用户名: 密码: 验证码:
湿法炼锌净化过程建模及基于控制参数化的优化方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿法炼锌净化过程是除去硫酸锌溶液中杂质金属离子的一个重要生产环节,在该过程中,根据每小时化验检测的净化反应槽入口和出口的杂质金属离子浓度,添加锌粉置换溶液中的杂质离子,为后续电解过程提供合格的电解液。锌粉作为沉淀除杂的主要原料,是一个十分重要的控制条件。由于净化过程具有长流程、时滞、非线性、动态变化等特性,过程工况参数的改变要经过一段时间才能反映到出口杂质金属离子浓度的变化;另外,杂质金属离子浓度在生产现场中没有实现在线检测,人工化验检测和净化反应的滞后,使得操作工不能准确地根据离子浓度的变化情况来调整锌粉的添加量。同时,由于净化反应复杂,反应环境恶劣,操作工通常采用过量添加锌粉的方法来保证生产出合格的硫酸锌溶液。这种做法,虽然保证了溶液净化的质量,但却极大地增加了生产成本和能耗。
     硫酸锌溶液净化过程采用三段净化工序,其中Ⅱ段净化工序主要是除去溶液中的杂质钴和镉离子,是整个净化过程中最关键的一道工序。论文在深入研究净化过程工艺和反应机理的基础上,首先依据生产过程数据,建立Ⅱ段净化过程出口杂质离子浓度的智能预测模型;其次,根据锌粉颗粒与金属离子间的置换沉淀反应机理,结合生产工况的特点,建立净化除杂的动态反应模型,并提出基于控制参数化技术的优化控制方法,最后,将其运用到锌粉添加量的优化控制方案中,取得了明显的成效。本文主要研究工作及创新性成果如下:
     (1)在对硫酸锌溶液净化过程深入分析的基础上,针对Ⅱ段净化过程出口杂质金属离子浓度的重要性,根据生产过程中的大量工况数据,建立Ⅱ段净化过程出口钴离子和镉离子浓度的在线支持向量回归预测模型。由于在线支持向量回归算法中存在复杂的矩阵运算,提出采用分块矩阵的迭代更新法求解,以提高计算效率。基于生产数据的仿真分析说明模型具有良好的预测性能,明显提高计算速度,能为生产操作提供参考,进一步指导锌粉添加量的优化控制。
     (2)研究金属离子的置换反应机理,其中发生的主要化学反应为锌粉颗粒置换沉淀钴和镉离子的反应过程,结合硫酸锌溶液净化过程的特点,以连续搅拌反应釜模型为基础,分别以钻离子和镉离子浓度作为状态变量,提出锌粉净化除杂质离子的非线性时滞关联动态反应模型。
     (3)提出基于控制参数化的数值优化方法,解决非线性时滞关联动态反应模型中的参数计算问题。其基本思想是把控制量表示成分段常数函数形式,整个时间域内的非线性动态方程则被转化为与各个控制参数相应子区间内的线性动态方程。为求解最优动态模型参数,依据采样点,即特征时间点上的实际离子浓度检测数据,提出基于多特征时间点的优化参数选择方法,以确定动态模型中的未知参数。通过把该类优化参数选择问题转化为数学规划问题,每个模型参数与控制参数都被当作是决策变量,并推导出目标函数对于这些决策变量的梯度计算公式。给定参数初始值的情况下,利用序列二次规划优化方法来求解最优参数选择问题。针对求解时滞微分方程的特殊性,提出采用三次方样条插值拟合函数,依据采样时刻的离子浓度检测值,建立初始时刻以前的离子浓度状态函数。通过采用基于多特征时间点的时滞优化参数选择问题的数值计算方法,可以有效求得最优的动态系统模型参数。
     (4)针对实际生产中锌粉总是被过量添加的情况,提出基于连续状态不等式约束的时滞优化控制方法,解决锌粉添加量的最优控制问题。通过采用局部光滑技术的约束转换方法,将连续状态不等式约束转化为一系列规范型的不等式约束,这些不等式约束的形式和目标函数保持一致。控制函数依然被表示成分段常数函数形式,每个控制参数都被认为是决策变量,并推导出目标函数和约束函数对于决策变量的梯度计算公式。最后,采用基于梯度的序列二次规划优化方法来求解该优化控制问题,数值仿真表明锌粉添加量可以有效地被减少。
     (5)基于梯度的序列二次规划方法是一种局部优化算法,针对优化计算过程中容易陷入局部最优值的问题,提出采用基于填充函数全局优化的锌粉量时滞优化控制方法,解决后续时段锌粉添加量的最优控制问题。作为表示锌粉添加量的控制函数依然采用分段常数函数形式,以离线优化计算得到的最优控制参数作为在线优化控制的参数初始值,可以有效提高寻优效率。以基于生产数据的在线支持向量回归模型预测出的杂质金属离子浓度值作为时滞动态方程的状态参考值,期望时滞动态方程的状态解跟踪该参考轨迹,并在该种情况下在线优化控制锌粉添加量。数值仿真表明,采用该方法可以有效求解出后续时段内的最优锌粉添加量,为生产操作提供指导。
     本文提出的基于控制参数化的优化控制方法具有较强的实用性,可以在类似的冶金生产过程中推广应用。
The purification process of zinc hydrometallurgy, in which metallic ion impurities are removed from a zinc sulphate solution, is an important industrial process.In this process, the zinc powder is added into the solution to remove the impurities based on the measured concentration of metallic ion impurities at the inlet and outlet of the reaction tank. Then, the eligible solution is fed to the electrolysis process. In addition, zinc powder is the primary material for inducing the deposition of the metallic ion impurities, and hence it is crucial that the amount used be controlled appropriately. Because the purification process has the characteristic of long flow, time delay, nonlinear and dynamic,it usually takes a period of time for the variation