     ③First, by analyzing the corrosion potential of bolt in underground water environment, the corrosion current density of bolt uniform corrosion is provided at the same time , the effection of working load on corrosion current density is considered, and the model of corrosion life of bolt under condition of uniform corrosion is built.Second , with the premise of mortar defectiveness, by using of the relationship between defectiveness size and corrosion current, also considering the stress concentration in defectiveness position, the model of bolt corrosion life under the condition of unequally corrosion is slso estambilished.
     ④The process of motar cracking caused by bolt corrosion and its volume expansion under two tipes of conditions, one is to consider the rock initial stress and the other is not to consider the rock initial stress, the model which is suit to bolt anchoring system’s characteristics is estambilished, the model is validated by finite element analysis.
     ⑤Based on coefficient of rugosity, the model of bond strength parameter of deformed bar bolt in different corrosion level, based on the model, the anchoring character such as ultimate load in the extracting process、the distribution of bond strength in bolt-mortar interface and mortar-rock interface,changing with the bolt corrosion degree is analyzed by means of numerical analysis method, and the affection of bolt corrosion and mortar cracking to above anchoring characts are also explained..
     From above research procees, all of the aspects which affect the durability of bolt anchoring system are illustrated, the results is hoped to provide a reference to more deepper and more systemic research later.
引文
[1]金伟良,赵羽习.混凝土结构耐久性的回顾与展望[J].浙江大学学报,2002,4:371-380.
    [2]李田,刘西拉.混凝土结构耐久性分析与设计[M].北京:科学出版社,1999.
    [3]吴瑾.钢筋混凝土结构锈蚀损伤检测与评估[M].北京:科学出版社,2005.
    [4] M.Grant.The World of Rome ,1960.
    [5]牛荻涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,26:11-13.
    [6]李田.混凝土结构耐久性研究的概况于若干特点[J].建筑结构.1995,12:44-47.
    [7]赵勤贤.混凝土结构工程耐久性研究的历史、现状及趋势[J.建筑技术开发.2002,9:71-72.
    [8]蔺石柱,李燕飞.服役钢筋混凝土结构模糊碳化寿命的研究[J].工业建筑,2005,增刊:139-141.
    [9]潘洪科,杨林德,汤永净.地下结构耐久性研究现状及发展方向综述[J].地下空间与工程学报,2005,5:804-808.
    [10]侯敬会.土壤与地下水环境下混凝土结构耐久性若干问题的研究[D].浙江大学硕士学位论文,2005. [11[赵键,冀文政.现场早期砂浆锚杆腐蚀现状的取样研究[J].地下空间与工程学报,2005,12:1157-1162.
    [12]曾宪明,陈肇元,等.锚固类结构安全性与耐久性问题探讨[J].岩石力学与工程学报.2004,13:2235-2242.
    [13]刘焕馨.土建结构工程的耐久性[J].建筑技术.2005,增刊:159-163.
    [14]夏宁.锈蚀锚固体的力学性能研究及耐久性评估初探[D].河海大学博士学位论文,2005.
    [15]潘洪科,杨永净等.地下工程结构物耐久性研究[J].城市轨道交通研究,2004,6:40-45.
    [16] Freas,G. Craig,etc. Precast Prestressed Underground Fuel Storage Tanks in Adak[J]. ALASKA. Journal of the Prestressed Concrete Institute, 1985, 30:52- 63.
    [17] Rollin,J. Lepers,J. Benard,P. Laying and operating problems arising with underground HV and EHV cables [J]. Revue Generale de l’Electricite,1974,01,:45-56.
    [18] S. Srikanth, T.S.N. Sankaranarayanan , K. Gopalakrishna B.R.V. Narasimhan , T.V.K. Das Swapan Kumar Das, Corrosion in a buried pressurised water pipeline, Engineering Failure analysis ,2005,12:634-651.
    [19] H. H. P. FANG, K. K. WU, and C. L. Y. YEONG ,corrosion of construction metals under simulated acid rain/fog conditions with high salinity .H.H.P.FANG ET Al. 1990,15:365-374.
