用户名: 密码: 验证码:
预应力锚索加固岩体的机理分析和数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力锚索技术是一种广泛应用于水利水电、铁路、公路、工业与民用建筑中的加固支护技术。它对充分发挥岩体的自承潜力,调节和提高岩土的自身强度和自稳能力,减轻支护结构的自重有着重要的作用。预应力锚索还能节约工程材料,保证施工的安全与稳定,因而具有显著的经济和社会效益。但由于实际工程的复杂性,对预应力锚索作用效果造成影响的因素很多,导致锚索作用机理的研究仍然存在不少问题。因而,探求预应力锚索作用效果的具有普遍意义的结果是值得关注的课题。理论研究方面,本文推导了预应力锚索锚头周边岩体的附加应力场和位移场的理论公式,并对群锚效应进行了理论分析;建立了拉力型锚索和压力型锚索锚固段附近岩体的附加应力场和位移场的理论公式,以及锚固段注浆体与岩体接触面上的摩擦应力的理论公式。数值计算方面,确定了三维八结点和四结点点辐射映射无限元的位移函数和坐标映射函数,并与等参元耦合,对预应力锚索锚头和锚固段的受力进行了数值模拟计算。本文完成的主要工作有:
     (1)根据半空间无限体理论的Boussinesq解,推导了预应力锚索锚头附近岩体附加应力场和位移场的理论公式,得出了预应力在锚头周边岩体中产生的附加应力和位移的形态及影响范围,并讨论了各自的受力特征、分布规律、影响因素等。将理论分析结果与用FLAC3D软件进行的数值计算结果进行了对比。两者结果一致,表明本文的理论推导是正确的。
     (2)由空间无限体理论的Kelvin解,提出了拉力型锚索锚固段周边岩体的附加应力和变形的理论公式,得出了预应力在锚固段周边岩体中产生的附加应力和位移的形态及影响范围。在此基础上,推导了拉力分散型锚索锚固段附近岩体的应力和位移的理论公式,以及锚固段注浆体与岩体接触面上的摩擦应力的理论公式,得出了摩擦应力的空间形态。
     (3)由空间无限体理论的Kelvin解,推导了压力型锚索锚固段附近岩体的附加应力场和位移场的理论公式。在此基础上,推导了压力分散型锚索锚固段的附加应力和位移以及锚固段注浆体与岩体接触面上的剪应力的理论公式。讨论了预应力在锚固段周边岩体中产生的附加应力和位移的形态及影响范围,以及锚固段注浆体与岩体接触面上剪应力的分布规律。
     (4)由锚索锚头周边岩体附加应力场和位移场的理论公式推导了群锚的理论公式,并对群锚效应在岩体表层产生的岩石表层效应做出分析,指出这种效应相当于在岩体表层形成了一堵岩石锚固墙。将理论结果与用FLAC3D分析的数值结果进行了对比,两者的结论是一致的。
     (5)将一维点辐射无限元理论推广到三维,推导了三维四结点和三维八结点点辐射无限元的形函数和坐标变换函数,并将其分别与八结点和二十结点等参元耦合,模拟计算了施加预应力后预应力锚索锚头和锚固段的位移,并与理论推导结果进行了对比分析。实践表明,无限元法是模拟无限域问题比较好的一种数值方法。
As a reinforcing and supporting technology, pre-stress anchor has been widely used in the reinforcement of water conservancy engineering, water and electricity engineering, railway, highway, industry and civil constructions. It takes a key role to inspire the self-bearing capacity of rock mass, to adjust and improve the stregth and self-stabilization of rock and soil, and to decrease the deadweight of the supporting structure. It also can be used to save engineering materials and assure the safty and stability of the construction, bring to a great economy and social benefit. Because of the complexity of practical engineering, there have many influence factors on the effection of pre-stress anchor and difficult problems in the research of anchor mechanism. Therefore, it is need to take more attention to study the action effection of pre-stress anchor. In this paper, the formulas are derived to describe the stress and displacement fields in the rock mass around the pre-stress anchor head. The multi-anchor effection is studied. The formulas of the stress and the displacement fields in the rock mass around the pull-type and compression-type pre-stress anchorage segments are given. The formulas of the friction stress on the interface of anchorage segment plasm and rock mass are obtained furtherly. In numerical study, the displacement functions and coordinate radiation functions of the 3D 4-node and 8-node dot radiation infinite elements are derived. They are coupled with the isoparameter elements to simulate the action of the pre-stress anchor head and segment. The thesis includes the following contents:
     (1)Based on Boussinesq equation of the semi-space infinite solution, the theoretical formulas of the extral stress and displacement fields in the rock mass around the pre-stress anchor head are proposed. The distribution shape of the stress, displacement and the influence range of the pre-stress around the anchor head are obtained. The stress characters, distributing rule and influence factors are discussed. The theoretical results are compared with the numerical simulation results by FLAC3D, and agree with each other.
