用户名: 密码: 验证码:
基于酰胺基喹啉的锌离子荧光分子探针的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是人体内第二富集的过渡金属,在诸如基因转录、金属酶调控、神经信号传输等许多生命过程中起着关键性作用。荧光显微成像技术作为最有效的检测手段已广泛用于生物体内锌离子的研究。成功利用此项技术的关键是设计、合成适当的锌离子荧光成像试剂。尽管已有一些商业化的锌离子探针,人们还是在努力设计、合成新的此类荧光分子,不断发现新的荧光识别原理,提高灵敏度、选择性和可靠性等,以满足各种不同的研究需要。
     本文基于分子内电荷转移原理设计、合成了一系列新的酰胺基喹啉衍生物,研究了这类化合物在中性缓冲溶液中对金属离子的识别性能。
     通过分别在酰胺基α和β位引入2-(2-羟基乙氧基)乙胺、N-(2-羟乙基)乙二胺、二(2-羟乙基)胺、苯并氮杂-15-冠-5等脂肪胺,设计、合成了七种酰胺基喹啉衍生物荧光分子探针,从中发现N-(α-(2-(2-羟乙氧基)乙胺基)乙酰基)-8-胺基喹啉(2a-1)可以比率荧光识别锌离子。2a-1与锌离子形成1:1型络合物后,其荧光量子产率增强8倍,发射波长红移75 nm;荧光颜色由青紫色变为蓝绿色,可直接观察识别过程;在活细胞内能够对锌离子进行荧光成像检测。
     通过分别在2a-1分子中的喹啉2和4位引入甲基、氰基、甲氧基、N-吗啉基等取代基,设计、合成了十一种酰胺基喹啉衍生物荧光分子探针。光谱研究表明,喹啉2位取代基的空阻效应将降低酰胺基喹啉与锌离子络合的稳定性;而喹啉4位取代基则导致酰胺基喹啉对锌离子检测的灵敏度最高。在喹啉2和4位引入的取代基随着其给电子能力的增加,使锌离子诱导的酰胺基喹啉的发射波长红移幅度逐渐减小,直至荧光识别信号由双波长比率变化转化为单波长强度变化。其中,N-吗啉基取代的3a-7和4a-4几乎没有背景荧光,可以线性、等比例、化学计量地荧光增强响应锌离子,其荧光量子产率分别增强141和239倍。核磁实验证实了锌离子可以诱导4a-4的酰胺基团发生去质子化,并与其形成1:1型络合物。
     研究了表面活性剂胶束对酰胺基喹啉识别性能的影响。在十二烷基硫酸钠胶束溶液中,2a-1的识别选择性比在常规溶液中得到进一步提高,能够专一选择性比率荧光识别锌离子;同时,荧光响应锌离子浓度范围由1-10μM拓宽至1-1000μM。
Zinc is the second most abundant transition metal ion in the human body and plays an important role in various biological processes such as gene transcription, regulation of metalloenzymes, neural signal transmission, and others. The fluorescence imaging technique, which is the most effective way, is widely used for the study of Zn~(2+) in vivo. The key to successfully apply this technique is to develop appropriate fluorescent Zn~(2+) imaging reagents. Despite having many commercial Zn~(2+) sensors, people continue endeavoring to design and synthesize new ones, to find new fluorescence recognition principles, and to improve the sensitivity, selectivity, and reliability in order to satisfy various needs.
     In present work, a series of new carboxamidoquinoline derivatives based on the intramolecular charge transfer mechanism have been designed and synthesized. And the recognition performance for metal ions in buffer solution has been studies.
     Seven carboxamidoquinoline derivatives with various aliphatic amine such as 2-(2-hydroxyethoxy)ethylamine, N-(2-hydroxyethyl)ethyldiamine, bis(2-hydroxyethyl)amine, benzoazacrown ether, and others at positionαorβof the amide group, have been developed. Among them, N-(α-(2-(2-hydroxyethoxy)ethylamino)acetyl)-8-aminoquinoline (2a-l) could exhibit ratiometric fluorescent signals for Zn~(2+). After forming the 1:1 complex between 2a-1 and Zn~(2+), there are about an 8-fold increase in fluorescence quantum yield and a 75 nm red-shift of fluorescence emission. And an obviously color change from blue-purple to blue-green emission of the solution could easily be observed by the naked eye. Moreover, 2a-1 could enter living cells and signal the presence of Zn~(2+).
     Eleven fluorescent sensors with different substituents such as methyl, cayno, methoxyl, N-morpholinyl, and others at position 2 or 4 of the quinoline ring of 2a-l, have been synthesized. The results indicate that the Zn~(2+)-binding stability of carboxamidoquinoline could be decreased by the steric hindrance effect of 2-substituents. And the highest sensitivity to Zn~(2+) of carboxamidoquinoline could be observed by introducing 4-substituents. With increasing the electron-donating intensity of substituents at position 2 or 4 of the quinoline ring, the red-shifted emission wavelength of carboxamidoquinoline induced by Zn~(2+) is gradually decreased until fluorescence signals are transformed from the dual-wavelength ratiometric changes to the single-wavelength intensity ones. Among them, 3a-7 and 4a-4 with the N-morpholinyl group show linear, stoichiometrical, and enhanced fluorescence response to Zn~(2+) without background fluorescence. There are about 141 and 239-fold enhancement in fluorescence quantum yield, respectively. ~1H-NMR titration studies indicate the deprotonation of the amide group by coordinated Zn~(2+) and the formation of the 1:1 complex between 4a-4 and Zn~(2+).
     The influence on the detection performance of carboxamidoquinoline in surfactant micelle has been studies. In SDS micelle solution, the selectivity of 2a-1 could be improved in comparison with that of in conventional solution. 2a-1 shows the uniquely ratiometric Zn~(2+) identification. And the recognizing Zn~(2+) ranges are expanded from 1-10μM to 1-1000μM.
引文
[1] Lehn J M. Supramolecular chemistry-scope and perspectives molecules, supermolecules,and molecular devices [J]. Angew. Chem. Int. Ed. 1988, 27 (1): 89-112.
    