    [20] Bryant Mather,Concrete durability[J],cement and concrete composites,2004,26: 3-4.
    [21] Fathi Shaqour Ground anchors in an aggressive hydro-environment[J], Bull Eng Geol Env 2006,65: 43–56.
    [22]金南国,金贤玉,等.早龄期混凝土断裂性能和微观结构的试验研究[J].浙江大学学报,2005,9:1374-1377.
    [23]马孝轩.我国主要土壤对混凝土材料腐蚀性分类[J].混凝土与水泥制品,2003,6:6-7.
    [24]李兴濂,王光雍等.三峡地区材料33年土壤腐蚀行为研究[J].腐蚀科学与防护技,1995,7:1-9.
    [25]马孝轩.我国主要类型土壤对混凝土材料腐蚀性规律的研究[J].建筑科学,2003,6:56-57.
    [26]马孝轩.仇新刚.陈从庆.混凝土及钢筋混凝土土壤腐蚀数据积累及规律性研究[J].建筑科学,1998,1:56-57.
    [27]魏华.混凝土结构耐久性评估与质量控制基础研究[D].郑州大学硕士学位论文,2004.
    [28] H.A. Abdalla*,Assessment of damages and repair of antenna tower concrete foundations,Construction and Building Materials 2002,16: 527-534.
    [29] S.K. Gupta, B.K. Gupta, Corros. Sci,1979,19 :171–178.
    [30] S. Baby, T. Balasubramanian, R.J. Pardikar, Int. J. Pres. Ves. Pip. 2003,80:139-146.
    [31] Naing Naing Aung, Yong-Jun Tan,A new method of studying buried steel corrosion and its inhibition using the wire beam electrode,Corrosion Science 2004,46:3057-3067.
    [32]候敬会,宋志刚,金伟良.滨海土壤环境下混凝土方桩的耐久性[J].混凝土,2005,2:77-85.
    [33]仇新刚,马孝轩,等.钢筋混凝土在滨海盐土地区腐蚀规律试验研究[J].建筑科,2001,6:41-43.
    [34]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].东南大学博士学位论,2006.
    [35]汪剑辉,曾宪明,赵强.多因素耦合腐蚀环境下锚杆腐蚀机制试验研究[J].施工技术,2006,11:30-33.
    [36]王长春,周晓军.地下水对隧道衬砌结构力学行为影响的研究[J].四川建筑,2004,6:79-80.
    [37]杜应吉.地铁工程混凝土耐久性研究与寿命预测[D].河海大学博士学位论文,2005.
    [38]李文卿.地铁车站地下连续墙耐久性规律研究[D].同济大学硕士学位论文,2006.
    [39]李永和.地下钢筋混凝土与锚喷结构碳化断裂损伤及其耐久性研究[D].中国科学院博士学位论文,1999.
    [40]孙慧珍,胡士信,等.地下设施的腐蚀与防护[M].北京:科学出版社,2001.
    [41]曾宪明,李长松,等.模型锚杆腐蚀耦合效应试验研究[J].预应力技术,2006,4:168-171.
    [42]马孝轩,仇新刚.混凝土及钢筋混凝土材料酸性土壤腐蚀规律的试验研究[J].混凝土与水泥制品.2000,4:9-13.
    [43]张文渊.环境水对水泥混凝土的侵蚀作用及防护措施[J].腐蚀与防护,2000,2:83-85.
    [44]金伟良,赵羽习.混凝土结构耐久性设计与评估方法[M].北京:机械工业出版社,2006.
    [45]王光雍,王海江.自然环境的腐蚀与防护,大气.海水.土壤[M].北京:化学工业出版社,1996.
    [46] M.Romanoff,“Underground corrosion”,NBS Circular579.1957.
    [47] W.F.Gerhold, .E.Escalante.B.T.Sanderson,“The corrosion behavior of selected Stainless Steels in Soil Environments”,NBSIR :81-2228(NBS),1981.
    [48]托马小夫著,华保定等译,金属腐蚀及其保护的理论[M],北京:工业出版社,1964.