in the process parameters reflecting the alteration in the concentration of metallic ion impurities.Besides, the concentration of the metallic ion impurities is not detected online in the process.The operator can not regulate the amount of zinc powder added according to the variation in the concentration of impurities correctly due to the time delay in the chemical test and purification reaction.Meanwhile, there are many disturbances and uncertainties affecting the purification reaction, the amount of zinc powder added is always much more than required.The operator does this based on their experience and judgement, to ensure that the zinc sulphate solution produced is of a sufficiently high purity. However, this way of ensuring the purification quality is expensive and consumes significant amounts of energy.
     There are three stages in the purification process of zinc sulphate solution.The cobalt and cadmium ions are removed mainly in the second stage, which is the most crucial stage in the whole purification process.On the basis of our research findings into the zinc sulphate purification process and reaction mechanism, an intelligent prediction model describing the concentration of metallic ion impurities in the second purification process outlet is established using the process data. Then, by taking into account the specific characteristics of the process, a mathematical model for the dynamic reaction of the purification process is constructed according to the deposition reaction mechanism between zinc powder particles and metallic ion impurities.An optimal control method based on the control parameterization technique is then proposed to obtain the optimal amount of zinc powder that should be added to the purification process at each time.The simulation results are very promising.The main research work and innovative achievements are listed as follows:
     (1)The purification process of zinc sulphate solution is thoroughly investigated and analysed. Then, because of the significance of the concentrations of the metallic ion impurities in the second purification process outlet, an online support vector regression prediction model for the concentration of the cobalt and cadmium ions is constructed using the process data. As the matrix computation in the online support vector regression algorithm is very complicated, an iterative updating method of matrix blocking partition is developed so that the computation efficiency can be improved. The simulation results of the process data show that the prediction model performs quickly and gives good results. This model can serve as a reference for the production process, which indicates the optimal amount of zinc powder that should be added in the purification process.