    [2] Lehn J M. Perspectives in supramolecular chemistry-from molecular recognition towardsmolecular information processing and self-organization [J]. Angew. Chem. Int. Ed. 1990,29 (11): 1304-1319.
    
    [3] Lehn J M. Perspectives in supramolecular chemistry: from molecular recognition towardsself-organization [J]. Pure Appl. Chem. 1994, 66 (10-11): 1961-1966.
    
    [4] Steed J W, Atwood J L. Supramolecular chemistry [M]. New York: Wiley, 2000.
    
    [5]Lehn J M著.沈兴海译.超分子化学-概念和展望[M].北京:北京大学出版社,2002.
    
    [6]徐兆超.基于ICT萘酰亚胺阳离子比率荧光探针的研究[D].大连:大连理工大学,2006.
    
    [7] de Silva A P, Gunaratne H Q N, Gunnlaugsson T et al. Signaling recognition events withfluorescent sensors and switches [J]. Chem. Rev. 1997, 97 (5): 1515-1566.
    
    [8] Bush A I. Metals and neuroscience [J]. Curr. Opin. Chem. Biol. 2000, 4 (2): 184-191.
    
    [9] Auld D S, King R B. Encylopedia of inorganic chemistry [M]. New York: Wiley, 2007.
    
    [10] Vahrenkamp H. Why does nature use zinc-a personal view [J]. Dalton Trans. 2007, (42):4751-4759.
    
    [11] Klug A. Zinc finger peptides for the regulation of gene expression [J]. J. Mol. Biol.1999, 293 (2): 215-218.
    
    [12] Faa G, Nurchi, V M, Ravarino A et al. Zinc in gastrointestinal and liver disease [J].Coord. Chem. Rev. 2008, 252 (10-11): 1257-1269.
    
    [13] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the rolesof zinc [J]. Science 1996, 271 (5252): 1081-1085.
    
    [14] Clarke N D, Berg J M. Zinc fingers in caenorhabditis elegans: finding families andprobing pathways [J]. Science 1998, 282 (5396): 2018-2022. ..
    
    [15] Andrews G K. Cellular zinc sensors: MTF-1 regulation of gene expression [J]. BioMetals2001, 14 (3-4): 223-237.
    
    [16] Coleman J E. Zinc enzymes [J]. Curr. Opin. Chem. Biol. 1998, 2 (2): 222-234.
    
    [17] Truong-Tran A Q, Carter J, Ruff in R E et al. The role of zinc in caspase activationand apoptotic cell death [J]. BioMetals 2001, 14 (3-4): 315-330.
    
    [18] Burdette S C, Lippard S J. ICCC34-golden edition of coordination chemistry reviews.Coordination chemistry for the neuroscience [J]. Coord. Chem. Rev. 2001, 216-217 (1):333-361.
    
    [19] Guajungco M P, Lees G J. Zinc metabolism in the brain: relevance to humanneurodegenerative disorders [J]. Neurobiol. Dis. 1997, 4 (3-4): 137-169.
    
    [20] Que E L, Domaille D W, Chang C J. Metals in neurobiology: probing their chemistry andbiology with molecular imaging [J]. Chem. Rev. 2008, 108 (5): 1517-1549.
    
    [21] Kikuchi K, Komatsu K, Nagano T. Zinc sensing for cellular application [J]. Curr. Opin.Chem. Biol. 2004, 8 (2): 182-191.
    
    [22] Thompson R B. Studying zinc biology with fluorescence: ain' t we got fun [J]. Curr.Opin. Chem. Biol. 2005, 9 (5): 526-532.
    
    [23] Kimura E, Koike T. Recent development of zinc-fluorophores [J]. Chem. Soc. Rev. 1998,(3): 179-184.
    
    [24] Kimura E, Aoki S. Chemistry of zinc(Ⅱ) fluorophore sensors [J]. BioMetals 2001, 14(3-4): 191-204.
    
