用户名: 密码: 验证码:
岩土预应力锚固系统长期稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于大量的文献研究和实践,籍助济南绕城高速公路现场实测资料,利用理论分析、现场试验、室内试验和数值模拟等研究手段,对岩土预应力锚固系统长期稳定性进行了全面系统的深入研究,并结合实际工程对本文的研究思想进行了应用研究,确定了实际工程司服寿命,取得了一系列有益于理论和实践的研究成果。
     (1)通过全面研究岩土预应力锚固系统作用机理、类型及失稳机理,从动态观点对岩土预应力锚固系统及其长期稳定性进行了全新的定义和诠释,揭示出杆体材料应力腐蚀是决定其长期稳定性的根本因素,建立了岩土预应力锚固系统长期稳定性的总体研究框架,确定了研究的基本理论方向。
     (2)通过长期现场跟踪监测,揭示了锚索预应力在不同时期及不同影响因素作用下的变化特征和规律,降雨、昼夜温度变化、季节温度引起预应力产生近似闭合的“大循环”、“小循环”和“附加循环”波动变化特征,波动变化长期存在且滞后于影响因素的变化。通过采用流变力学理论研究与实际监测数据分析相结合的方法,构建了反映岩土体蠕变和预应力杆体材料松弛耦合作用的四参数本构模型,首次提出了预应力变化的“平稳衰减叠加波动”机理,建立了预测预应力长期变化的经验模型P=Ae~(-a(t-b))+B+Dsin(w_2t+φ_2)+F+Ce~(-ct)sin(w_1t+φ_1)。
     (3)通过确定应力腐蚀的主要影响因素和正交组合分析,创造性地研制了模拟岩土环境中金属杆体材料应力腐蚀的室内足尺试验方法和装置。基于室内试验,确定了应力腐蚀的发展规律,首次建立了表征杆体材料应力腐蚀特征的定量公式C_l=p_1·x_1~(p_2)·e~(-p_3x_2)·(p_4+x_3~(p_5)),奠定了岩土预应力锚固系统司服寿命研究的理论基础。通过现场原位测试,首次揭示了实际工程环境中岩土预应力锚固系统应力腐蚀的典型分布和断面特征。利用现场原位试验数据对室内试验规律进行修正后,可用于预测实际岩土预应力锚固系统的司服寿命。
     (4)通过首次进行的在役预应力锚索现场原位足尺卸载与数值模拟的对比试验研究,揭示了单锚失效效应和岩土体内部应力调整规律,提出了不同位置锚索影响因子与间距的关系δ=f(L)。采用三维连续介质快速拉格朗日计算程序的数值模拟方法研究了群锚失效效应和稳定性丧失扩展规律,提出局部预应力锚固结构失效发展具有非单调连续性。当失效锚索达到一门槛值,岩土体纵向塑性区与临空面贯通,岩土体首先发生局部失稳。局部失稳所在的相对位置(距离)和数量对整体稳定性的影响具有显著区别。对于实际工程,得出当失效锚索多于8根或坡体表面塑性面积超过200m~2时,发生局部失稳;主滑坡相邻级坡体同一纵断面同时发生局部失稳,或者发生能够相互贯通的多处(三处以上)局部失稳时将丧失整体稳定性等重要结论。
     (5)在提出岩土预应力锚固系统长期稳定性系统控制原理和专家预测复合控制方法的基础上,首次给出了考虑应力腐蚀并基于锚索失效数量门槛值最大的动态优化设计方法。全面分析研究了岩土预应力锚固系统稳定性的三种判据,创造性的建立了基于预应力变化规律和应力腐蚀规律的司服寿命确定方法,确定出实际工程的司服寿命为41年及不同部位的司服寿命范围。首次结合不同应力腐蚀量化特征和现场监测结果,提出了不同失效情况下的预警加固处理时机和针对不同预警失稳预应力锚固系统的加固处理方法。
Based on literature research and practice,wherewith the field testing data of Jinan round city express-way,the long term stability of the geotechnical prestressed anchor system had been lucubrated entirely by utilizing such research means as theory analysis, field examination,indoor experiment,etc.By relating to the actual engineering,the application research about the study thought was carried out,then determining the service life of the actual engineering,obtaining a series of research production which were beneficial to the theory and practice.
