用户名: 密码: 验证码:
突变亨廷顿蛋白对游离锌离子及其转运体ZnT3表达的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亨廷顿舞蹈病(Huntington's disease, HD)是一种常染色体显性遗传性神经退行性疾病,由编码亨廷顿蛋白(huntingtin, Htt)的HD基因中CAG重复序列异常增多所致。临床上主要表现为运动失调、认知异常及精神障碍,病理学上以大脑皮质、纹状体等脑区神经元选择性丢失为特征。HD早期症状的出现与突触功能的异常有关,突变Htt对突触功能具有明显的毒性。
     锌元素是人体内生命活动中必不可少的微量元素之一。人体内85%的锌离子通过与其结合蛋白结合而以结合形式存在,作为游离锌离子的一种储备形式,15%的锌离子以游离的形式存在。在脑内,约超过95%的游离锌离子存在于突触小泡内。在突触活动中,突触小泡内的游离锌离子与神经递质共同释放到突触间隙,参与调控多种突触后受体的功能,因此,锌离子稳态在突触传递调节中具有重要作用。
     游离锌离子不能通过被动扩散通过细胞膜,其向细胞内外的转运依赖于锌离子转运体(zinc transporter)。锌离子转移转运体3(zinc transporter 3, ZnT3)与游离锌离子在突触小泡内的富集有关,细胞内ZnT3的表达水平影响细胞内游离锌离子的浓度。
     在多种神经退行性疾病中均有脑内锌离子稳态紊乱,但HD脑内是否有游离锌离子水平的改变,突变Htt是否通过影响ZnT3的表达改变游离锌离子水平目前未见报道。
     本研究利用HD转基因小鼠和转染表达突变Htt的细胞模型,观察了突变Htt对游离锌离子水平及ZnT3表达的影响及其机制,结果表明,突变Htt可通过影响Spl与ZnT3基因启动子序列的结合能力,下调ZnT3的表达,降低游离锌离子水平。
     1.HD转基因小鼠脑内游离锌离子水平降低
     为了观察突变Htt是否影响脑内锌离子水平,首先应用原子吸收分光光度法检测了HD转基因小鼠脑内锌元素总量。结果显示,与野生型(wild type, WT)小鼠比较,HD转基因(TG)小鼠脑皮质、纹状体和海马等脑区内的锌元素总量明显降低;应用游离锌离子金属自显影(AMG)技术对HD转基因小鼠脑内游离锌离子检测结果显示,TG小鼠中皮质、海马、纹状体、外侧苍白球、内侧苍白球和黑质等部位游离锌离子表达较WT小鼠相应脑区显著降低。由此提示,突变Htt可破坏脑内锌离子稳态并由此影响突触传递功能。
     2.突变Htt下调ZnT3表达
     脑组织内游离锌离子不能自由通过细胞膜,必须依靠锌离子转运体转运而进入细胞内。为了明确突变Htt是否通过影响ZnT3的表达使锌离子转运障碍而降低游离锌离子水平,对TG小鼠和HD细胞模型中ZnT3的表达水平进行了检测。免疫印迹检测显示,与WT小鼠比较,TG小鼠皮质、纹状体、海马等脑区的ZnT3表达在14周已经明显降低,在18周和20周降低更加明显;与转染正常Htt(20Q)的BHK细胞比较,转染突变Htt(160Q)的BHK细胞中ZnT3蛋白表达水平在转染24 h后降低,转染48 h和72 h后降低更为明显。RT-PCR检测显示,TG小鼠皮质、纹状体、海马等脑区和转染表达突变Htt的BHK细胞中ZnT3 mRNA水平的变化与蛋白水平变化一致。免疫组织化学检测结果显示,TG小鼠纹状体、外侧苍白球、内侧苍白球、黑质网状部、海马等脑区的ZnT3免疫反应性较WT小鼠相应区域明显减弱。以上结果提示,突变Htt可能通过抑制ZnT3基因转录而下调ZnT3的表达,突变Htt降低TG小鼠脑内游离锌离子水平的效应与其抑制ZnT3的表达而减少游离锌离子的转运有关。
     3.Sp1调控ZnT3基因转录
     突变Htt能通过影响转录因子的活性影响多种基因的转录。为了明确突变Htt是否通过影响调控ZnT3基因的转录因子活性抑制ZnT3基因的转录,对调控ZnT3基因的转录因子进行了分析。生物信息学分析显示,ZnT3基因启动子区域含有Sp1、WT1+KTS、WT1-KTS,、NF-κB p50 (NF-κB p50)、NF-κB p65等转录因子的可能结合基序,其中Sp1与NF-κB p65的评分较高。分别构建相关转录因子的质粒并转染BHK细胞后应用免疫印迹检测发现,在BHK细胞系中过表达Sp1对ZnT3的表达有上调作用,而过表达其它转录因子对ZnT3的表达无明显影响。进一步的免疫印迹和RT-PCR检测显示,在BHK细胞系中过表达Spl可使ZnT3的蛋白表达和(?)nRNA水平明显升高,而沉默Spl后,ZnT3的蛋白表达和mRNA水平则明显下调。双荧光素酶报告基因检测显示,过表达Spl后含pGL3-ZnT3(-283~+10)和pGL3-ZnT3(-193~+10)报告基因的荧光素酶活性明显升高,而含pGL3-ZnT3(-171~+10)报告基因的荧光素酶活性无改变。以上结果提示含有Spla和Splb的ZnT3基因启动子区(-184~-174bp)、(-269~-261bp)是Spl调控ZnT3基因转录的必须位点。而用染色质免疫共沉淀(Chromatin Imunoprecipitation, ChIP)技术检测出具有Spl作用基序的ZnT3基因启动子序列区片段能与Spl直接结合。这些结果提示Spl可与ZnT3基因启动子上的(-338~-232 bp)和(-253~-112 bp)基序结合来激活ZnT3基因的转录。
     4.突变Htt抑制Spl与ZnT3基因启动子序列的结合
     为了进一步证明突变Htt通过转录因子Spl抑制ZnT3基因的转录,将表达正常Htt的质粒(pJRed-20 Q-Htt)(?)(?)表达突变Htt的质粒(pJRed-160 Q-Htt)分别与ZnT3启动子中的(-283~+10 bp)片段克隆成的pGL3-basic荧光素酶报告基因质粒共转染BHK细胞后发现,突变Htt (pJRed-160 Q-Htt)使荧光素酶活性较对照组(pJRed-20Q-Htt)的荧光素酶活性较明显减弱,并呈浓度依赖性。而同时过表达外源性pEBGN-Spl和pJRed-160 Q-Htt质粒后的BHK细胞荧光素酶活性与同时过表达pJRed-20 Q-Htt和pEBGN空载质粒的BHK细胞荧光素酶活性相比无显著性差异,由此表明突变Htt可能通过抑制Spl的表达抑制ZnT3的转录。用RT-PCR和免疫印迹检测突变Htt对Spl mRNA和蛋白表达的影响后发现,TG小鼠脑组织中和表达pJRed-160 Q-Htt的BHK细胞中Sp1 mRNA和蛋白表达水平较WT小鼠和表达pJRed-20 Q-Htt的BHK细胞明显升高,TG小鼠脑组织Spl免疫反应性的免疫组织化学检测进一步证实,突变Htt可使Spl蛋白水平明显升高。因此,突变Htt不仅未抑制Spl的表达,反而对Spl的表达具有上调作用。为了解释在TG小鼠中Spl表达水平升高而其调控的下游基因ZnT3却表达下降这一现象,应用ChIP技术检测了突变Htt对Spl与ZnT3基因启动子结合能力的影响,结果表明,突变Htt使Spl与ZnT3基因启动子序列的结合能力明显减弱。