     (2)Based on Kelvin equation of the infinite space theory, the theoretical formulas of the extral stress and displacement in the rock mass around the pull-type anchor segment are derived. The distribution shape and influence range of the extral stress and displacement in the rock around the pull-type anchor segment are obtained. Furthermore, the theoretical formulas of the stresses and the displacements in the rock mass around the dispersing-pull-type anchor segment are deduced. The theoretical formulas of the friction stresses on the interface of the anchor segment plasm and the rock mass are derived, and the distribution shape are also obtained.
     (3)Based on Kelvin equation of the infinite space theory, the theoretical formulas of the extral stress and displacement in rock mass around the compression-type anchor segment and the dispersing-compression-type anchor segment are derived. The theoretical formulas of the friction stress on the interface of the anchor segment plasm and the rock mass are derived. The distribution shape and the influence range of the extral stress and displacement in the rock around the compression-type anchor segment are obtained. The distribution rule of the friction stress is summarized.
     (4)Based on the theoretical formulas of the extral stress and the displacement in the rock mass around the singal anchor head, the formulas of the multi-anchor are derived. The surfacial effection on the rock mass caused by the multi-anchor effection is studied. The results indicate that the effection is a homologous rock-anchor wall on the rock mass surface. The theoretical results are compared with the numerical simulation results of FLAC3D, and agree with each other.
     (5)The theory of 1D dot radiation infinite element is extended to 3D case. The displacement functions and coordinate radiation functions of the 3D 4-node and 8-node dot radiation infinite elements are derived. They are coupled with 8-node and 20-node isoparameter elements to simulate the displacements of the pre-stress anchor head and segment respectively. The numerial results are compared with the theoretical results, showing that the infinite element method is an effective numerical method to simulate the infinite field problem.
引文
[1]梁炯鋆.锚固与注浆技术手册.北京:中国电力出版社, 2003
    [2]闫莫明,徐祯祥,苏自约.岩土锚固技术手册.北京:人民交通出版社, 2004
    [3] Porterfield J.A., Cotton D.M. and Byme R.J. Soil Nailing Field Inspectors Manual. Federal Highway Administration, Washington D.C., FWHA-SA-93-068, 1994
    [4]水利部水利水电规划设计总院.预应力锚固技术.北京:中国水利水电出版, 2001
    [5]程良奎,范景伦,韩军等.岩土锚固.北京:中国建筑工业出版社, 2003
    [6] Weatherby D.E., Tiebacks. Federal Highway Administration. Washingtong D. C., FHWA-RD-82-047, 1982
    [7] Cheney B., Richard S. Permanent Ground Anchors. FWHA-DP-68-IR, Federal Highway. Administration, Washington D.C., 1988
    [8] Elias V., Juran I. Soil Nailing for Stabilization of Highway Slopes and Excavations. Federal Highway Administration, Washington D.C., FHWA-RD-89-198, 1991
    [9] French National Research Project Clouterre. Recommendations Clouterre 1991 Soil Nailing Recommendations, Federal Highway Administration, Washington D.C., FHWA-SA-93-026, 1991