     (2)The replacement reaction mechanism of the metallic ions is also studied. The main chemical reaction includes the replacement deposition reaction between zinc powder particles and the cobalt or cadmium ions. By taking into account the characteristics of the purification process, the concentration of cobalt and cadmium ions are taken as state variables, a nonlinear time delay interactive dynamic reaction model is proposed for the metallic ion impurities deposition process, which is based on the continuous stirred tank reactor model.
     (3)The numerical optimization method based on control parameterization is proposed to obtain the optimal parameters in the nonlinear time delay interactive dynamic reaction model.The main idea is that the control takes the form of piecewise constant function, then the nonlinear dynamic equation in the whole time domain can be transformed to linear dynamic equation in the subinterval corresponding to each control parameter. Based on the measured concentration of metallic ion impurities on the sampling point, i.e.characteristic time point, we formulate an optimal parameter selection method with multiple characteristic time points, in which the underlying dynamic system is a system of time delay differential equations, to obtain the optimal parameters in the dynamic model.This kind of optimal parameter selection problem can be transformed to mathematical programming problem. Each model parameter and control parameter can be taken as decision variable.Then, formulae for computing the gradient of the cost function with respect to these decision variables are derived.Given the initial parameters, the sequential quadratic programming method can be used to solve the optimal parameter selection problem. For solving the time delay differential system, a cubic spline interpolation function method is adopted to construct the function of metallic ion concentration prior to the initial time by using the measured values of the concentrations of the metallic ion at the sampling points.The optimal parameters of the dynamic system model can be obtained by using the computational method for the time delay optimal parameter selection problem with multiple characteristic time points mentioned above.We observe from numerical simulations that this method is highly effective.
     (4) Since the zinc powder used is always more than required, we formulate the minimization of the zinc powder usage as a time delay optimal control problem with continuous state inequality constraints. By using the constraint transcription method together with a local smoothing technique, the continuous state inequality constraints are approximated by a sequence of canonical inequality constraints, which are of the same form as the cost function.Once again, the control is approximated by a piecewise constant function whose heights are taken as decision variables.Then, formulae for computing the gradient of the cost and constraint functions are derived. On this basis, the optimal control can be obtained by using a gradient-based optimization method, such as the sequential quadratic programming method. The numerical simulation shows that the amount of zinc powder added can be decreased efficiently.
     (5)The gradient-based sequential quadratic programming method is a local optimization method. Due to the calculation can easily be trapped into the local optimal value, on the basis of a global optimization approach with filled function, the time delay optimal control method can be used to calculate the amount of zinc powder at the subsequent time. The control function, which represents the amount of zinc powder added, still is of the form of a piecewise constant function. The optimal control parameters solved from the offline optimization are taken as the initial values for the online optimization so that the computation efficiency can be improved. The predicted concentration of the metallic ion impurities obtained from the online support vector regression model is used as the reference state to be tracked by the solution of the underlying dynamics of the time delay optimal control problem. The optimal amount of zinc powder to be added at each subsequent time can be optimized effectively.
     In conclusion, the optimal control method developed in this thesis, which is based on the control parameterization technique, has enormous practical relevance, particularly for metallurgical processes.