    [49]刘惠兰,黄艳,韩云屏.环境水对砂浆、混凝土的侵蚀性研究[J].混凝土与水泥制品,1997, 6:12-15.
    [50]万小梅,张芳如,赵铁军.混凝土的传质过程及其理论[J].海岸工程,2001,1:73-78.
    [51]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [52]胡玲,徐芸芸,吴瑾.Fick第二定律的应用研究现状与展望[J].河北建筑科技学院学报,2005,3:50-53.
    [53] Amey,Johnson,Farzam. Predicting the service life of concrete marine structures:an environmental methodology[J].ACI Atructural Journal,1998,2:205~214.
    [54] P.S .Mangat,B.T.Molloy. Prediction of long term chloride concentration in concrete [J]. Materials and Structures,1994, 27:907~912.
    [55]孙伟,余洪发.混凝土结构工程的耐久性与寿命研究进展[J].土建工程的耐久性与安全性,北京,2001.
    [56]王显利,郑建军,吴智敏,孟宪强.圆形截面混凝土中的自由氯离子含量分布规律[J].沈阳建筑大学学报,2006,6:890-894.
    [57]向晓东.流体中污染物对轴对称物体的扩散模型及其简化研究[J].安全与环境学报,2004,4:66-69.
    [58] S.Chatterji. Transport of ions through cement based materials. Cement and oncrete Research, 1994,5:907~912.
    [59]陈尤雯,莫海鸿.裂隙岩体中的对流扩散研究[J].岩土力学,1997,3:47-52.
    [60]霍润科,李宁.受酸腐蚀砂岩的扩散模型[J].西安理工大学学报,2005,1:1-4.
    [61] M.F. Montemor,M.P. Cunha, M.G. Ferreira, A.M. Simes. Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides [J]. Cement and concrete Research, 2002,24: 45~53.
    [62] A.K. Suryavanshi,R.Narayan Swamy. Stability of Friedel’s salt in carbonated concrete structural elements [J], Cement and Concrete Research,1996,26:729~741.
    [63] Takeshi Oshir,Corrosive environment and salt induced damage of RC structures,University of the Ryukyus,1999.
    [64]赵冬兵.开裂混凝土氯离子渗透的有限元分析[J].工业建筑,2006,增刊:905-907.
    [65]蒋德稳,李果.混凝土横向裂缝对钢筋腐蚀速度影响的试验研究[J].四川建筑科学,2006, 4:55-58.
    [66]陈伟,许宏发.确定混凝土中氯离子扩散系数的方法及其适用性评价[J].混凝土,2004,12: 183-191.
    [67]孙伟,余洪发.混凝土结构工程的耐久性与寿命研究进展[J].土建工程结构安全性与耐久性,2001.
    [68] Thoft-Christensen. IFIP Working Conference , Osaka : 2002
    [69]赵均.钢筋混凝土结构的工作寿命设计—针对氯盐污染环境[J].混凝土,2004,1:3-15.
    [70]李岩.氯离子在混凝土中的渗透性与钢筋腐蚀临界浓度的试验研究[D].南京水利科学院硕士学位论文,2003.
    [71]田冠飞,安雷晖.钢筋存在对氯离子扩散阻滞影响的有限元分析[J].混凝土,2006,5:1-6.
    [72]王东方.钢筋砼构件氯离子侵蚀下钢筋初始锈蚀时间的计算方法[D].北京工业大学硕士学位论文,2003.
    [73]陈小荣,毛科峰,郑建军.界面裂纹对混凝土氯离子扩散系数的影响[J].水利水电科技进展, 2007,4:367-370.
    [74] Jost. Diffusion in Solids,Liquids, and Gasses [M]. New York:Academic Press,1952
    [75] Xiaobing Song and Xila Liu Experimental Research on Corrosion of Reinforcement in Concrete Through Cathode-to-Anode Area Ratio, ACI Materials Journal, 2000,97:148-155.
    [76] N.Gowripalan, V.Sirivivatnanon,C.C.Lim,Chloride diffusivity of concrete cracked in flexure,Cement and Concrete Research 2000, 30:725-730.