     (1) Based on entire study of the operation mechanism,types and failure mechanism of geotechnical prestressed anchor system,the fire-new conception of the geotechnical prestressed anchor system and it's long term stability were defined from dynamic viewpoint,it revealed that the stress corrosion of pole materials was the fundamental factor which would determine it's long term stability.It constructed the collectivity research frame of long term stability for the geotechnical prestressed anchor system,ascertained the basic theory aspect of research.
     (2) By means of the long term tracking field-monitoring,it revealed the characteristic and regularity of the anchor cable prestress variation under the different influence factors and during different period.The prestress variation,which caused by the rain,temperature change day and night,temperature change every year,had obviously undulation characteristic,which was like approximatively close loop,these loop were called separately "the big recurrence","the small recurrence" and "the additive recurrence".The undulation variation chronically existed and lag behind the change of the influence factors.By means of combining the rehological mechanics and the actual monitoring rule,based on the Kelvin model and Burgers model,it found the four parameter constitutive model,which could reflect the coupled characteristic of the geotechnical creep and the relaxation of the pole materials.For the first time,it put forward the mechanism of "placidly attenuation superposing undulation variation",the experiential model was established by utilizing the formula "P=Ae~(-a(t-b))+B+Dsin(w_2t+φ_2)+F+Ce~(-ct) sin(w_1t+φ_1)",which could forecast the long term prestress variation.
     (3) By means of making certain the principal influence factors and orthogonal combinatory analysis,it creatively manufactured the indoor full-scale experimentation technic and equipments,which could simulate the corrosion of the metal pole materials as actual geotechnical condition.Based on the indoor examination,it ascertained the development rule of the stress corrosion,it was first time to found the quantificational formula "C_l=p_1·x_1~(p_2)·e~(-p_3x_2)·(p_4+x_3~(p_5))",which represented the stress corrosion rule, the theoretical foundation of the geotechnical prestressed anchor system service life research was established.In terms of the field-testing,it primarily revealed the typical distribution and cross-section characteristic of the stress corrosion in the actual circumstance.The indoor experiment rule was modified by utilizing field-testing data,it could be used to forecast the service life of the actual prestressed anchor engineering.
     (4) Through first contrastive research on the full-scale field-striping examination and the numerical simulation of the prestressed anchor cable,it revealed the invalidation effect of the single anchor cable and the regulative rule of interior stress,and put forward the formula "δ=f(L)",which expressed the relationship of the influence modulus and space on the different location.The invalidation effect of group anchor cable and the instability expanding rule was researched by means of the numerical simulation of the three dimension continua fast Lagrangian calculation method,it revealed that the quantity of the failure anchor cable reached a critical scale,interior longitudinal plastic zone would connect to face of slope,the local instability occurred. The relative distance and quantity of the local instability had obviously different influence on the integral stability.For actual engineering,it made such important conclusion as the part slope become unsteady when the failure anchor cable exceed to 8 or the plastic area of the slope surface exceed to 200 m~2,when two local instability on the adjacent step of same vertical section occurred,or when more than three local instability could mutually joined up,the whole slope become unsteady.
     (5) It put forward the systemic control conception and combination control method of the geotechnical prestressed anchor system stability,it was first time to raise the dynamic optimizing design method based on the most critical scale due to the different combination of prestress and space,at the same time the stress corrosion was considered. It entirely analyzed the three criterion of the geotechnical prestressed anchor system stability,it creatively found the method of ascertaining service life based on the prestress variation rule and stress corrosion rule.The actual engineering service life would be 41 years,the different body of the slope would have different life range.By means of associating the different stress corrosion quantization characteristic and field-monitoring result,it was first time to put forward the warning and reinforcing opportunity for the different failure situation,and reinforcing measure which aimed at the different warning prestressed anchor system.
引文
[1]赵长海.预应力锚固技术[M].武汉:中国水利水电出版社,2001,1-8.
    [2]T.H.汉纳著,胡定等译.锚固技术在岩土工程中的应用[M].中国建筑工业出版社,1987.
    [3]程良奎,范景伦,韩军等.岩土锚固[M].中国建筑工业出版社,2003,2-29.