     本研究结果表明,突变Htt通过抑制转录因子Sp1与ZnT3基因启动子的结合而抑制Sp1对ZnT3基因转录的激活作用,从而导致ZnT3基因的转录和表达下降,进而引起游离锌离子向突触小泡内的转运障碍,突触小泡内游离锌离子减少。突触小泡内游离锌离子减少将导致突触传递功能障碍。因此,本研究为揭示HD脑内突触传递功能障碍的机制提供了新的实验依据。
Huntington's disease (HD) is an autonomic, dominantly inherited neurological disorder caused by a CAG expansion within the coding sequence of HD gene, which results in a long stretch of polyglutamine of huntingtin. Clinically, Huntington's disease is characterized by irrepressible motor dysfunction, psychiatric disturbances and cognitive deterioration to dementia. The pathological characteristic feature of HD is the dramatic regional neurodegeneration in the brain, which occur most prominently in the striatumand deep layers of the cerebral cortex. Studies have suggested that mutant huntingtin (mHtt) can cause synaptic dysfunction by altering the availability of various synaptic proteins and formation aggregates in axonal terminals. Mutant huntingtin has the obvious toxicity to synaptic function.
     Zinc is one of the essential trace elements in the biological functions of the mammals. Most of which zinc, about 85% of total content, is tightly bound to metalloenzymes where zinc is involved as a combination form and as the deposition of free zinc. A considerable amount of zinc, approximately 15% of total zinc is concentrated in synaptic vesicles as a pool of free or loosely bound zinc ions. Synaptic vesicles zinc, over 95% of free zinc exists in the synaptic vesicles, involved in synaptic transportation and synaptic activity. In synaptic activity, the zinc released into the synaptic cleft with other neurotransmitters and regulated receptors on the postsynaptic neurons. So the free zinc homeostasis has an important roal in the synaptic transmission.
     The free zinc couldn't pass the membrane through the passive diffusion and the free zinc trafficking is mediated by zinc transporters (ZnTs). Previously results demonstrated that ZnT3 is required for transport of zinc into synaptic vesicles and suggest that vesicular zinc concentration is determined by the abundance of ZnT3.
     Recent data have shown that vesicular Zinc, transported by ZnT3, was all changes in transgenic mice brainin of the neurodegenerative disease.However, free zinc and ZnT3 expression in HD have no reported. For this study, we characterized the association of mHtt with free zinc and its transporter ZnT3 and explored the mechanism of ZnT3 on the transcription dysfunction caused by mHtt. The results show that Mutant huntingtin reduces vesicular zinc level by inhibiting the binding of Spl to ZnT 3 promoter.