    [77] M.Ismail, A.Toumi, R.Francois,R.Gagne, Effect of crack opening on the local diffusion of chloride in inert materials.Cement and Concrete Research,2004,34:711-716.
    [78] Marsavina,K.Audenaert, etc Experimental and numerical determination of the chloride Penetration in cracked concrete, Construction and Building Materials,2008.
    [79]王琴,杨鼎宜.干湿循环对混凝土硫酸盐侵蚀的影响[J].混凝土,2008,3:22-24.
    [80]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].东南大学博士学位论文,2006.
    [81] E.F.Irassar,A.Di Maio,O.R.Batie,Sulfate attack on concrete with mineral admixtures,Cement and Concrete Research,1996,26:113~123.
    [82] Omar Saeed Baghabra Al-amoudi,Sulfate attack and reinforcement corrosion in plain and blenden cements exposed to sulfate environments,Building and Enviroment, 1998, 33:53~61.
    [83]蒋敏强,陈建康,杨鼎宜.硫酸盐侵蚀水泥砂浆动弹性模量的超声波检测[J].硅酸盐学报,2005,1:126~132.
    [84]梁咏宁,袁迎曙.硫酸盐腐蚀后混凝土单轴受压本构关系[J].哈尔滨工业大学学报,2008, 4: 532~535.
    [85] AKHRAS N M.Detecting freezing and thawing damage in concrete using signal ergy[J].Cem Concr Res,1998,28:1 275-1 280.
    [86] SANTHANAM M,COHEN M D,OI EK J.Effects of gypsum formation on the performance of cement mortars[J].Cem Concr Res,2003,33:325-332.
    [87]刘亚辉,申春妮,等.溶液浓度和温度对混凝土硫酸盐侵蚀速度的影响[J].重庆建筑大学学报,2008,1:129~135.
    [88]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987.
    [89]黄可信,吴兴祖,等编译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [90]谭天恩.传质—反应过程[M].杭州:浙江大学出版社,1990.
    [91]鄢飞,金伟良,张亮.碳化反应区对混凝土碳化规律的影响[J].工业建筑,1999,1:12~16.
    [92]尉希成,周美玲.支当结构设计手册[M].北京:中国建筑工业出版社,2004.
    [93]李永和,葛修润.锚喷结构中钢锚杆锈蚀量的估计分析[J].煤炭学报,1998,1:48-52.
    [94]刘西拉,苗澍柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990,4:69-78.
    [95]牛荻涛,王庆霖等.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,4:8-10.
    [96]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].同济大学博士学位论文,1999
    [97]宋晓冰.钢筋混凝土结构中的钢筋腐蚀[D].清华大学博士学位论文,1999.
    [98]陈莹,王天稳.碳化引起混凝土锈胀开裂前钢筋锈蚀量的研究[J].混凝土,2005,12:63-66.
    [99] Bazant Z Petal.Physical Model for Steel corrosion in Concrete Sea Structures Theory.ASCE Journal of Structural Division,1977,105:1137-1153.
    [100] Z.P.Bazant. Physical model for steel corrosion in concrete sea sstructurres-application[J]. Journal of the Structural Divisionb,1979,105:1137~1166.
    [101]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993.
    [102]朱日彰等.金属腐蚀学[M].北京:冶金工业出版社,1989.
    [103]宋晓冰,刘西拉.混凝土中钢筋腐蚀速度的过程控制[J].工业建筑,2000,2:53-56.
    [104]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994.
    [105]乔利杰,王燕斌,褚武扬.应力腐蚀机理[M].北京:科学出版社,1993.
    [106]朱文涛.物理化学(下册)[M].北京:清华大学出版社,1995.
    [107]赵建,冀文政,等.应力腐蚀对锚杆使用寿命影响的实验研究[J].岩石力学与工程学报, 2007, 7:132-135.
    [108]古特曼著,金石译.金属力学化学与腐蚀防护[M].北京:科学出版社,1989.
    [109]洪乃丰.水环境腐蚀与混凝土的耐久性[J].腐蚀与防护,2006,7:174-177.