    [25] Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent developmenton the design of chemosensors and biosensors [J]. Coord. Chem. Rev. 2004, 248 (1-2): 205-229.
    
    [26] Carol P, Sreejith S, Ajayaghosh A. Ratiometric and near-infrared molecular probes forthe detection and imaging of zinc ions [J]. Chem. Asian J. 2007, 2 (3): 338-348.
    
    [27] Dai Z, Canary J W. -Tailoring tripodal ligands for zinc sensing [J]. New J. Chem. 2007,31 (10): 1708-1718.
    
    [28] Soroka K, Vithanage R S, Phillips D A et al. Fluorescence properties of metal complexesof 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications [J]. Anal. Chem.1987, 59 (4): 629-636.
    
    [29]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    
    [30] Snyder R, Testa A C. Influence of electron-donor-acceptor complexation on electronicrelaxation of quinoline [J]. J. Phys. Chem. 1984, 88 (24): 5948-5950.
    
    [31] Castagnetto J M, Canary J W. A chiroptically enhanced fluorescent chemosensor [J].Chem. Commun. 1998, (5): 203-204.
    
    [32] Gan W, Jones B S, Reibenspies J H et al. A fluorescent ligand rationally designed tobe selective for zinc(Ⅱ) over larger metal ions. The structures of the zinc (Ⅱ) andcadmium(Ⅱ) complexes of N, N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine [J]. Inorg.Chim. Acta 2005, 358 (13): 3958-3966.
    
    [33] Hanaoka K, Kikuchi K, Kojima H et al. Development of a zinc ion-selective luminescentlanthanide chemosensor for biological applications [J]. J. Am. Chem. Soc. 2004, 126 (39) :12470-12476.
    
    [34] Hanaoka K, Kikuchi K, Kobayashi S et al. Time-resolved long-lived luminescence imagingmethod employing luminescent lanthanide probes with a new microscopy system [J]. J. Am.Chem. Soc. 2007, 129 (44): 13502-13509.
    
    [35] Mikata Y, Wakamatsu M, Yano S. Tetrakis(2-quinolinylmethyl)ethylenediamine (TQEN) asa new fluorescent sensor for zinc [J]. Dalton Trans. 2005, (3): 545-550.
    [36]MikataY, Wakamatsu M, Kawamura A et al. Methoxy-substituted TQEN family of fluorescent zinc sensors [J]. Inorg. Chem. 2006, 45 (23): 9262-9268.
    
    [37] Mikata Y, Yamanaka A, Kawamura A et al. Isoquinoline-based TQEN family as TPEN-derived fluorescent zinc sensors [J]. Inorg. Chem. 2008, 47 (16): 7295-7301.
    
    [38] Guzow K, Milewska M, Wr6blewski D et al. 3-[2-(8-Quiolinyl)benzoxazol-5'-yl]alanine derivative-a specific fluorophore for transition and rare-earth metal ion detection [J]. Tetrahedron 2004, 60 (51): 11889-11894.
    
    [39] Kim S J, Kool E T. Sensing metal ions with DNA building blocks: fluorescent pyridobenzimidazole nucleosides [J]. J. Am. Chem. Soc. 2006, 128 (18): 6164-6171.
    
    [40] Wu D, Xie L, Zhang C et al. Quinoline-based molecular clips for selective fluorescent detection of Zn~(2+) [J]. Dalton Trans. 2006, (29): 3528-3533.
    
    [41] Shiraishi Y, Ichimura C, Hirai T. A quinoline-polyamine conjugate as a fluorescent chemosensor for quantitative detection of Zn(II) in water [J]. Tetrahedron Lett. 2007, 48 (44): 7769-7773.
    
    [42] Chen H, Wu Y, Cheng Y et al. A ratiometric fluorescent sensor for zinc (II) with high selectivity [J]. Inorg. Chem. Commun. 2007, 10 (12): 1413-1415.
    
    [43] Valeur B. Molecular fluorescence: principles and applications [M]. New York: Wiley, 2001.
    
    [44] Walkup G K, Imperiali B. Stereoselective synthesis of fluorescent α-amino acids containing oxine (8-hydroxyquinoline) and their peptide incorporation in chemosensors for divalent zinc [J]. J. Org. Chem. 1998, 63 (19): 6727-6731.
    
    [45] Shults M D, Pearce D A, Imperiali B. Modular and tunable chemosensor scaffold for divalent zinc [J]. J. Am. Chem. Soc. 2003, 125 (35): 10591-10597.
    
    [46] Pearce D A, Jotterand N, Carrico I S et al. Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems [J]. J. Am. Chem. Soc. 2001, 123 (21): 5160-5161.
    
    [47] Kawakami J, Ohta M, Yamauchi Y et al. 8~Hydroxyquinoline derivative as a fluorescence chemosensor for zinc ion [J]. Anal. Sci. 2003, 19 (10): 1353-1354.
    