    [4]孙均.中国岩土工程锚固技术的应用与发展[M].国际岩土锚固与灌浆新进展,北京.中国建筑工业出版社,1996.
    [5]曾宪明,陈肇元,王靖涛等.锚固类结构安全性与耐久性问题探讨[J].岩石力学与工程学报,2004,23(13):2235-2242.
    [6]张弥.我国铁路隧道结构安全性和耐久性分析[A].工程科技论坛:土建结构工程的安全性与耐久性[C].北京:清华大学出版社,2001.
    [7]刘西拉.结构工程耐久性的基础研究[A].工程科技论坛:土建结构工程的安全性与耐久性[C].北京:清华大学出版社,2001:200-206.
    [8]曾宪明,雷志粱,张文巾等.关于锚杆“定时炸弹”问题的讨论——答郭映忠教授[J].岩石力学与工程学报,2002,21(1):143-147.
    [9]程良奎,韩军,张培文.岩土锚固工程的长期性能与安全评价[J].岩石力学与工程学报,2008,Vol.27 No.5:865-872.
    [10]黄福德等编.预应力锚索群锚加固机理研究[R].“八.五”国家科技公关项目研究报告.1995.
    [11]李宁,韩垣,陈飞熊等.预应力群锚加固机理数值试验研究[J].岩土工程学报,1997,19(5):60-67.
    [12]Lutz L.Gergeley P.Mechanics of band and slip of deformed bars in concrete[J].Journal of American Concrete Institute.1967,64(11):711-721.
    [13]Fuller,PG.,Cox R H T.Mechanics load transfer from steel tendons of cement based grouted[A],Fifth Australasian Conference on the MeChanics of Structures and Materials[C].Melbourne:Published by Australasian Institute of Mining and Metallllrgy,1995.
    [14]Hyett A J,Bawden W F,Reichert R D.The effect of rock mass confinement on the bond strength of fully grouted cable bolts[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1992,29(5):503-524.
    [15]肖昭然,李象范等.群锚荷载传递新方法-剪切位移传递函数综合法[A].岩土锚固工程技术[M]北京:人民交通出版社,1996:61-66.
    [16]顾金才,明治清,沈俊等.预应力锚索内锚固段受力特点现场试验研究[J].岩石力学与工程学报,1998,17(增):788-792.
    [17]何思明,田金昌,周建庭 胶结式预应力锚索锚固段荷载传递特性研究[J].岩石力学与工程学报2006年1月Vol.25 No.1:117-121.
    [18]尤春安 战玉宝 预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报Vol.24 No.6 2005年3月,925-928.
    [19]胡均涛,沈继红.预应力岩锚加大胶结式内锚头单孔张拉吨位的有效途径及其受力机理研究[A].岩土锚固工程技术的应用与发展[C].万国学术出版社,1996.
    [20]周承芳等.重力坝锚索的锚杆合理设计长度分析[A].岩土锚固工程技术.人民交通出版社,1996:79-93.
    [21]王建宇,牟瑞芳.按共同变形原理计算地锚粘结型锚头内力分布[A].国际岩_士锚固与灌浆新进展.中国建筑工业出版社,1996:209-219.
    [22]朱杰兵,韩军,程良奎等,三峡永久船闸预应力锚索加固对周围岩体力学性状影响的研究[J].岩石力学与工程学报,21(6),2002:853-857.
    [23]张发明,邵蔚侠岩质高边坡预应力锚固问题[J].河海大学学报,1999,27(6):73-76.
    [24]陈祖煜,张宏亮.汪小刚.边坡稳定三位分析的极限平衡法[J].岩土工程学报,2001.9:127-129.
    [25]Brahim B.,Mohamed C.,Haixue X.Long-term service behavior of cement grouted anchors in the laboratory and field[A].Anchors in Theory and Practice[C].Widmann(ed.).Balkema,Rotterdam,1995:396-403.
    [26]Benmokrane,B.and Ballivy,G.1991B.Investigation of stress distribution along cement routed rock anchors under uplifting loads(in French).CIM Bulletin,84(951):45-52.
    [27]Shield,D.R.Schnabel,H.JR,Wegtherby.Load transfer in pressure injected anchors of the Geotech.Eng.Division.ASCE.D.E.1978,GT9.l183-1196.