    [10] Brandl H., Adam D. Soil and rock nailing-stability analyses and case studies. 1st International Conference on Soil Nailing & Stability of Soil and Rock Engineering, 2004(10):1-16
    [11] Cook R.A., Bishop M.C., Hagedoorn H.S. et al. Adhesive bonded anchors structural and effects of in-service and installation conditions. Structural and Materials Research Report, University of Florida, 1994, 94(2):23-35
    [12] Cook R.A. Behavior of Chemically Bonded Anchors. Journal of Structural Engineering, 1993, 119(9):51-56
    [13] Cook R.A., Kunz J., Fuchs W. et al. Behavior and Design of Single Adhesive anchors under Tensile Load in Uncraced Concrete. ACI Structural Journal, 1998(1):66-75
    [14] Ostermayer H., Scheel F. Research on ground anchors in noncohesive soil.Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. The Japanese Society of Soil Mechanics and Foundation Engineering, 1977(5):92-97
    [15] Stillborg B. Experimental investigation of steel cables for rock reinforcement in hard rock. Sweden: Lulea University of Technology, 1984
    [16] Nakakyama M., Beaudoin B.B. A novel technique determining bond strength developed between cement paste and steel. Cement and Concrete Research, 1987, 22(3):478-488
    [17] Goris J.M., Conway J.P. Grouted flexible tendons and scaling Investigations. Proceeding of the 13th World Mining Congress. Sweden: Published by Rotterdam, Balkena, 1987
    [18] Hyeet A.J., Bawden W.F., Reichert R.D. The effect of rock mass confinement on the band strength of fully grouted cable bolts. International Journal of Rock Mechanics Mining Science and Geomorphic, 1992, 29(5):503-524
    [19] Fuller P.G., Cox R.H.T. Mechanics load transfer from steel tendons of cement based grouted. 5th Australasian Conference on the Mechanics of structures and Materials., Melbourne: Published by Australasian Institute of Mining and Metallurgy, 1995
    [20] Jarred D.J., Haberfield C.M. Tendon/grout interface performance in grouted anchors. Ground Anchorages and Anchored Structures. London: Thomas Telford, 1997
    [21] Eligehausen R., Lehr B., Meszaros J.et al.著,张新乐译.两种粘结锚杆抗拉性能与设计.北京:中国建筑工业出版社, 2003
    [22] Eligchausen R., Spieth H.著,蔡灿柳译.插入式钢筋连接的性能与方法.北京:中国建筑工业出版社, 2003
    [23] Kim N.K. Performance of tension and compression anchors in weathered soil. Journal of Geotechnical and Geoenvironmental Engineering, 2003(12):1138-1150.
    [24] Chai X.J., Hayashi S., Du Y.J. Contribution of dilatance to pull-out capacity of nails in sandy clay. 1st International Conference on Soil Nailing & Stability of Soil and Rock Engineering, 2004(10):33-36
    [25] Khalaf M.N., Page C.L. Steel/mortar interface microstructure features and mode offailure. Cement and concrete research, 1997(8):197-208
    [26] Luo S.Q. Stabilization of slopes in residual soil nailing. lst international Conference on Soil Nailing & Stability of Soil and Rock Engineering, 2004 (10):95-102
    [27] Kim H.T., Kang I.K., Kwon Y.H.et al. Influence of Facing Stiffness on Global Stability of Soil Nailing Systems, 1st International Conference on Soil Nailing & Stability of Soil and Rock Engineering, 2004 (10):122-131