     Decrease in level of free zinc in the brain of HD transgenic mice. To investigate the levels of total zinc element in the TG mice, metal content was measured by flame atomic absorption spectrometry. To compare with the WT mice, in the hippocampus cortex and striatum regions the zinc element was reduced significantly in the HD mice. To determine whether the vesicular zinc is affected in the TG mice, autometallography (AMG) staining method (sodium sulfide solution perfusion) was performed to stain the free zinc. Importantly, zinc density in the hippocampus, striatum, lateral globus pallidus and substantia nigra was reduced marked in the HD mice compared with WT mice. These results indicated that zinc homeostasis was damaged by the mHtt and then caused synaptic dysfunction.
     Mutant Htt decreases expression of ZnT3. The free zinc couldn't pass the membrane through the passive diffusion. Studies have shown that vesicular zinc concentration is determined by the abundance of ZnT3. To investigate the ZnT3 mRNA and protein expression on the vesicle membranes, we performed the RT-PCR assay, immunohistochemical method and Western blotting analysis in the brain of TG mice and in the BHK cells transfected with pJRed-20 Q-Htt and pJRed-160 Q-Htt. Western blots analysis showed that the ZnT3 protein expression of cortex, hippocampus and striatum tissues from the 14W,18W and 20W HD mice was significantly reduced gradually compared with respectively WT mice. Moreover, the ZnT3 protein expression of the BHK cells transfected with pJRed-160 Q-Htt was decrease at the 24 h after the transfection and the 48 h and 72 h reduced seriously. Consistent with the ZnT3 protein expression, the mRNA level of ZnT3 in the HD mice and 160 Q/BHK cells was reduced marked. Immunohistochemical analysis observed that ZnT3 expression decreased in the hippocampus, striatum, medial and lateral globus pallidus and substantia nigra of TG mice at light-microscopic levels. Above results showed that the the mutant Htt suppressed the transcription of ZnT3 so that the free zinc and ZnT3 expression reduced significantly. Above results suggest that the free zinc levels reduced in the TG mice caused by the inhibition of the ZnT3 gene transcription disorders and expression reduced.
     Sp1 activates transcription of ZnT3 gene. The mHtt has been shown to suppress the activities of many transcription factors and-subsequently causes transcriptional dysfunction. To further explore the mechanism of ZnT3 mRNA suppression on the above results, we have to find out which ones were the transcription factors of ZnT3 gene. Bioinformatics analysis showed that the ZnT3 gene promoter region contains Spl, WT1+ KTS, WT1-KTS, NF-κB in p50, NF-κB of p65 and other transcription factors may be binding with the ZnT3 promoter sequence, in which the Sp1 has a higher score than the others. Western blot detection showed that over-expression of Sp1 to upregulate the expression of ZnT3 in the BHK cell lines and the other ranscription factors have no this effection on the expression of ZnT3. Furthermore, we found that ZnT3 expression increased after the BHK cells transfected with pEBGN-Sp1 and decreased after the Sp1 RNA inteference applied in BHK cells. According to the ZnT3 promoter sequence, there were two conserved Sp1 binding site (-269bp~-261bp,-184bp~-174bp) were named Spla and Splb. Dual Luciferase Reporter Gene Assay showed that pEBGN-Spl over-expression enhanced the pGL3-ZnT3(-283-+10) and pGL3-ZnT3(-193~+10) promoter activity. The ChIP results revealed that Spl is one of the transcriptional factors and Sp1 can combine with the ZnT3 promoter sequences at Sp1a and Sp1b sites directly.
     Mutant huntingtin reduces binding of Sp1 to ZnT3 promoter sequence. To investigate whether the mHtt suppress the ZnT3 expression by reducing the activity of ZnT3 promoter,we construct the plasmid of pGL3-ZnT3(-283~+10). And then,we inspected the dual luciferase activity after the co-transfected pJRed-160 Q-Htt and PGL3-ZnT3(-283~+10bp) in the BHK cells for 48 h. When compared the dual luciferase activity of cells transfected pJRed-160 Q-Htt at the different does with the cells transfected with pJRed-20 Q-Htt, the value was less gradually and the decrease tendency was does depended. The mHtt appeared to inhibit the expression of ZnT3 at the transcription level in BHK cells. We also co-transfected the Spl-pEBGN and ZnT3 promoter construct with different does of pJRed-20 Q-Htt or pJRed-160 Q-Htt in the BHK cells. Thus the results showed that the ZnT3 promoter sequence dual luciferase activity of co-transfected with pJRed-160 Q-Htt and Spl-pEBGN was corrected compared with co-transfected with pJRed-160 Q-Htt and pEBGN vector. Furthermore, we have inspected transcriptional inhibition of the ZnT3 gene by mHtt and the rectification by 160 Q and Spl co-transfected in BHK cells. To explore the paradox of Spl-driven gene ZnT3 transcription suppression and the Spl expression increased in the TG mcie and BHK/160 Q cells, we performed the ChIP assay to it. Having revealed specificity of the ChIP technique, we sought to compare the binding of Spl to the ZnT3 promoter in BHK/160 Q cells to BHK/20 Q control cells. Sp1a and Sp1b sites of Spl combined with in the ZnT3 promoter sequence, were amplified 106bp and 141bp. RT-PCR results showed that the both of ZnT3 promoter sequence bands in BHK/160 Q cells were weaker than in the BHK/20 Q control cells.The difference indicates that there was less Spl associated with the ZnT3 promoter in BHK/160 Q cells as compared to the BHK/20 Q control cells. The decreases of Spl binding to target gene ZnT3 explained the previous results of decreased overall level of ZnT3 and increased overall of Spl.