    [28]高大水、曾勇.三峡永久船闸高边坡锚索预应力状态监测分析[J].岩石力学与工程学报,2001,9:653-656.
    [29]袁小梅.边坡锚索的预应力损失估算[J].路基工程,1999,6:46-47.
    [30]张发明,陈祖煜,刘宁.岩体与锚固体间粘结强度的确定[J].岩土力学,2001,22(4):470-473.
    [31]丁多文,白世伟,罗国辉.预应力锚索加固体应力损失分析[J].工程地质学报,1995,3(1):65-69.
    [32]张发明,刘宁,陈祖煜.影响大吨位预应力长锚索锚固力损失的影响因素分析[J].岩土力学,2003,24(4):194-198.
    [33]陈安敏、顾金才、沈俊、明治清.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究[J].岩土力学与工程学报,2002,2:251-256.
    [34]朱晗迓、孙红月、汪会帮.边坡加固锚索预应力变化规律分析[J].岩石力学与工程学报,2004,8:2756-2760.
    [35]宋修广,张思峰,李英勇.路堑高边坡动态监测与分析[J].岩土力学,2005,7:1153-1156.
    [36]夏宁.锈蚀锚固体力学性能研究及耐久性评估初探[D].南京:河海大学,2006:5-20.
    [37]王嫒俐,姚燕.重点工程混凝土耐久性的研究与工程应用[M].北京:中国建材工业出版社,2001.
    [38]Stanton D E.Process American Society[J].Civil Engineer,1940.
    [39]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6.
    [40]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [41]姚燕.混凝土材料的耐久性——重大工程混凝土安全性的研究进展[A].工程科技论坛:土建结构工程的安全性与耐久性[C].北京:清华大学出版社,2001.
    [42]张誉.张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [43]Nakakyama,M.Beaudoin,B.B.A novel technique determining bond strength developed between cement paste and steel[J].Cement and Concrete Research.1987,22 (3):478-488.
    [44]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003,34(5):328-33.
    [45]赵勤贤.混凝土结构工程耐久性研究的历史、现状及趋势[J].建筑技术开发,2002,29(9):71-72.
    [46]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [47]YBJ219-89.《钢铁工业建(构)筑物可靠性鉴定规程》[S].北京:冶金工业出版社,1990.
    [48]E.Cadoni.Tension fatigue failure of short anchor bolts in concrete[A].Anchors in Theory and Practice[C].Widmann(ed.).Balkema,Rotterdam,1995:405-410.
    [49]Marcel Grimm.Electrical testing of ground anchors[A].Anchors in Theory and Practice,Widmann(ed.).Balkema[C].Rotterdam,1995:421-428.
    [50]H.Gaitzsch.Notable technical aspects of the supervision and supportive measurement of the rock anchor project at the Eder dam[A].Anchors in Theory and Practice[C].Widmann(ed.).Balkema,Rotterdam,1995:411-420.
    [51]Dieter Jungwirth.Corrosion protection systems for high-strength tendons in geotechnics[A].Anchors in Theory and Practice[C].Widmann(ed.).Balkema,Rotterdam,1995:429-436.
    [52]T.F.Herbst,U.von.Matt,L.V.Martak.Euopean standard on ground anchors prEn 1537,harmonizing by great variety[A].Anchors in Theory and Practice[C].Widmann(ed.).Balkema,Rotterdam,1995:437-446.
    [53]H.Stauble.Critique on the anchor technique shown by history cases[A].Anchors in Theory and Practice[C].Widmann(ed.).Balkema,Rotterdam,1995:455-459.
    [54]R.P.Davies,E.C.Knottenbelt.Investigations into long-term performance of anchors in South Africa with emphasis on aspects requiring care[A].Ground anchorages and anchored structures[C].Thomas Telford,London,1997:384-392.
    [55]DR R.B.Weerasinghe*,DR R.W.W.Anson*.Investigation of the Long Term Performance and Future Behaviour of Existing Ground Anchorages[A].Ground anchorages and anchored structures[C].Thomas Telford,1997:353-362.
    [56]Wilhelm Manns.Long-term influence of aggressive carbonic acid upon the bearing capacity of ground anchors[A].Ground anchorages and anchored structures[C].Thomas Telford,1997:393-397.