    [28]张发明,刘宁,赵维炳.岩质边坡预应力锚固的力学行为及群锚效应.岩石力学工程学报, 2000, 19(增刊):1077-1080
    [29]李铀,白世伟,朱维申等.预应力锚索锚固效应的仿真试验和数值模拟研究.岩土力学, 2004, 25(增刊):260-264
    [30]朱杰兵,韩军,程良奎等.三峡永久船闸预应力锚索加固对周边岩体力学性状影响的研究.岩石力学与工程学报, 2002, 21(6):853-857
    [31]邬爱清,韩军,罗超文等.单孔复合型锚杆锚固体应力分布特征研究.岩石力学与工程学报, 2004, 23(2):247-251
    [32]杨松林,荣冠,朱焕春.混凝土中锚杆荷载传递机理的理论分析和现场实验.岩土力学, 2001, 22(3):71-74
    [33]朱焕春,荣冠,肖明等.张拉荷载下全长粘结锚杆工作机理试验研究.岩石力学与工程学报, 2002, 21(3):379-384
    [34]徐景茂,顾雷雨.锚索内锚固段注浆体与孔壁之间峰值抗剪强度试验研究.岩石力学与工程学报, 2004, 23(22):3765-3769
    [35]陈安敏,顾金才,沈俊等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究.岩石力学与工程学报, 2002, 21(2):251-256
    [36]顾金才,沈俊,陈安敏等.锚索预应力在岩体内引起的应变状态模型试验研究.岩石力学与工程学报, 2000, 19(增刊):917-921
    [37] Wu S.X.. Dynamic experimental study of bond-slip between bars and the concrete in Xiao-Wan arch dam. New Developments in Dam Engineering-Wieland, Ren & Tan(eds), 2004, Taylor & Francis Group, London, ISBN 04 1536 240 7. 951-959
    [38] Lutz L. Gergeley P. Mechanics of band and slip of deformed bars in concrete. Journal of American Concrete Institute, 1967, 64(11):711-721
    [39] Hansor N.W. Influence of surface roughness of prestressing strand on bandperformance. Journal of Prestressed Concrete Instituta, 1969, 14(1):32-45
    [40] Goto Y. Cracks formed in concrete around deformed tension bars. Journal of American Concrete Institute, 1971, 68(4):244-251
    [41] Phillips S.H.E. Factors affecting the design of anchorage in rock. London: Cementation Research Ltd., 1970
    [42] Stang H., Li Z.J., Shah S.P. The pull-out problem-the stress versus fracture mechanical approach. ASCE, Journal English Mechanics, 1990, 116 (10):2136-50
    [43] Patrikis A.K., Andrews M.C., Yong R.J. Analysis of the single-fibre pull-out test by the use of Ram an spestroscopy. Part I: pull-out of aramid fibers from an epoxy resin, Composites Science and Technology 1994(2):387-396
    [44] Li Z.J., Barzin Mobersher, Surendra P. Characterization of interfacial properties in fibre reinforced commentitious composites. Journal of Americal Ceramic Society, 1991, 74:2156-2164
    [45] Marc A., Wood W.著,张新乐译,被动锚杆加固岩体的实用设计方法.北京:中国建筑工业出版社, 2003
    [46]赵赤云.预应力锚索锚固的作用分析.北京建筑工程学院, 1999, 15(2):84-88
    [47]曹文贵,速宝玉.岩体锚固支护的数值流形方法模拟及其应用.岩土工程学报, 2001, 23(5):581-583
    [48]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式.岩土工程学报, 2001,23(6):696-699
    [49]徐年丰,牟春霞,王利.预应力岩锚内锚段作用机理与计算方法探讨.长江科学院院报, 2002, 19(3):45-47
    [50]张季如.锚杆荷载传递机理分析的双曲函数模型.岩土工程学报, 2002, 24(2):32-42
    [51]何思明,张小刚,王成华.预应力锚索的非线性分析.岩石力学与工程学报, 2004, 23(9):1535-1541.
    [52]何思明,王成华.预应力锚索破坏特性及极限抗拔力研究.岩石力学与工程学报, 2004, 23(17):2966-2971
    [53] Coates D.F., Yu Y.S. The dimensional stress distribution around a cylindrical hole and anchor. 2nd International Conference on Rock Mechanics, Belgrade, 1970
    [54]李宁,赵彦辉,韩烜等.群锚对断层的加固机理分析及工程应用.西安理工大学学报, 1997, 13(3):210-215
    [55]黄福德,赵彦辉,李宁.预应力锚固机理数值仿真分析研究.西北水电,1995(1):8-17
    [56]丁秀丽,盛谦,韩军等.预应力锚索锚固机理的数值模拟试验研究.岩石力学与工程学报, 2002, 21(7):980-988
    [57]付敬,盛谦.高边坡预应力锚索加固的数值模拟分析.长江科学院院报, 1996, 13(3):52-55
    [58]徐前卫,尤春安,朱合华.预应力锚索的三维数值模拟及其锚固机理分析.地下空间与工程学报, 2005, 1(2):214-219