     The results of this study showed that the mHtt inhibit the combination of transcription factor Spl and ZnT3 gene promoter sequence, resulting in the ZnT3 gene transcription and expression decreased and then free zinc level in the synaptic vesicles suppression and synaptic dysfunction. This study provides a new experimental basis to reveal the mechanism of HD synaptic transmission and synaptic dysfunction.
引文
1. Andreadis A:Tau gene alternative splicing:expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 2005,1739:91-103.
    2. Anderson GR, Brenner BM, Swede H, Chen N, Henry WM, Conroy JM, Karpenko MJ, Issa JP, Bartos JD, Brunelle JK, et al:Intrachromosomal genomic instability in human sporadic colorectal cancer measured by genome-wide allelotyping and inter-(simple sequence repeat) PCR. Cancer Res 2001,61:8274-8283.
    3. Novak MJ, Tabrizi SJ:Huntington's disease. BMJ 2010,340:c3109.
    4. Takeda A, Kanno S, Sakurada N, Ando M, Oku N:Attenuation of hippocampal mossy fiber long-term potentiation by low micromolar concentrations of zinc. J Neurosci Res 2008,86:2906-2911.
    5. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR:Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 1998,158:47-52.
    6. Marcora E, Kennedy MB:The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-kappaB from the synapse to the nucleus. Hum Mol Genet 2010,19:4373-4384.
    7. Leavitt BR, van Raamsdonk JM, Shehadeh J, Fernandes H, Murphy Z, Graham RK, Wellington CL, Raymond LA, Hayden MR:Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 2006,96:1121-1129.
    8. Zhang Y, Li M, Drozda M, Chen M, Ren S, Mejia Sanchez RO, Leavitt BR, Cattaneo E, Ferrante RJ, Hayden MR, Friedlander RM:Depletion of wild-type huntingtin in mouse models of neurologic diseases. J Neurochem 2003,87:101-106.
    9. Takeda A, Itoh H, Nagayoshi A, Oku N:Abnormal Ca2+mobilization in hippocampal slices of epileptic animals fed a zinc-deficient diet. Epilepsy Res 2009, 83:73-80.
    10. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI:Cognitive loss in zinc transporter-3 knock-out mice:a phenocopy for the synaptic and memory deficits of Alzheimer's disease? J Neurosci 2010,30:1631-1636.
    11. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, et al:A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 1999,23:181-192.
    12. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC:Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010, 19:2144-2153.
    13. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ:Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 2001,21:8473-8481.
    14. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997,277:1990-1993.
    15. Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM:The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1):comparison with huntingtin in rat and human. J Neurosci 1998,18:7674-7686.
    16. Smith R, Brundin P, Li JY:Synaptic dysfunction in Huntington's disease:a new perspective. Cell Mol Life Sci 2005,62:1901-1912.
    17. Steinert JR, Campesan S, Richards P, Kyriacou CP, Forsythe ID, Giorgini F:Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington's disease. Hum Mol Genet 2012.
    18. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH:Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum Mol Genet 2012,21:406-420.
    19. Ehrnhoefer DE, Sutton L, Hayden MR:Small changes, big impact:posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 2011, 17:475-492.
    20. Tebano MT, Martire A, Chiodi V, Ferrante A, Popoli P:Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF:a possible key mechanism in the pathophysiology of Huntington's disease. ScientificWorldJournal 2010,10:1768-1782.
    21. Smith R, Klein P, Koc-Schmitz Y, Waldvogel HJ, Faull RL, Brundin P, Plomann M, Li JY:Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington's disease. J Neurochem 2007,103:115-123.
    22. Freeman W, Morton AJ:Regional and progressive changes in brain expression of complexin Ⅱ in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull 2004,63:45-55.
    23. Morton AJ, Faull RL, Edwardson JM:Abnormalities in the synaptic vesicle fusion machinery in Huntington's disease. Brain Res Bull 2001,56:111-117.
    24. Edwardson JM, Wang CT, Gong B, Wyttenbach A, Bai J, Jackson MB, Chapman ER, Morton AJ:Expression of mutant huntingtin blocks exocytosis in PC 12 cells by depletion of complexin Ⅱ. J Biol Chem 2003,278:30849-30853.