    [57]Ingo Fedderwen.Improvement of the Overall Stability of a Gravity-Dam with 4500Kn-Anchors[A].Ground anchorages and anchored structures[C].Thomas Telford,1997:318-325.
    [58]D E Jones,D Tonge,A Simpson.Design,Installion,Testing and Long Term Monitoring of 200 tone Rock Anchorages at Sandon Dock,Liverpool[A].Ground anchorages and anchored structures[C].Thomas Telford,1997:297-307.
    [59]赵健,冀文政,肖玲等.锚杆耐久性现场试验研究[J].岩石力学与工程学报,2006,25(7):1377-1385.
    [60]Li Yingyong,Zhang Sifeng,Song Xiouguang.In-situ Testing Study on Durability of Prestressed Anchorage Structures[A].Proceeding of 1st International workshop on service life design for underground structures[C].Shanghai,2006:352-358.
    [61]谢邦优,陈志伟.地下工程中钢筋(碳钢)锈蚀的影响因素探讨[J].西部探矿工程,2005,10:161-162.
    [62]Staehle R.Mechanism of environment sensitive cacking of materials[J].The Metal Society,1979.
    [63]俞健.第一届氢脆、应力腐蚀和腐蚀疲劳学术会议报告集[C].1985:309.
    [64]Champion F.A.,Symposium on Internal Stress in Metals and Alloys,London,1948:311.
    [65]Dix E.H.,Accelerating of the rate of corrosion by high constant stresses[J].Trans,AIME,1940,137,11.
    [66]Keating F.H.,Symposium on Internal Stress Corrosion Fracture,London,1948:311.
    [67]Gilbert P.T.,Hadden S.E.,A theory of the mechanism of stress corrosion in aluminium-7%magnesium alloy[J].Inst.Metals.1950,77,237.
    [68]Hoar T.P.,Hines J.G.,Corrosion current of stress corrosion cracking[J].JISI,1954,177:148.
    [69]Evans U.R.,Stress-corrosion cracking and embrittlement,Roberson W.D.ed.,1956.
    [70]Troiano A.R.,The role of hydrogen and other interstitials in the mechanical behavior of metals[J].Trans.ASM,1960:52-54.
    [71]Oriani R.A.,Stress Corrosion Cracking and Embrittlement of Iron-base Alloys,NACE,1977.
    [72]Kazinkzy F.De.,A theory of hydrogen embrittlement[J].Journal Iron & Steel Institute,1954,177:85.
    [73]Beacham C.D.,A new method for hydrogen-assisted cracking,Metallurgical Transactions,1972,21:437.
    [74]Dunlop A.K.,Stress corrosion cracking of low strength low alloy nickel steels in sulfide environments[]].Corrosion,1978 34(3):88-96.
    [75]Edeleanu C.E.,Forty A.J.Some observations on the SCC of a-abrass and similar alloys[J].Phil.Mag.,1960,5:1029.
    [76]高进,孙金厂.金属材料应力腐蚀失效分析[J].山东轻工业学员学报,2001,3:47-50.
    [77]胡坚石.预应力钢丝的应力腐蚀[J].金属制品,2002,4:5-8.
    [78]李向欣,孙立,那桂兰.关于金属应力腐蚀问题的分析[J].中国氯碱,2004,3:33-35.
    [79]幕儒,孙伟等.荷载作用下高强混凝土的硫酸盐侵蚀[J].工业建筑.1999,8:52-63.
    [80]林毓梅,吴相豪.在盐酸溶液(Ph=2)中混凝土腐蚀试验研究[J].河海大学学报,1996,7:114-118.
    [81]林毓梅,姜国庆.在5%硫酸钠溶液中混凝土应力腐蚀试验研究[J].混凝土与水泥制品,1996,2:22-25.
    [82]吕战鹏,杨武.局部腐蚀作用下设备的寿命预测[J].腐蚀与防护vol.20 N0.5:206-211.
    [83]郭浩,蔡殉,杨武.管线钢应力腐蚀破裂的机理与寿命预测[J].机械工程材料,vol.26No.10,2002,10:1-3.