    [48] Bronson R T, Bradshaw J S, Savage P B et al. Bis-8-hydroxyquinoline-armed diazatrithia-15-crown-5 and diazatrithia-16-crown-5 ligands: possible fluorophoric metal ion sensors [J]. J. Org. Chem. 2001, 66 (14): 4752-4758.
    
    [49] Bagatin I A, de Souza E S, Ito A S et al. Mixed 8-oxyquinolinecalix[4]arene/ phenanthroline receptors as luminescence sensors for zinc(II) ions [J]. Inorg. Chem. Commun. 2003, 6 (3): 288-293.
    
    [50] Zhang C, Jin Y, Gong S et al. Syntheses and coordination properties of (thia)calix[4]arenes bearing single ω-quinolin-8-yl-oligooxyethylene pendant [J]. J. Chem. Res. 2006, (9): 596-599.
    [51] Petitjean A, Kyritsakas N, Lehn J M. Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding [J], Chem. Eur. J. 2005, 11 (23): 6818-6828.
    
    [52] Mei Y, Bentley P A. A-ratiometric fluorescent sensor for Zn~(2+) based on internal charge transfer (ICT) [J]. Bioorg. Med. Chem. Lett. 2006, 16 (12): 3131-3134.
    
    [53] Royzen M, Durandin A, Young V C J et al. A sensitive probe for the detection of Zn(II) by time-resolved fluorescence [J]. J. Am. Chem. Soc. 2006, 128 (12): 3854-3855.
    
    [54] Aoki S, Sakurama K, Matsuo N et al. A new fluorescent probe for zinc (II): an 8-hydroxy-5-N,N-dimethylaminosulfonylquinoline-pendant 1,4, 7,10-Tetraazacyclododecane [J]. Chem. Eur. J. 2006, 12 (35): 9066-9080.
    
    [55] Aoki S, Sakurama K, Ohshima R et al. Design and synthesis of a caged Zn~(2+) probe, 8-benzenesulfonyloxy-5-N,N-dimethylaminosuifonylquinolin-2-ylmethyl-pendant 1, 4, 7, 10- tetraazacyclododecane, and its hydrolytic uncaging upon complexation with Zn~(2+) [J]. Inorg. Chem. 2008, 47 (7): 2747-2754.
    
    [56] Zhang H, Wang Q, Jiang Y. 8-Methoxyquinoline based turn-on metal fluoroionophores [J]. Tetrahedron Lett. 2007, 48 (23): 3959-3962.
    
    [57] Man S P, Benoit D M, Buchaca E et al. Synthesis, structural characterization, experimental, and computational spectrophotometric studies of 8-quinolinyloxymethy phosphonate compounds [J]. Inorg. Chem. 2006, 45 (14): 5328-5337.
    
    [58]WangF, Peng R, ShaY. Selective dendritic fluorescent sensors for Zn(II) [J]. Molecules 2008, 13 (4): 922-930.
    
    [59] Wang H, Gan Q, Wang X et al. A water-soluble, small molecular fluorescent sensor with femtomolar sensitivity for zinc ion [J]. Org. Lett. 2007, 9 (24): 4995-4998.
    
    [60] Xue L, Wang H, Wang X et al. Modulating affinities of di-2-picolylamine (DPA)-substituted quinoline sensors for zinc ions by varying pendant ligands [J]. Inorg. Chem. 2008, 47 (10): 4310-4318.
    
    [61] Meervelt L V, Goethals M, Leroux N et al. X-ray and vibrational studies of 8-aminoquinoline. Evidence for a three-center hydrogen bond [J]. J. Phys. Org. Chem. 1997, 10 (9): 680-686.
    
    [62] Frederickson C J, Kasarskis E J, Ringo D et al. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain [J]. J. Neurosci. Methods 1987, 20 (2): 91-103.
    
    [63] Andrews J C, Nolan J P, Hammerstedt R H et al. Characterization of N-(6-methoxy-8- quinolyl)-p-rtoluenesulfonamide for the detection of zinc in living sperm cells [J]. Cytometry 1995, 21 (2): 153-159.
    [64] Zalewski P D, Forbes I J, Betts W H. Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-rtoluenesulphonamido-6- quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II) [J]. Biochem. J. 1993, 296, 403-408.
    
    [65] Mahadevan I B, Kimber M C, Lincoln S F et al. The synthesis of Zinquin ester and Zinquin acid, zinc(II)-specific fluorescing agents for use in the study of biological zinc(II) [J]. Aust. J. Chem. 1996, 49 (5): 561-568.
    
    [66] Coyle P, Zalewski P D, Philcox J C et al. Measurement of zinc in hepatocytes by using a fluorescent probe, Zinquin: relationship to metallothionein and intracellular zinc [J]. Biochem. J. 1994, 303, 781-786.
    
    [67] Zalewski P D, Millard S H, Forbes I J et al. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc [J]. J. Histochem. Cytochem. 1994, 42 (7): 877-884.
    
    [68] Zalewski P D, Jian X, Soon L L L et al. Changes in distribution of labile zinc in mouse spermatozoa during maturation in the epididymis assessed by the fluorophore zinquin [J]. Reprod. Fertil. Dev. 1996, 8 (8): 1097-1105.
    