    25. Lievens JC, Woodman B, Mahal A, Bates GP:Abnormal phosphorylation of synapsin Ⅰ predicts a neuronal transmission impairment in the R6/2 Huntington's disease transgenic mice. Mol Cell Neurosci 2002,20:638-648.
    26. Modregger J, DiProspero NA, Charles V, Tagle DA, Plomann M:PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains. Hum Mol Genet 2002,11:2547-2558.
    27. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S:Loss of normal huntingtin function:new developments in Huntington's disease research. Trends Neurosci 2001,24:182-188.
    28. Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen XN, Furey TS, Kim UJ, Kuo WL, Olivier M, et al: Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 2001,409:953-958.
    29. Clarkson ED, Edwards-Prasad J, Freed CR, Prasad KN:Immortalized dopamine neurons:A model to study neurotoxicity and neuroprotection. Proc Soc Exp Biol Med 1999,222:157-163.
    30. Takeda A:Zinc homeostasis and functions of zinc in the brain. Biometals 2001, 14:343-351.
    31. Collier DA:Sudden impact? The human genome sequence and the pace of gene discovery in complex diseases. Pharmacogenomics J 2001,1:9-11.
    32. Wang ZY, Stoltenberg M, Jo SM, Huang L, Larsen A, Dahlstrom A, Danscher G: Dynamic zinc pools in mouse choroid plexus. Neuroreport 2004,15:1801-1804.
    33. Kay AR, Neyton J, Paoletti P:A startling role for synaptic zinc. Neuron 2006, 52:572-574.
    34. Frederickson CJ, Koh JY, Bush AI:The neurobiology of zinc in health and disease. Nat Rev Neurosci 2005,6:449-462.
    35. Frederickson CJ, Cuajungco MP:Is zinc the link between compromises of brain perfusion (excitotoxicity) and Alzheimer's disease? J Alzheimers Dis 2005, 8:155-160; discussion 209-115.
    36.7Udayabanu M, Kumaran D, Katyal A:Free chelatable zinc modulates the cholinergic function during hypobaric hypoxia-induced neuronal damage:an in vivo study. Neuroscience 2012,202:434-445.
    37. Evstratova A, Toth K:Synaptically evoked Ca2+release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones. J Physiol 2011,589:5677-5689.
    38. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO:Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 2011,71:1116-1126.
    39. Paoletti P, Vergnano AM, Barbour B, Casado M:Zinc at glutamatergic synapses. Neuroscience 2009,158:126-136.
    40. Giacomello M, Hudec R, Lopreiato R:Huntington's disease, calcium, and mitochondria. Biofactors 2011,37:206-218.
    41. Olivier M, Aggarwal A, Allen J, Almendras AA, Bajorek ES, Beasley EM, Brady SD, Bushard JM, Bustos Ⅵ, Chu A, et al:A high-resolution radiation hybrid map of the human genome draft sequence. Science 2001,291:1298-1302.
    42. Riethman HC, Xiang Z, Paul S, Morse E, Hu XL, Flint J, Chi HC, Grady DL, Moyzis RK:Integration of telomere sequences with the draft human genome sequence. Nature 2001,409:948-951.
    43. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, et al:A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409:928-933.
    44. Palmiter RD, Cole TB, Quaife CJ, Findley SD:ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A 1996,93:14934-14939.
    45. Palmiter RD, Cole TB, Findley SD:ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 1996, 15:1784-1791.
    46. Tamminga CA:The human genome sequence:the human genome ⅱ:sources of genetic variation. Am J Psychiatry 2001,158:691.
    47. Nelson NJ:Draft human genome sequence yields several surprises. J Natl Cancer Inst 2001,93:493.
    48. Smidt K, Rungby J:ZnT3:a zinc transporter active in several organs. Biometals 2012, 25:1-8.
    49. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD:Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A 1999,96:1716-1721.
    50. Beyer N, Coulson DT, Heggarty S, Ravid R, Irvine GB, Hellemans J, Johnston JA: ZnT3 mRNA levels are reduced in Alzheimer's disease post-mortem brain. Mol Neurodegener 2009,4:53.
    51. Lee JY, Cho E, Kim TY, Kim DK, Palmiter RD, Volitakis I, Kim JS, Bush AI, Koh JY:Apolipoprotein E ablation decreases synaptic vesicular zinc in the brain. Biometals 2010,23:1085-1095.
    52. Huang C, Xie K:Crosstalk of Spl and Stat3 signaling in pancreatic cancer pathogenesis. Cytokine Growth Factor Rev 2012,23:25-35.
    53. Danscher G:The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J 1996,28:361-373.
    54. Chi ZH, Wang X, Cai JQ, Stoltenberg M, Danscher G, Wang ZY:Zinc transporter 3 immunohistochemical tracing of sprouting mossy fibres. Neurochem Int 2008, 52:1305-1309.
    55. Colvin RA, Davis N, Nipper RW, Carter PA:Zinc transport in the brain:routes of zinc influx and efflux in neurons. J Nutr 2000,130:1484S-1487S.
    56. Frederickson CJ, Suh SW, Silva D, Thompson RB:Importance of zinc in the central nervous system:the zinc-containing neuron. J Nutr 2000,130:1471S-1483S.