    [84]毋玲,陈召涛,孙秦.应力腐蚀损伤裂纹起始寿命计算模型[J].机械强度2004,26(s):058-059
    [85]Erkin Gamboa,Andrej Atrens.Environmental influence on the stress corrosion cracking of rock bolts[J].Engineering Failure Analysis.2003,10:521-558.
    [86]赵健,冀文政,曾宪明.应力腐蚀对锚杆使用寿命影响的试验研究[J].岩石力学与工程 学报,vol.26 suppl,2007:3427-3431.
    [87]汪剑辉,曾宪明,赵强.多因素耦合腐蚀环境下锚杆腐蚀机制试验研究[J].施工技术,2006,11:30-33.
    [88]黄福德.李家峡水电站层状岩质高边坡现场大型预应力群锚加固机理试验研究[J].西北发电[J],1995:30-33.
    [89]黄福德,吕祖衍.预应力群锚高边坡增稳机理研究[J].西北水电,2000,4:49-52.
    [90]李宁,赵彦辉,韩炬等.单锚的力学模型与数值仿真试验分析[J].西安理工大学学报,1997,13(1):6-11.
    [91]李宁,韩垣,陈飞熊.群锚加固机理与效果数值仿真试验研究[J].西安理工大学学报,1997,13(2):104-109.
    [92]沈俊.预应力锚索加固机理及设计计算方法研究[D].合肥:中国科学技术大学,2005.
    [93]张发明,刘宁,赵维炳.岩质边坡预应力锚固的力学行为及群锚效应[J].岩石力学与工程学报,2000,19(增):1077-1080.
    [94]张发明,邵蔚侠.岩质高边坡预应力锚固问题研究[J].河海大学学报(自然科学版),1999,27(6):18-26.
    [95]何思明,预应力锚索作用机理研究[D].成都:西南交通大学,2002,6.
    [96]张发明.岩质边坡预应力锚固效应及应用研究[D].南京:河海大学,2000.
    [97]杨松林.锚杆抗拔机理及其在节理岩体中的加固作用[D].武汉:武汉大学,2001:25.
    [98]高勤福,马道局.锚杆失锚现象分析与防治措施[J].煤矿开采,2001,4:76-79.
    [99]官山月,马念杰.树脂锚杆锚固失效的力学分析[J].矿山压力与顶板管理,1997,3:201-203
    [100]Jean-Louis Briaud,William F.Powers Ⅲ,David E.Weatherby.Should grouted anchors have short tendon bond length?[J].Journal of Geotechnical and Geoenvironmental Engineering.1998,2:110-119.
    [101]B.Benmokrane,A.Chennouf and H.S.Mitri.Laboratory evaluation of cement-based grouts and grouted rock anchors[J].International Journal of Rock Mechanics and mining Science&Geomechanics Abstracts.1995,32(7):633-642.
    [102]A.Kilic,E.~asar and A.G.Celik.Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J].Tunnelling and underground space technology.2002,17:355-362.
    [103]Fumio Ito,Fumiharu Nakahara,Ryuichi Kawano,Seoug-Seung K,Yuzo Obara.Visualization of failure in a pull-out test of cable bolts using X-ray CT[J].Construction and Building Materials.2001,15:263-270.
    [104]A.Kilic,E.Yasar,C.D.Atis.Effect of bar shape on the pull-out capacity of fully-grouted rockbolts[J].Tunnelling and underground space technology.2003,18:1-6.
    [105]K.llamparuthi,K.Muthukrishnaiah.Anchor in sand bed:delineation of rupture surface[J].OceanEngineering.1999,26:1249-1273.
    [106]A.Serrano,C.Olalla.Tensile resistance of rock anchors[J].International Journal of Rock Mechanics and mining Sciences.1999,36:449-474.
    [107]茜平一,刘祖德.浅埋斜锚板板周土体变形破坏特性[J].岩土工程学报,1992,14(1):62-66.
    [108]何思明,王成华.预应力锚索破坏特性及极限抗拔力研究[J].岩石力学与工程学报,2004,23(17):2966-2971.
    [109]许明,唐树名,李强.单锚及群锚失效对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报,2007,Vol.26 Supp.1:2754-2759.
    [110]赵焕臣,许树柏,合金生.层次分析法—一种简易的新决策方法[M].北京:科学出版社,1956.