    [69] Snitsarev V, Budde T, Stricker T P et al. Fluorescent detection of Zn~(2+)-rich vesicles with Zinquin: mechanism of action in lipid environments [J]. Biophys. J. 2001, 80 (3): 1538-1546.
    
    [70] Hendrickson K M, Rodopoulos T, Pittet P A et al. Complexation of zinc (II) and other divalent metal ions by the fluorophore 2-methyl-8-(toluene-p-sulfonamido)-6- quinolyloxyacetic acid in 50% aqueous ethanol [J]. Dalton Trans. 1997, (20): 3879-3882.
    
    [71] Hendrickson K M, Geue J P, Wyness O et al. Coordination and fluorescence of the intracellular Zn~(2+) probe [2-methyl-8-(4-toluenesulfonamido)-6-quinolyloxy]acetic acid (Zinquin A) in ternary Zn~(2+) complexes [J]. J. Am. Chem. Soc. 2003, 125 (13): 3889-3895.
    
    [72] Budde T, Minta A, White J A et al. Imaging free zinc in synaptic terminals in live hippocampal slices [J]. Neuroscience 1997, 79 (2): 347-358.
    
    [73] Nasir M S, Fahrni C J, Suhy D A et al. The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex [J]. J. Biol. Inorg. Chem. 1999, 4 (6): 775-783.
    
    [74] Fahrni C J, O' Halloran T V. Aqueous coordination chemistry of quinoline-based fluorescence [J]. J. Am. Chem. Soc. 1999, 121 (49): 11448-11458.
    
    [75] Kimber M C, Mahadevan I B, Lincoln S F et al. The synthesis and fluorescent properties of analogues of the zinc(II) specific fluorophore Zinquin ester [J]. J. Org. Chem. 2000, 65 (24): 8204-8209.
    
    [76] Kimber M C, Mahadevan I B, Lincoln S F et al. A preparative and spectroscopic study of fluorophores for zinc(II) detection [J]. Aust. J. Chem. 2001, 54 (1): 43-49.
    [77] Xue G, Bradshaw J S, Dalley'N K et al. The synthesis of azacrown ethers with quinoline-based sidearms as potential zinc(II) fluorophores [J]. Tetrahedron 2002, 58 (24): 4809-4815.
    [78] Kimber M C, Geue J P, Lincoln S F et al. A preparative and preliminary spectroscopic study of analogues of a Zinquirrrelated fluorophore [J]. Aust. J. Chem. 2003, 56 (1): 39-44.
    [79] Liu Y, Zhang N, Chen Y et al. Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn~(2+) [J]. Org. Lett. 2007, 9 (2): 315-318.
    
    [80] Chen Y, Han K, Liu Y. Effective switch-on fluorescence sensing of zinc (II) ion by 8-aminoquinolino-β-cyclodextrin/adamantaneacetic acid system in water [J]. Bioorg. Med. Chem. 2007, 15 (13): 4537-4542.
    
    [81] Teolato P, Rampazzo E, Arduini M et al. Silica anoparticles for fluorescence sensing of Zn~(II): exploring the covalent strategy [J]. Chem. Eur. J. 2007, 13 (8): 2238-2245.
    
    [82] Zhang Y, Guo X, Si W et al. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor [J]. Org. Lett. 2008, 10 (3): 473-476.
    
    [83] Jiang P, Chen L, Lin J et al. Novel zinc fluorescent probe bearing dansyl and aminoquinoline groups [J]. Chem. Commun. 2002, (13): 1424-1425.
    
    [84] Qiu L, Jiang P, He W et al. Structural and fluorescent study of zinc complexes of dansyl aminoquinoline [J]. Inorg. Chim. Acta 2007, 360 (2): 431-438.
    [85] Nolan E M, Jaworski J, Okamoto K I et al. QZ1 and QZ2: rapid, reversible quinoline- derivatized fluoresceins for sensing biological Zn(II) [J]. J. Am. Chem. Soc. 2005, 127 (48): 16812-16823.
    
    [86] Hiratani K, Taguchi K, Ohhashi K et al. Highly selective solvent extraction of copper from transition metal ions with dibutyl N,N' -bis(8-quinolyl)malonamide [J]. Chem. Lett. 1989, 18 (11): 2073-2076.
    
    [87] Hiratani K, Kasuga K, Hirose T et al. N,N' -bis(8-quinolyl)glutaramide exhibiting highly selective and efficient uphill transport of Cu(II) through liquid membranes [J]. Bull. Chem. Soc. Jpn. 1992, 65 (9): 2381-2387.
    