    57. Danscher G:Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry 1981,71:1-16.
    58. Jordan BF, Gregoire V, Demeure RJ, Sonveaux P, Feron O, O'Hara J, Vanhulle VP, Delzenne N, Gallez B:Insulin increases the sensitivity of tumors to irradiation: involvement of an increase in tumor oxygenation mediated by a nitric oxide-dependent decrease of the tumor cells oxygen consumption. Cancer Res 2002, 62:3555-3561.
    59. Ke X, Tapper W, Collins A:LDB2000:sequence-based integrated maps of the human genome. Bioinformatics 2001,17:581-586.
    60. Danscher G, Wang Z, Kim YK, Kim SJ, Sun Y, Jo SM:Immunocytochemical localization of zinc transporter 3 in the ependyma of the mouse spinal cord. Neurosci Lett 2003,342:81-84.
    61. Wang Z, Danscher G, Kim YK, Dahlstrom A, Mook Jo S:Inhibitory zinc-enriched terminals in the mouse cerebellum:double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci Lett 2002,321:37-40.
    62. Wang ZY, Li JY, Danscher G, Dahlstrom A:Localization of zinc-enriched neurons in the mouse peripheral sympathetic system. Brain Res 2002,928:165-174.
    63. Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY:Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci U S A 2002,99:7705-7710.
    64. Sun Y, Savanenin A, Reddy PH, Liu YF:Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 2001,276:24713-24718.
    65. Zhao J, Xu L, Zhang T, Ren G, Yang Z:Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 2009, 30:220-230.
    66. Park EJ, Choi IS, Cho JH, Nakamura M, Lee JJ, Lee MG, Choi BJ, Moorhouse AJ, Jang IS:Zinc modulation of glycine receptors in acutely isolated rat CA3 neurons. Life Sci 2008,83:149-154.
    67. Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK:Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 2003, 278:50142-50150.
    68. Lord SR, Dayhew J, Howland A:Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people. J Am Geriatr Soc 2002,50:1760-1766.
    69. Mattson MP:Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000, 1:120-129.
    70. Monks TJ, Ghersi-Egea JF, Philbert M, Cooper AJ, Lock EA:Symposium overview: the role of glutathione in neuroprotection and neurotoxicity. Toxicol Sci 1999, 51:161-177.
    71. Mostacero E:[Neurotoxicity, neuroprotection and therapeutic window in cerebral ischemia]. Rev Neurol 1999,29:513-514.
    72. Levine A, Durbin R:A computational scan for U12-dependent introns in the human genome sequence. Nucleic Acids Res 2001,29:4006-4013.
    73. Li H, Wyman T, Yu ZX, Li SH, Li XJ:Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release. Hum Mol Genet 2003, 12:2021-2030.
    74. Nicoletti F, Bruno V, Catania MV, Battaglia G, Copani A, Barbagallo G, Cena V, Sanchez-Prieto J, Spano PF, Pizzi M:Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology 1999,38:1477-1484.
    75. Lawrence RN:What does the human genome sequence mean to you? Drug Discov Today 2001,6:286.
    76. Castagnoli K, Palmer S, Castagnoli N, Jr.:Neuroprotection by (R)-deprenyl and 7-nitroindazole in the MPTP C57BL/6 mouse model of neurotoxicity. Neurobiology (Bp) 1999,7:135-149.
    77. Licinio J, Wong ML:The role of inflammatory mediators in the biology of major depression:central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999,4:317-327.
    78. Lopez E, Hernandez J, Arce C, Canadas S, Oset-Gasque MJ, Gonzalez MP: Involvement of NMD A receptor in the modulation of excitatory and inhibitory amino acid neurotransmitters release in cortical neurons. Neurochem Res,35:1478-1486.
    79. Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D:Spl and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002,296:2238-2243.
    80. Katsuta S, Tsuchiya F, Takeda Y:Equilibrium studies on complexation in water and solvent extraction of zinc(Ⅱ) and cadmium(Ⅱ) with benzo-18-crown-6. Talanta 2000, 51:637-644.
    81. Komai M, Goto T, Suzuki H, Takeda T, Furukawa Y:Zinc deficiency and taste dysfunction; contribution of carbonic anhydrase, a zinc-metalloenzyme, to normal taste sensation. Biofactors 2000,12:65-70.
    82. Takeda A:Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 2000,34:137-148.
    83. Tamano H, Igasaki E, Enomoto S, Oku N, Itoh N, Kimura T, Tanaka K, Takeda A: Hepatic zinc response via metallothionein induction after tumor transplantation. Biochem Biophys Res Commun 2000,270:1140-1143.
    84. Takeda A, Takefuta S, Okada S, Oku N:Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res 2000, 859:352-357.
    85. Citron BA, Dennis JS, Zeitlin RS, Echeverria V:Transcription factor Sp1 dysregulation in Alzheimer's disease. J Neurosci Res 2008,86:2499-2504.
    86. Yu HT, Chan WW, Chai KH, Lee CW, Chang RC, Yu MS, McLoughlin DM, Miller CC, Lau KF:Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1. J Cell Biochem 2010,109:782-793.