引文
[1]张明浩,任凤莲,徐金华,等.示波极谱法同时测定锌电解液中镉和钴.中南工业大学学报,2000,31(3):235-239
    [2]朱展才.分光光度法测定水中衡量钻.分析化学,1995,23(10):1159-1161
    [3]汪平,周春山,王艳,等.极谱法快速测定湿法炼锌新液中的微量钴.矿冶,2001,10(1):95-98
    [4]张全茹,张明浩.锌电解液中痕量钴的示波极谱法测定.分析试验室,1999,18(6):90-91
    [5]曹道锦,张明浩.示波极谱法直接测定锌电解液中钴的研究.分析测试学报,2000,19(3):23-26
    [6]曹道锦,张明浩,李博岩,等.锌电解液中痕量铜、镉、镍和钴的快速同时测定.分析试验室,2002,21(2):8-11
    [7]叶世源.催化极谱法测定锌电解液中微量钴.理化检验,2001,37(2):91-92
    [8]王建华,周全法,何荣桓,等.催化光度法测定微量钴.分析化学,1992,20(8):983-984
    [9]龙文清,邱澄铨.高灵敏催化光度法测定痕量钴.分析化学,1996,24(4):411-414
    [10]方国春,任玲,吕继洋.钴的高灵敏指示反应研究.分析化学,1994,22(5):533-534
    [11]王玉棉,侯新刚,王大辉,等.湿法炼锌净化工艺的技术改造与实践.有色金属,2001,4:5-7
    [12]Dai J., Wang D. Q., Jiang L.,et al.Removal of cobalt from zinc sulphate solution using rude antimony trioxide as additive. Transactions of nonferrous metals society of China,2002,12(6):1172~1175
    [13]Raghavan R., Mohanan P. K.,Verma S.K. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electro winning process. Hydrometallurgy,1999,51(2):187~206
    [14]Yamashita S.,Okubo M.,Goto S.,et al.Purification of zinc leaching solution-mechanism of removal of cobalt by zinc dust with arsenious oxide and copper ion. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1997,14(1):37~52
    [15]Yamashita S.,Hata K.,Goto S.Electropurification of zinc leaching solution. TMS Annual Meeting, Aqueous Electrotechnologies:Progress in Theory and Practice, 1997,163~175
    [16]Zeng G.S, Xie G,Wang J. K, et al.J.Effect and mechanism of sodium sulfite on cobalt removal from zinc sulphate solution. Journal of Rare Earths,2005, 23(suppl):57~59
    [17]Kozlov P.A.,Kazanbaev L.A.,Kolesnikov A.V.,et al.Influence of antimony activating impurity on cementing cleaning of zinc solutions. Tsvetnye Metally, 2005,8:46~47
    [18]Kolesnikov A.V.,Kazanbaev L.A.,Kozlov P.A.,et al.Effect of activating antimony and copper additives on cementing cleaning of zinc solutions with cobalt removal.Tsvetnye Metally,2005,8:54~56
    [19]Taha A. A.,Abd El-Ghani S. A. H. Effect of surfactants on the cementation of cadmium.Journal of Colloid and Interface Science,2004,280(1):9-17
    [20]Karavasteva M. Effect of certain surfactants on the cementation of cadmium by suspended zinc particles. Hydrometallurgy,1997,47(1):91~98
    [2l]刘志宏,唐朝波,张多默.锑盐除钴净化工艺研究.中南工业大学学报,2000,31(3):225-227
    [22]马进,陈利春,秦永宏.锌粉置换除钻的研究及运用.有色冶炼,2002,1:30-32
    [23]马杨辉,阳雄魁.湿法炼锌锑盐锌粉除钴的生产实践.中国有色冶金,2005,2(1):22-23
    [24]李洪桂.湿法冶金学.长沙:中南大学出版社,2002
    [25]《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003
    [26]Muresan L.,Maurin G.,Oniciu L.,et al.Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy,1996,43(3):345~354
    [27]Cao Y.,Duby P.,Cobalt cementation with ferromanganese, Hydrometallurgy, 2001,61(3):195-205
    [28]Sedzimir J. A. Precipitation of metals by metals (cementation)-kinetics, equilibria. Hydrometallurgy,2002,64(3):161~167
    [29]Karavasteva M.The influence of copper on the effect of certain surfactants during the cementation of cadmium by suspended zinc particles.Hydrometallurgy,1998, 48(3):361~366
    [30]Dreher T. M.,Nelson A., Demopoulos G. P.,et al.The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives. Hydrometallurgy,2001,60(2):105-116
    [31]Vapnik V.The nature of statistical learning theory. Berlin:Spring-Verlag,1995
    [32]Gui W.,Wang Y.,Yang C.Composition-prediction-model-based intelligent optimization for lead-zinc sintering blending process. Measurement and Control, 2007,40(6):176~181