    [88] Hiratani K, Hirose T, Kasuga K et al. N-(8-quinolyl)-N'-(2-pyridylmethyl)malonamide derivatives as a novel Cu(II) carrier with high efficiency and selectivity for proton-driven uphill transport through liquid membranes [J]. J. Org. Chem. 1992, 57 (26): 7083-7087.
    [89] Zhang J, Ke X, Tu C et al. Novel Cu(II)-quinoline carboxamide complexes: Structural characterization, cytotoxicity and reactivity towards 5' -GMP [J]. BioMetals 2003, 16 (3): 485-496.
    [90] Yang T, Tu C, Zhang J et al. Novel Au(III) complexes of aminoquinoline derivatives: crystal structure, DNA binding and cytotoxicity against melanoma and lung tumour cells [J]. Dalton Trans. 2003, (17): 3419-3424.
    
    [91] Zhang J, Wang X, Tu C et al. Monofunctional platinum complexes showing potent cytotoxicity against human liver carcinoma cell line BEL-7402 [J]. J. Med. Chem. 2003, 46 (16): 3502-3507.
    
    [92] Zhang S, Tu C, Wang X et al. Novel cytotoxic copper (II) complexes of 8-aminoquinolie derivatives: crystal structure and different reactivity towards glutathione [J]. Eur. J. Inorg. Chem. 2004, (20): 4028-4035.
    
    [93] Kameta N, Hiratani K. Phosphate anion-selective recognition by boron complex having plural hydrogen bonding sites [J]. Chem. Commun. 2005, (6): 725-727.
    
    [94] Hua H, Chen C. A new fluorescent chemosensor for anion based on an artificial cyclic tetrapeptide [J]. Tetrahedron Lett. 2006, 47 (2): 175-179.
    
    [95] Albrecht M, Triyanti, Schiffers S et al. Anion receptors based on a quinoline backbone [J]. Eur. J. Org. Chem. 2007, (17): 2850-2858.
    
    [96] Mu L, Shi W, Chang J C et al. Silicon nanowires-based fluorescence sensor for Cu(II) [J]. Nano Lett. 2008, 8(1): 104-109.
    
    [97] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition [J]. Coord. Chem. Rev. 2000, 205 (1): 3-40.
    
    [98] Callan J F, de Silva A P, Magri D C. Luminescent sensors and switches in the early 21st century [J]. Tetrahedron 2005, 61 (36): 8551-8588.
    
    [99] Kiyose K, Kojima H, Nagano T. Functional near-infrared fluorescent probes [J]. Chem. Asian J. 2008, 3 (3): 506-515.
    
    [100] de Silva A P, Fox D B, Huxley A J M et al. Combining luminescence, coordination and electron transfer for signaling purposes [J]. Coord. Chem. Rev. 2000, 205 (1): 41-57.
    
    [101] Prodi L, Bolletta F, Montalti M et al. Luminescent chemosensors for transition metal ions [J]. Coord. Chem. Rev. 2000, 205 (1): 59-83.
    
    [102] Kawanishi Y, Kikuchi K, Takakusa H et al. Design and synthesis of intramolecular resonance-energy transfer probes for use in ratiometric measurements in aqueous solution [J]. Angew. Chem. Int. Ed. 2000, 39 (19): 3438-3440.
    
    [103] Woodroofe C C, Lippard S J. A novel two-fluorophore approach to ratiometric sensing of Zn~(2+) [J]. J. Am. Chem. Soc. 2003, 125 (38): 11458-11459.
    
    [104] Mello J V, Finney N S. Dual-signaling fluorescent chemosensors based on conformational restriction and induced charge transfer [J]. Angew. Chem. Int. Ed. 2001, 40 (8): 1536-1538.
    
    [105] Kubo Y, Yamamoto M, Ikeda M et al. A colorimetric and ratiometric fluorescent chemosensor with three emission changes: fluoride ion sensing by a triarylborane - porphyrin conjugate [J]. Angew. Chem. Int. Ed. 2003, 42 (18): 2036-2040.
    [106] Banthia S, Samanta A. A new strategy for ratiometric fluorescence detection of transition metal ions [J]. J. Phys. Chem. B 2006, 110 (13): 6437-6440.
    
    [107] Lim N C, Schuster J V, Porto M C et al. Coumarin-based chemosensors for zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes [J]. Inorg. Chem. 2005, 44 (6): 2018-2030.
    
    [108] Woodroofe C C, Won A C, Lippard S J. Esterase-activated two-fluorophore system for ratiometric sensing of biological zinc(II) [J]. Inorg. Chem. 2005, 44 (9): 3112-3120.
    
    [109] Ajayaghosh A, Carol P, Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn~(2+) [J]. J. Am. Chem. Soc. 2005, 127 (43): 14962-12963.
    
    [110] Bozym R A, Thompson R B, Stoddard A K et al. Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor [J]. ACS Chem. Bio. 2006, 1 (2): 103-111.
    
    [111] Kiyose K, Kojima H, Urano Y et al. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore [J]. J. Am. Chem. Soc. 2006, 128 (20): 6548-6549.
    
    [112] Ji Z, Wu Y, Wu F. A ratiometric fluorescence sensor for zinc in neutral solution based on thiourea receptor [J]. Chem. Lett. 2006, 35 (8): 950-951.
    