    87. Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ:Interaction of Huntington disease protein with transcriptional activator Spl. Mol Cell Biol 2002,22:1277-1287.
    88. Bordji K, Becerril-Ortega J, Buisson A:Synapses, NMDA receptor activity and neuronal Abeta production in Alzheimer's disease. Rev Neurosci 2011,22:285-294.
    89. Bordji K, Becerril-Ortega J, Nicole O, Buisson A:Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ss production. J Neurosci 2010,30:15927-15942.
    90. Zhang LH, Wang X, Stoltenberg M, Danscher G, Huang L, Wang ZY:Abundant expression of zinc transporters in the amyloid plaques of Alzheimer's disease brain. Brain Res Bull 2008,77:55-60.
    91. Zheng W, Wang T, Yu D, Feng WY, Nie YX, Stoltenberg M, Danscher G, Wang ZY: Elevation of zinc transporter ZnT3 protein in the cerebellar cortex of the AbetaPP/PS1 transgenic mouse. J Alzheimers Dis,20:323-331.
    92. Hoey SE, Williams RJ, Perkinton MS:Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. J Neurosci 2009,29:4442-4460.
    93. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, Hammers A, Brooks DJ:Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias. Brain 2011,134:979-986.
    94. Ellerby LM:Hunting for excitement:NMDA receptors in Huntington's disease. Neuron 2002,33:841-842.
    95. Fan MM, Raymond LA:N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Prog Neurobiol 2007,81:272-293.
    96. Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D'Amato C, Shoulson I, Penney JB:NMDA receptor losses in putamen from patients with Huntington's disease. Science 1988,241:981-983.
    97. Milnerwood AJ, Gladding CM, Pouladi.MA, Kaufman AM, Hines RM, Boyd JD, Ko RW, Vasuta OC, Graham RK, Hayden MR, et al:Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron 2010,65:178-190.
    98. Fernandes HB, Raymond LA:NMDA Receptors and Huntington's Disease.2009.
    99. Takeda A, Tamano H, Nagayoshi A, Yamada K, Oku N:Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochem Int 2005, 47:539-544.
    100. Takeda A, Yamada K, Tamano H, Fuke S, Kawamura M, Oku N:Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochem Int 2008,52:241-246.
    1. Andreadis A:Tau gene alternative splicing:expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 2005,1739:91-103.
    2. Margolis RL, Ross CA:Expansion explosion:new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med 2001,7:479-482.
    3. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, et al:A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 1999,23:181-192.
    4. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997,277:1990-1993.
    5. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, Hammers A, Brooks DJ:Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias. Brain 2011,134:979-986.
    6. Landles C, Bates GP:Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 2004,5:958-963.
    7. Lee SJ, Koh JY:Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain, 3:30.
    8. Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR:Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 2006, 342:184-190.
    9. Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK:Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 2003, 278:50142-50150.
    10. McGuire JR, Rong J, Li SH, Li XJ:Interaction of Huntingtin-associated protein-1 with kinesin light chain:implications in intracellular trafficking in neurons. J Biol Chem 2006,281:3552-3559.
    11. Kozlowski H, Masiukiewicz E, Potargowicz E, Rzeszotarska B, Walczewska-Sumorok A:Ovulation-inducing activity of luliberin (LHRH) complexed by copper(Ⅱ), nickel(Ⅱ), and zinc(Ⅱ) ions. J Inorg Biochem 1990,40:121-125.
    12. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ:Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 2001,21:8473-8481.
    13. Kuwahara J, Coleman JE:Role of the zinc(Ⅱ) ions in the structure of the three-finger DNA binding domain of the Spl transcription factor. Biochemistry 1990, 29:8627-8631.
    14. Birkaia VG, Lomidze EM, Kiladze AA, Monaselidze DR:[The effect of zinc ions on the structure and function of lactate dehydrogenase M4]. Biofizika 1990,35:579-580.
    15. Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM:The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1):comparison with huntingtin in rat and human. J Neurosci 1998,18:7674-7686.
    16. Ciancaglini P, Pizauro JM, Curti C, Tedesco AC, Leone FA:Effect of membrane moiety and magnesium ions on the inhibition of matrix-induced alkaline phosphatase by zinc ions. Int J Biochem 1990,22:747-751.
    17. Tovar KR, Westbrook GL:Mobile NMDA receptors at hippocampal synapses. Neuron 2002,34:255-264.
    18. Ellerby LM:Hunting for excitement:NMDA receptors in Huntington's disease. Neuron 2002,33:841-842.
    19. Nowak G, Zieba A, Dudek D, Schlegel-Zawadzka M, Pilc A:[Zinc homeostasis and glutamatergic system in the pathogenesis and treatment of depression]. Psychiatr Pol 2001,35:257-266.
    20. Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pezzola A, Scarchilli L, Quarta D, Reggio R, Malchiodi-Albedi F, et al:Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity:possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 2002,22:1967-1975.
    21. Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA:Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 2002,33:849-860.
    22. Mattson MP:Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000, 1:120-129.
    23. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP:Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997,90:537-548.
    24. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S:Loss of normal huntingtin function:new developments in Huntington's disease research. Trends Neurosci 2001,24:182-188.