    [110] Kazuo Suzuki, Experimental Study on Internal Cracking of Partially Prestressed Concrete Flexural Members [J].Structural and Construction Engineering 1986,365:9-19.
    [111]西田正孝.应力集中[M].北京:机械工业出版社,1986.
    [112]航空工业部科学技术委员会.应力集中系数手册[M].北京:高等教育出版社,1990.
    [113]宋晓冰,刘西拉.混凝土中钢筋腐蚀速度的过程控制[J].工业建筑,2000,2:53-56.
    [114] Kazuo Suzuki, Experimental Study on Internal Cracking of Partially Prestressed Concrete Flexural Members [J].Structural and Construction Engineering 1986,365:9-19.
    [115] Kapilesh Bhargava, A.K. Ghosh, Yasuhiro Mori,S. Ramanujam, analytical model for time to cover cracking in RC structures rebar corrosion,Nuclear Engineering and Design 2006,236: 1123-1139.
    [116]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报,2006,8: 939-945.
    [117]徐港,卫军.钢筋均匀锈胀力的若干问题研究[J].福州大学学报,2005,10:101-105.
    [118] Xiaohui Wang, Xila Liu,Modeling bond strength of corroded reinforcement without stirrups, Cement and Concrete Research 2004,34,1331-1339.
    [119] Kapilesh Bhargava, A.K. Ghosh, Yasuhiro Mori, S. Ramanujam, Model for cover cracking due to rebar corrosion in RC structures, Engineering Structures 2006,28:1093-1109.
    [120]王军强.钢筋锈蚀产物膨胀在混凝土中产生的应力分析[J].建筑技术开发,2002,1:7-20.
    [121]郑建军,周欣竹,等.钢筋混凝土结构锈蚀损伤的解析解[J].水利学报,2004,12:62-68.
    [122]徐志英.岩石力学[M].北京:水利水电出版社,1993.
    [123]刘亚东.钢筋腐蚀混凝土构件的性能退化与可靠性分析[D].西安建筑科技大学硕士学位论文,2000.
    [124]周志祥.高等钢筋混凝土结构[M].北京:人民交通出版社.2002.
    [125] S.J. Williamson and L.A.Clark.Press required to cause cover cracking of concrete due to reinforcement corrosion. Magazine of Concrete Research,2000,50:455-467.
    [126]徐芝纶.弹性力学[M].北京:高等教育出版社,1988.
    [127]王名杏.混凝土中钢筋锈蚀膨胀的应力分析[J].福建建材,2004,4:87-90.
    [128]牟艳君,袁迎曙,姬永生.基于钢筋锈蚀膨胀的混凝土应力分析方法[J].淮海工学院学报,2006,1:66-70.
    [129]郝文化.Ansys土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [130] C.Li,B.Stillborg, Analytical models for rock bolts [J] International Journal of rock Mechanics and Mining Sciences ,1999,36:1013-1029.
    [131]韩军,陈强,等.锚杆灌浆体与岩(土)体间的粘结强度[J].岩石力学与工程学报,2005,19: 3482-3486.
    [132] Yue Cai,Tetsuro Esaki,Yujing Jiang, A rock bolt and rock mass interaction model [J]. Journal of Rock Mechanics & Mining Sciences 2004, 41:1055-1067.
    [133] E.Hoek and E.T.Brown. Underground excavations in rock. The institute of mining and Metallurgy,London,1980.
    [134] R.E.Goodman. Introduction to rock mechanics. New York:John Wiley and sons,1984.
    [135] Yu Maohong, Advances in strength sheorie for materials under complex stress state in the 20th century[J].ASME,Appl Mech Rev,2002,55:169~218.
    [136] Detournay E,Cheng A H D.Poroelastic response of a borehole in non-hydrostatic stress field [J].Rock Mech.Sci.&Geomeh.Abstr. 1988,25:171-182.
    [137] Urbin F.Numerical inversion of Laplace transformation:an efficient improvement to Durbin and Abate′s method[J].The Computer Journal,1974,17: 371–37.