    [59]尤春安,战宝玉.预应力锚索锚固段的应力分布规律及分析.岩石力学与工程学报, 2005, 24(6):925-928
    [60]尤春安.压力型锚索锚固段的受力分析.岩土工程学报, 2004, 26(6):828-831
    [61]黄福德.高边坡群锚加固中锚索体的动态受力特征.西北水电, 1997, 62(4):33-37
    [62]孙学毅.边坡加固机理探讨.岩石力学与工程学报, 2004, 23(16):2818-2823
    [63]贾明魁,贾立安,刘银志.高应力破碎带大断面巷道支护技术研究.矿冶工程,2003, 23(5):12-14
    [64]刘银志,贾明魁.高应力破碎带松软岩层大断面巷道支护技术研究.建井技术, 2003, 24(1):23-26
    [65]谢红强,李利伟,何江达等.基于边坡强度参数反演分析及加固效果研究.云南水力发电, 2003, 19(1):11-15
    [66]庄心善,赵鑫.基于上限分析法确定土层群锚承载力分析.湖北工业大学学报, 2005, 20(2):1-3
    [67]涂平晖,张弥.螺旋群锚在岩土介质中极限抗拔力的试验分析及工程应用.中国安全科学学报, 2001, 11(5):77-81
    [68]李有生,贾玉琢.锚固体间距对岩土锚杆基础承载力影响的分析.东北电力学院学报, 1998, 18(2):57-61
    [69]陆锡铭,朱晗迓.破碎岩质边坡中群锚效应试验研究.公路交通科技, 2005, 22(6):66-69
    [70]尤春安.群锚静载试桩研究.岩土力学, 2004, 25(3):383-385
    [71]戴运祥,侯学渊,李象范.软地层中斜拉群锚特性的研究.岩土力学, 1996, 17(2):23-28
    [72]李刚,徐卫军等.三峡升船机结构预应力锚索试验研.长江科学院院报, 2004, 21(4):43-47
    [73]李端友,汤平,李亦明.三峡永久船闸一期工程岩锚预应力监测.长江科学院院报, 2000, 17(1):39-43
    [74]王文杰,赵德志,曾进群.松散介质预应力锚索加固机理研究.地下空间, 2002, 22(1):53-58
    [75]蒋忠信.预应力锚索加固松散体滑坡的机理与实践.铁道工程学报, 1999(1):72-77
    [76]唐树名,曾祥勇,邓安福.预应力锚索群锚锚固边坡均质岩体的室内模型试验研究.中国公路学报, 2004, 17(3):20-24
    [77]董学晟,盛谦,周火明等.三峡永久船闸高边坡开挖扰动区工程岩体力学性状研究.武汉:湖北科学技术出版社, 2003
    [78]张进华,傅立新.公路隧道三维无限元计算模型.中南公路工程, 2005(3):21-24
    [79] Yan L.B., Bicanic N. Finite and Infinite Element Method Analysis of the Longmen Buttress Dam. Department of Civil Engineering, Univesity College of Suansea U.K. C/R 584, 1986
    [80] Davis T.G., Bu S. Infinite boundary element for the analysis of half-space problem. Computers & Geotechnics, 1996, 19:137-151
    [81] Gao X.W., Davies T.G.. 3-D infinite boundary elements for half-space problem. Analysis with Boundary Elements, 1998, 21:207-213
    [82] Gao X.W., Davies T.G. Program for Boundary Element Method. Cambridge University Press, 2001
    [83] Bu S., Davies T.G.. Effective evaluation of non-singular integrals in 3D BEM. Advance English Software, 1995, 23:121-128
    [84] Yerli H.R., Kacin S., Kocak S. A parallel finite-infinite element modal for two-dimensional soil-structure interaction problems. Soil Dynamics andEarthquake Engineering, 2003, 23:249-253
    [85]杜庆华,余寿文.弹性理论.北京:科学出版社, 1986
    [86]徐芝纶.弹性力学.北京:高等教育出版社, 1983
    [87]吴家龙.弹性力学.上海:同济大学出版社, 1993
    [88] Ungless R.F.. An infinite finite element. University of British Columbia, 1973
    [89] Bettess P. More on infinite element. International Journal for Numerical Methods in Engineering, 1980, 17:1613-1626
    [90] Beer G., Meek J.L. Infinite domain element. International Journal for Numerical Methods in Engineering, 1981, 17:43-52
    [91] Zienkiewicz O.C. A novel boundary infinite element. International Journal for Numerical Methods in Engineering, 1983, 19:393-404
    [92]葛修润,谷先荣,丰宝祥.三维无界元和节理单元.岩土工程学报, 1986, 13(5):9-20
    [93]赵崇斌,张楚汉,张光斗.用无穷元模型模拟半无限平面弹性地基.清华大学学报, 1986, 26(3):51-63
    [94]张爱军,谢定义.复合地基三维数值分析.北京:科学出版社, 2004
    [95] Yang Y.B., Huang H.H. A 2.5D finite/infinite element approach for modeling visco-elastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering, 2001, 51:1317-1336
    [96]王元汉,李丽娟,李银平.有限元基础与设计程序.广州:华南理工大学出版社, 2001
    [97]丁皓江,何福保,谢贻权等.弹性和塑性力学中的有限单元法.北京:机械工业出版社, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700