    [113] Wu Z, Zhang Y, Ma J et al. Ratiometric Zn~(2+) sensor and strategy for Hg~(2+) selective recognition by central metal ion replacement [J]. Inorg. Chem. 2006, 45 (8): 3140-3142.
    
    [114] Xu Z, Qian X, Cui J et al. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn~(2+) fluorescent chemosensor with a large red-shift in emission [J]. Tetrahedron 2006, 62 (43): 10117-10122.
    
    [115] Zhang L, Dong S, Zhu L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically [J]. Chem. Commun. 2007, (19): 1891-1893.
    
    [116] Sumalekshmy S, Henary M M, Siegel N et al. Design of emission ratiometric metal-ion sensors with enhanced two-photon cross section and brightness [J]. J. Am. Chem. Soc. 2007, 129 (39): 11888-11889.
    
    [117] Komatsu K, Urano Y, Kojima H et al. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc [J]. J. Am. Chem. Soc. 2007, 129 (44): 13447-13454.
    
    [118] Takakusa H, Kikuchi K, Urano Y et al. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer [J]. J. Am. Chem. Soc. 2002, 124 (8): 1653-1657.
    
    [119] Grabowski Z R, Rotkiewicz K, RettigW. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures [J]. Chem. Rev. 2003, 103 (10): 3899-4031.
    [120] Fife T H, Squillacote V L. Metal ion effects on intramolecular nucleophilic carboxyl group participation in amide and ester hydrolysis. Hydrolysis of N-(8-quinolyl)phthalamic acid and 8-quinolyl hydrogen glutarate [J]. J. Am. Chem. Soc. 1978, 100 (15): 4787-4793.
    
    [121] Huang C, Stone A T. Hydrolysis of Naptalam and structurally related amides: inhibition by dissolved metal ions and metal (hydr)oxide surfaces [J]. J. Agric. Food Chem. 1999, 47 (10): 4425-4434.
    
    [122] Cumper C W N, Ginman R F A, Redford D G et al. Physical properties and chemical constitution. Part XXXVIII The electric dipole moments of aminopyridines and aminoquinolines [J]. J. Chem. Soc. 1963, 1731-1735.
    
    [123] Yang T, Lin C, Fu H et al. Copper-catalyzed synthesis of medium- and large-sized nitrogen heterocycles via N-arylation of phosphoramidates and carbamates [J]. Org. Lett. 2005, 7 (21): 4781-4784.
    
    [124] Parker C A, Rees W T. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency [J]. Analyst 1960, 85 (1013): 587-600.
    
    [125] Sunahara H, Urano Y, Kojima H et al. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching [J]. J. Am. Chem. Soc. 2007, 129 (17): 5597-5604.
    
    [126] Valeur B, Pouget J, Bouson J et al. Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding [J]. J. Phys. Chem. 1992, 96 (16): 6545-6549.
    
    [127] Bouson J, Pouget J, Valeur B. Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers [J]. J. Phys. Chem. 1993, 97 (17): 4552-4557.
    
    [128] Devirgiliis C, Murgia C, Danscher G et al. Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae [J]. Biochem. Biophys. Res. Commun. 2004, 323 (1): 58-64.
    
    [129] Shiraishi Y, Tokitoh Y, Hirai T. A fluorescent molecular logic gate with multiply-configurable dual outputs [J]. Chem. Commun. 2005, (42): 5316-5318.
    
    [130] Shiraishi Y, Kohno Y, Hirai T. Bis-azamacrocyclic anthracene as a fluorescent chemosensor for cations in aqueous solution [J]. J. Phys. Chem. B 2005, 109 (41): 19139-19147.
    
    [131] Nishimura G, Ishizumi K, Shiraishi Y et al. A triethylenetetramine bearing anthracene and benzophenone as a fluorescent molecular logic gate with either-or switchable dual logic functions [J]. J. Phys. Chem. B 2006, 110 (43): 21596-21602.
    
    [132] Xu Z, Xiao Y, Qian X et al. Ratiometric and selective fluorescent aensor for Cu~(II) based on internal charge transfer (ICT) [J]. Org, Lett. 2005, 7 (5): 889-892.
    [133] Kim J S, Choi M G, Song K C et al. Ratiometric determination of Hg~(2+) ions based on simple molecular motifs of pyrene and dioxaoctanediamide [J]. Org. Lett. 2007, 9 (6): 1129-1132.
    
    [134] Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe [J]. J. Am. Chem. Soc. 2007, 129 (18): 5910-5918.
    
    [135] Maruyama S, Kikuchi K, Hirano T et al. A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion [J]. J. Am. Chem. Soc. 2002, 124 (36): 10650-10651.
    
    [136] Gee K R, Zhou Z L, Qian W J et al. Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator [J]. J. Am. Chem. Soc. 2002, 124 (5): 776-778.
    
    [137] Roth R, Erlenmeyer H. Ubre einige derivate der 8-aminochinaldinsaure [J]. Helv. Chim. Acta 1954, 37 (4): 1064-1068.
    