    [138] Senjuntichai T,Rajapakse R K N D.Tranisent response of a circular cavity in a poroelastic medium[J].Int.J.for Numerical and Analytical Methods in Geomechanics,1993,17: 357-383.
    [139]赵羽习,金伟良.混凝土构件锈蚀胀裂时的钢筋锈蚀率[J].水利学报,2004,11:97-101.
    [140]徐波.粘结型锚杆锚固理论与试验研究[D].大连理工大学博士学位论文,2006.
    [141] B.Johunston and K.C.Cox The bond strength of rusted deformed bars, ACI journal, Proceedings 1941,37:57-72.
    [142] E.L.Kemp,et al,Effect of rust and scale on the bond characteristics of deformed reinforcing bars ACI Journal ,proceedings ,1968.65:743-756.
    [143] G..J.Al-Sulaimani,et,al. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members ACI Journal ,Proceedings 1990.87 :220-230.
    [144]王林科等.锈后钢筋混凝土粘结锚固的试验研究[J].工业建筑,1996,4:14-16.
    [145]袁迎曙,等.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑,1999,11:47-50.
    [146] D. Coronelli, Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete, ACI Struct. J., 2002,99:267– 276.
    [147]徐港,王青.锈蚀钢筋与混凝土粘结性能研究进展[J].混凝土,2006,5:13-16.
    [148]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994,3:26-36.
    [149] AllwoodRJ, Bajarwan, AbduliahA. Modelling nonlinear bond-slip behavior for finite element analyses of reinforce concrete structrures [J].ACI Sturctural Journa1, 1996,93:538-544.
    [150] P.S. Mangat, M.S. Elgarf, Bond characteristics of corroding reinforcement in concrete beams, Mater. Struct. 1999,32:89–97.
    [151]卫军,徐港.锈蚀钢筋与混凝土粘结应力模型研究[J].建筑结构学报,2008,2: 112-116.
    [152] Auyueng Y ubun,Balaguru P,Chung Lan.Bond Behavior of Corroded Reinforcement Bars [J].A CIM aterialsJournal,2000,97:214-220.
    [153] Lee, H.S., Noguchi, T., Tomosawa, F. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cem. Concr. Res. .,2002,32:1313–1318.
    [154]范颖芳,黄振国,等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能的研究[J].工业建筑,1999,8:23-240.
    [155] Abrishami, H. H. and Mitchell, D., 'Simulation of uniform bond stress', ACI materials Journal (2) 1992,89:161-168.
    [156]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报,2002,4:159-160.
    [157] A.A. Almusallam, A.S. Al-Gahtani, A.R. Aziz, Rasheeduzzafar, Effect of reinforcement corrosion on bond strength[J]. Constr. Build. Mater. 1996,10: 123-129.
    [158] Coronelli, D,Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete. ACI Struct. J. 2002,99: 267-276.
    [159]庄茁,朱万旭等.预应力结构锚固-接触力学与工程应用[M].北京:学出版社,2006.
    [160] Cairns, J., Abdullah, R.B., Bond strength of black and epoxy-coated Reinforcement a theoretical approach. ACI Mater. J. 1996.93:362–369.
    [161]锚固搭接专题组.钢筋在混凝土中锚固和搭接的试验研究[C].混凝土结构研究报告选集,北京:中国建筑工业出版社,1994.
    [162]杜时贵.体结构面粗糙度系数JRC的定向统计研究[J].工程地质学报,1994,3:62-70.
    [163] L. Amleh, S. Mirza, Corrosion influence on bond between steel and concrete[J]. ACI Struct, 1999,3:415- 423.
    [164]沈永欢,梁在中,等.实用数学手册[M].北京:科学出版社,1992.
    [165] H.W. Reinhardt, C. Van Der Veen, Splitting failure of a strain-softening material due to bond stresses, in: A. Carpinteri (Ed.), Applications of Fracture Mechanics to Reinforced Concrete, Elsevier, Amsterdam, The Netherlands, 1992,10:333–346.
    [166]饶枭宇.预应力岩锚内锚固段锚固性能及荷载传递机理研究[D].重庆大学博士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700