    [111]陈奕奇,郭红仙,宋二祥等.岩土锚固结构腐蚀程度的评估[J].岩石力学与工程学报,2007,vol.26 No.7:1492-1498.
    [112]李铀,白世伟.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩土力学,Vol.24No.5:686-690.
    [113]徐年丰.岩体锚索预应力筋材料强度利用系数探讨[J].人民长江,Vol.32,No.9:27-29.
    [114]谭志林,徐年丰.三峡工程预应力锚索现场试验及预应力损失与应力不均匀性分析[A].世纪之交的预应力新技术.北京:专利文献出版社,1998.
    [115]马林.国产1860级低松弛预应力钢绞线疲劳性能研究[J].铁道标准设计,2000,5:21-23.
    [116]叶惠飞.锚索预应力损失变化规律分析[D].杭州:浙江大学.2004.
    [117]苏学贵,李彦斌,孟秀生.锚索预应力损失影响因素分析[J].西安矿业学院学报,1999,19(增):87-90.
    [118]刘玉元,高杰.锚索预应力降低的影响因素探讨[J].探矿工程,2005,1:27-28.
    [119]张宏博,李英勇,宋修广.边坡锚固工程中锚索预应力的变化研究[J].山东大学学报,2002(12):574-577.
    [120]黄福德.高边坡群锚加固中锚索体的动态受力特征[J].西北水电,1997,(4):33-37.
    [121]丁多文,白世伟.预应力锚索加固岩体的应力损失分析[J].工程地质学报,1995,3:65-69.
    [122]二滩水电开发公司.岩土工程安全监测手册[M].北京:中国水利电力出版社,1999.
    [123]周永江,何思明,杨雪莲.预应力锚索的预应力损失机理研究[J].岩土力学,2006,27(8):1353-1356.
    [124]张发明,刘宁等.影响大吨位预应力长锚索锚固力损失的因素分析[J].岩土力学,2003(4):194-197.
    [125]李志强.高强度低松弛预应力钢绞线的推广使用[J].西部探矿工程,2005,12:241-243.
    [126]周德培,朱本真,毛坚强.流变力学原理及其在岩土工程中的应用(M).成都:西南交通大学出版社,1995.
    [127]王来责,赵娜,何峰.软岩的非线性蠕变模型及其稳定性分析[J].辽宁工程技术大学学报,2006,10:680-682.
    [128]张向东,李永靖等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [129]何思明,王全才.预应力锚索作用机理研究中的几个问题[J].地下空间与工程学报,2006,2(1):160-165.
    [130]夏建交,谭东山.混凝土徐变的影响因素分析[J].中国科技信息,2007,7:26-28.
    [131]孙学毅.边坡加固机理探讨[J].岩石力学与工程学报,2004,23(16):2818-2823.
    [132]杨挺青.弹粘性力学[M].华中理工大学出版社,1988.
    [133]刘雄.岩石流变学概论[M].地质出版社,1995.
    [134].王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石 力学与工程学报,2004,23(5):793-796.
    [135]李向欣,孙立,那桂兰.关于金属应力腐蚀问题的分析[J].中国氯碱,2004,3:33-35.
    [136]T.Nakayama,M.Takano.Direct observation of stress corrosion crack tips of type 304 stainless steel in a boiling 42%MGC12 solution[J].Corrosion,37(1981),226.
    [137]E.H.Dix,Aluminum,Zinc-magnsium Alloys.Their development and commerical production(1949 Edward de Mille Campbell Memorial Lecture)[J].Trans.ASM,42(1950),1057.
    [138]N.A.Nielsen,Physical Metallurgy of Stress Corrosion Fracture,Inter.Sci.,T.N.Rhodin eds,1959,341.
    [139]P.Lynch.A fractograPhic study of gaseous hydrogen embrittlement and liquid-metal embrittlement in atempered martensitic steel,Acta Metall.32(I 984),79.H_H.Uhlig.Corrosion and Corrosion Control,1971:135.
    [140]黄育,郭志昆,向晓峰.锚杆腐蚀与防腐保护[J].岩土工程技术,2004,10:263-268.
    [141]左勇志,闫玉海,宋晓冰.温度对碳化引起的钢筋混凝土腐蚀影响研究[J].工业建筑,2003,33(3):8-10.