    [138] Xue G, Bradshaw J S, Dalley N K et al. Convenient syntheses and preliminary photophysical properties of novel 8-aminoquinoline appended diaza-18-crown-6 ligands [J]. Tetrahedron 2001, 57 (36): 7623-7628.
    
    [139] Ochiai E. Recent Japanese work on the chemistry of pyridine 1-oxide and related compounds [J]. J. Org. Chem. 1953, 18 (5): 534-551.
    
    [140] Engel Y, Dahan A, Rozenshine-Kemelmakher E et al. Phenanthroline-derived ratiometric chemosensor for ureas [J]. J. Org. Chem. 2007, 72 (7): 2318-2328.
    
    [141] Brower K R, Samuels W P, Way J W et al. Halogen reactivities III. Kinetic study of displacement reactions of haloquinolines with piperidine [J]. J. Org. Chem. 1953, 18 (12): 1648-1654.
    
    [142] Rettig W. Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development new laser dyes and the primary processes of vision and photosynthesis [J]. Angew. Chem. Int. Ed. 1986, 25 (11): 971-988.
    
    [143] Bajorek A, Paczkowski J. Influence of the attachment of chromophores to a polymer chain on their twisted intramolecular charge-transfer state in dilute solution [J]. Macromolecules 1998, 31 (1): 86-95.
    
    [144] Akkaya E U, Huston M E, Czarnik A W. Chelation-enhanced fluorescence of anthryl azamacrocycle conjugate probes in aqueous solution [J]. J. Am. Chem. Soc. 1990, 112 (9): 3590-3593.
    
    [145] de Silva S A, Zavaleta A, Baron D E et al. A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch [J]. Tetrahendron Lett. 1997, 38 (13): 2237-2240.
    
    [146] Philbrook G E, Maxwell M A. Chemiluminescent intensities from substituted lophines [J]. Tetrahedron Lett. 1964, 19 (5): 1111-1116.
    [147] Hansch C, Leo A, Taft R W. A survey of Hammett substituent constants and resonance and field parameters [J]. Chem. Rev. 1991, 91 (2): 165-195.
    
    [148] Baker R H, Albisetti C J, Dodson J R M et al. The synthesis of some 8-aminoquinolines [J]. J. Am. Chem. Soc. 1946, 68 (8): 1532-1536.
    
    [149] Price C C, Guthrie D B. 5- and 7-Chloro-8-aminoquinoline [J]. J. Am. Chem. Soc. 1946, 68 (8): 1592-1593.
    
    [150] Shiraishi Y, Maehara H, Ishizumi K et al. Hg(II)-selective excimer emission of a bisnaphthyl azadiene derivative [J]. Org. Lett. 2007, 9 (16): 3125-3128.
    
    [151] Wang J, Qian X, Cui J. Detecting Hg~(2+) ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity [J]. J. Org. Chem. 2006, 71 (11): 4308-4311.
    
    [152] Wang J, Qian X. A series of polyamide receptor based PET fluorescent sensor molecules: positively cooperative Hg~(2+) ion binding with high sensitivity [J]. Org. Lett. 2006, 8 (17): 3721-3724.
    
    [153] Deschenes L A, Vanden Bout D A. Single molecule photobleaching: increasing photon yield and survival time through suppression of two-step photolysis [J]. Chem. Phys. Lett. 2002, 365 (5-6): 387-395.
    
    [154] Niikura K, Anslyn E V. Triton X-100 enhances ion-pair-driven molecular recognition in aqueous media. Further work on a chemosensor for inositol trisphosphate [J]. J. Org. Chem. 2003, 68 (26): 10156-10157.
    
    [155] Uchiyama S, McClean G D, Iwai K et al. Membrane media create small nanospaces for molecular computation [J], J. Am. Chem. Soc. 2005, 127 (25): 8920-8921.
    
    [156] Zhao Y, Zhong Z. Detection of Hg~(2+) in aqueous solutions with a foldamer-based fluorescent sensor modulated by surfactant micelles [J]. Org. Lett. 2006, 8 (21): 4715-4717.
    
    [157] Mallick A, Mandal M C, Haldar B et al. Surfactant-induced modulation of fluorosensor activity: a simple way to maximize the sensor efficiency [J]. J. Am. Chem. Soc. 2006, 128 (10): 3126-3127.
    
    [158] Pallavicini P, Diaz-Fernandez Y A, Foti F et al. Fluorescent sensors for Hg~(2+) in micelles: a new approach that transforms an ON-OFF into an OFF-ON response as a function of the lipophilicity of the receptor [J]. Chem. Eur. J. 2007, 13 (1): 178-187.
    
    [159] Wang J, Qian X, Qian J et al. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors [J]. Chem. Eur. J. 2007, 13 (26): 7543-7552.
    
    [160] Kano K, Ueno Y, Hashimoto S. Fluorescence studies on the characterization and solubilizing abilities of sodium dodecyl sulfate, hexadecyltrimethylammonium chloride, and Triton X-100 micelles [J]. J. Phys. Chem. 1985, 89 (14): 3161-3166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700