    25. Song C, Perides G, Liu YF:Expression of full-length polyglutamine-expanded Huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC 12) cells. J Biol Chem 2002,277:6703-6707.
    26. Nicoletti F, Bruno V, Catania MV, Battaglia G, Copani A, Barbagallo G, Cena V, Sanchez-Prieto J, Spano PF, Pizzi M:Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology 1999,38:1477-1484.
    27. Vallee BL, Falchuk KH:The biochemical basis of zinc physiology. Physiol Rev 1993, 73:79-118.
    28. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al:The sequence of the human genome. Science 2001, 291:1304-1351.
    29. Harrison NL, Gibbons SJ:Zn2+:an endogenous modulator of ligand- and voltage-gated ion channels. Neuropharmacology 1994,33:935-952.
    30. Smart TG, Xie X, Krishek BJ:Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 1994,42:393-441.
    31. Huang EP:Metal ions and synaptic transmission:think zinc. Proc Natl Acad Sci U S A 1997,94:13386-13387.
    32. Frederickson CJ, Suh SW, Silva D, Thompson RB:Importance of zinc in the central nervous system:the zinc-containing neuron. J Nutr 2000,130:1471S-1483S.
    33. Frederickson CJ, Danscher G:Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 1990,83:71-84.
    34. Takeda A, Tamano H, Tochigi M, Oku N:Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int 2005,46:221-225.
    35. Takeda A, Fuke S, Ando M, Oku N:Positive modulation of long-term potentiation at hippocampal CA1 synapses by low micromolar concentrations of zinc. Neuroscience 2009,158:585-591.
    36. Satarug S, Kikuchi M, Wisedpanichkij R, Li B, Takeda K, Na-Bangchang K, Moore MR, Hirayama K, Shibahara S:Prevention of cadmium accumulation in retinal pigment epithelium with manganese and zinc. Exp Eye Res 2008,87:587-593.
    37. Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russell JT, Hershfinkel M: Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 2009,29:2890-2901.
    38. Martire A, Ferrante A, Potenza RL, Armida M, Ferretti R, Pezzola A, Domenici MR, Popoli P:Remodeling of striatal NMD A receptors by chronic A(2A) receptor blockade in Huntington's disease mice. Neurobiol Dis 2010,37:99-105.
    39. Frederickson CJ:Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 1989,31:145-238.
    40. Weiss JH, Koh JY, Christine CW, Choi DW:Zinc and LTP. Nature 1989,338:212.
    41. Palmiter RD, Cole TB, Findley SD:ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 1996,15:1784-1791.
    42. Cunningham MG, Ames HM, Christensen MK, Sorensen JC:Zincergic innervation of medial prefrontal cortex by basolateral projection neurons. Neuroreport 2007, 18:531-535.
    43. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M:Overview of mammalian zinc transporters. Cell Mol Life Sci 2004,61:49-68.
    44. Jia Y, Jeng JM, Sensi SL, Weiss JH:Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones. J Physiol 2002, 543:35-48.
    45. Koh JY, Choi DW:Zinc toxicity on cultured cortical neurons:involvement of N-methyl-D-aspartate receptors. Neuroscience 1994,60:1049-1057.
    46. Wang F, Dufner-Beattie J, Kim BE, Petris MJ, Andrews G, Eide DJ:Zinc-stimulated endocytosis controls activity of the mouse ZIP1 and ZIP3 zinc uptake transporters. J Biol Chem 2004,279:24631-24639.
    47. Peters JL, Dufner-Beattie J, Xu W, Geiser J, Lahner B, Salt DE, Andrews GK: Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell-specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis. Genesis 2007, 45:339-352.
    48. Rogers EE, Eide DJ, Guerinot ML:Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 2000,97:12356-12360.
    49. Gaither LA, Eide DJ:Eukaryotic zinc transporters and their regulation. Biometals 2001, 14:251-270.
    50. Frederickson RE, Frederickson CJ, Danscher G:In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task. Behav Brain Res 1990, 38:25-33.
    51. Li Y, Hough CJ, Frederickson CJ, Sarvey JM:Induction of mossy fiber--> Ca3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci 2001,21:8015-8025.
    52. Takeda A, Hirate M, Tamano H, Oku N:Release of glutamate and GAB A in the hippocampus under zinc deficiency. J Neurosci Res 2003,72:537-542.
    53. Liuzzi JP, Bobo JA, Cui L, McMahon RJ, Cousins RJ:Zinc transporters 1,2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. J Nutr 2003,133:342-351.
    54. Huang L, Kirschke CP, Gitschier J:Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 2002,277:26389-26395.
    55. Kirschke CP, Huang L:ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 2003,278:4096-4102.
    56. Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD:Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci U S A 1997,94:12676-12681.
    57. Palumaa P, Njunkova O, Pokras L, Eriste E, Jornvall H, Sillard R:Evidence for non-isostructural replacement of Zn(2+) with Cd(2+) in the beta-domain of brain-specific metallothionein-3. FEBS Lett 2002,527:76-80.
    58. Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA:Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004,25:469-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700