    [142]江以德.锚固失效分析[J].安徽理工大学学报(自然科学版),2004,24(2):5-8.
    [143]C.Sagaseta,J.M.Sanchez,J.Canizai.A general analytical solution for the required anchor force in rock slopes with toppling failure[J].International Journal of Rock Mechanics and Mining Sciences,Volume 38,Issue 3,2001,3:421-435.
    [144]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座—Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [145]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [146]吕庆,孙红月,尚岳全.强度折减有限元法中边坡失稳判据的研究[J].浙江大学学报(工学)2008,42(1):83-87.
    [147]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [148]李红,宫必宁,陈琰.有限元强度折减法边坡失稳判据[J].水利与建筑工程学报,2007,5(1):79-82.
    [149]TAN C P,DONALD I B.Finite element calculation of dam stability[C].Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering.San Francisco:[s.n.],1985,4:2041-2044.
    [150]丁秀丽,盛谦等.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报,2002,21(7):980-988.
    [151]吕庆,孙红月等.破碎岩质边坡预应力锚固机制数值模拟研究[J].岩石力学与工程学报,2006,25(9):1849-1856.
    [152]Pande G N,Beer G,Williams J R.岩石力学中的数值方法[M].郑颖人译.重庆:后勤工程学院,1993.
    [153]Itasca Consulting Group,Inc.FLAC-3D(Fast Lagrangian Analysis of Continua in 3Dimensions).USA;Itasca Consulting Group,Inc,1997.
    [154]邹栋,郑宏.快速拉格朗日法及其在边坡稳定性分析中的应用[J].矿业研究与开发,2005,25(5):80-83.
    [155]丁秀美,黄润秋等.预应力锚索框架作用下附加应力的FLAC-3D数值模拟[J].成都理工大学学报(自然科学版),2003,30(4):339-345.
    [156]龚晓南.土的塑性力学[M].杭州:浙江大学出版社,1997,7.
    [157]李英勇,宋修广.边坡动态监测及安全性模型的建立[J].公路交通科技,2006,Vol.23,No.3:128-131.
    [158]徐年丰,陈胜宏.我国预应力锚索加固技术的发展与存在的问题[J].水利水电快报,2001,22(10).
    [159]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-630.
    [160]吕建红,袁宝远等.边坡监测与快速反馈分析[J].河海大学学报,1999,27(6):98-102.
    [161]夏元友,朱瑞庚等.临滑边坡的施工期监测设计方法[J].中国地质灾害与防治学报,1994,5(增):70-375.
    [162]邓铁六,王清标,胡建明.振弦传感技术的新进展及新型锚索测力计[J].岩石力学与工程学报,第20卷增刊:1769-1771.
    [163]李亦明.MS-20型锚索测力计在清江隔河岩升船机边坡锚索加固中的应用[J].岩石力学与工程学报,第20卷增刊:1823-1826.
    [164]王清标,吕爱钟,邓铁六.长效振弦式锚索测力计应用研究[J].岩土力学,VoL24增1:150-153.
    [165]赵尚传.混凝土结构基于可靠性和优化理论剩余寿命分析[J],工业建筑,2002,32(4):37-38.
    [166]肖从真.混凝土中钢筋锈蚀的机理研究及数论模拟方法[D].清华大学,1995.
    [167]屈文俊,罗西勤.既有结构剩余技术寿命预测[J].中国公路学报,1999,12(4):29-36.
    [168]李广惠.在役建筑结构的剩余寿命研究[J].郑州工业大学学报,1999,20(3):6-9.
    [169]Swamy R.N et al.A critical evaluation of chloride penetration into concrete in marine environment[A],.International Symposium on the Corrosion and Corrosion Protection of Reinforcement[C].Sheffield University,1994.
    [170]Chan H.Y,Melchers R.E.Time~dependent resistance deterioration in probabilistic structural systems[J].Civil Engineering,1995,12:115-132.
    [171]Tao Z W et al.Reliability~based structural design with markov decision processes,J.of Structural Engineering,1995,121(6).
    [172]李广惠.在役建筑结构的剩余寿命预测[J].郑州工业大学学报,1999,20(3):6-9.
    [173]惠云岭.混凝土结构钢筋耐久性损伤评估及寿命方法[J].工业建筑,1997,27(6):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700