    [33]Gao J.B.,Gunn S.R.,Harris C.J. Mean field method for the support vector machine regression. Neurocomputing,2003,50:391~405
    [34]蒋少华,桂卫华,阳春华,等.支持向量机及其在密闭鼓风炉故障诊断中的应用.小型微型计算机系统,2008,29(4):777-781
    [35]胡志坤,桂卫华,彭小奇.基于自校正支持向量回归的锌产量在线预报模型及应用.信息与控制,2004,33(3):328-331
    [36]桂卫华,李勇刚,阳春华,等.基于改进聚类算法的分布式SVM及其应用.控制与决策,2004,19(8):852-856
    [37]Zhang R.,Wang S.Support vector machine based predictive functional control design for output temperature of coking furnace. Journal of Process Control,2008, 18(5):439~448
    [38]Lahiri S.K.,Khalfe N. Process modeling and optimization of industrial ethylene oxide reactor by integrating support vector regression and genetic algorithm. Canadian Journal of Chemical Engineering,2009,87(1):118~128
    [39]Li C.,Wang S.,Zhang X.,et al.Soft sensor modeling for vacuum oil purification machine based on LSSVM. Journal of Advanced Manufacturing Systems,2008, 7(1):141~144
    [40]Shi D.,Gindy N. N. Tool wear predictive model based on least squares support vector machines. Mechanical Systems and Signal Processing,2007,21(4): 1799~1814
    [41]Fu Y,Su H.,Zhang Y. Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process. Chinese Journal of Chemical Engineering,2008,16(5):746~751
    [42]Yan W.,Shao H.,Wang X. Soft sensing modeling based on support vector machine and bayesian model selection. Computers & Chemical Engineering, 2004,28(8):1489~1498
    [43]Tang X.,Zhuang L.,Jiang C.Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization.2009, 36(9):11853~11857
    [44]El-Sebakhy E. A.Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. Journal of Petroleum Science and Engineering,2009,64(1):25~34
    [45]Xi X. C.,Poo A. N.,Chou S.K. Support vector regression model predictive control on a HVAC plant. Control Engineering Practice,2007,15(8):897~908
    [46]Suykens J.A. K.,Vandewalle J.Least squares support vector machine classifiers. Neural Processing Letters,1999,9(3):293~300
    [47]Suykens J. A.K. Least squares support vector machines for classification and nonlinear modeling. Neural Network World,2000,10(1):29~47
    [48]桂卫华,宋海鹰,阳春华.Hammerstein-Weiner模型最小二乘向量机辨识及其应用.控制理论与应用,2008,25(3):393-397
    [49]Pontryagin L.S.,Boltyanskii V.G.,Gamkrelidze R. V.,et al.The Mathematical Theory of Optimal Processes. New York:Wiley Interscience,1962
    [50]Luus R. Optimal control by dynamic programming using systematic reduction in grid size. International Journal of Control,1990,51(5):995-1013
    [51]Luus R. Piecewise linear continuous optimal control by iterative dynamic programming. Industrial and Engineering Chemistry Research,1993,32(5): 859~865
    [52]Luus R. Optimal control of batch reactors by iterative dynamic programming. Journal of Process Control,1994,4(4):218~226
    [53]Teo K.L., Goh C.J.,Wong K. H.A Unified computational approach to optimal control problems.New York:Longman Scientific and Technical,1991
    [54]Goh C.J.,Teo K. L. Control parametrization:A unified approach to optimal control problem with general constraints. Automatica,1988,24(1):3-18
    [55]Teo K. L.,Goh C.J.A computational method for combined optimal parameter selection and optimal control problems with general constraints. Journal of the Australian Mathematical Society, Series B,1989,30:350~364
    [56]Teo K.L.,Rehbock V.,Jennings L. S.A new computational algorithm for functional inequality constrained optimization problems.Automatica,1993,29(3): 789~792
    [57]Jennings L. S.,Teo K. L.A computational algorithm for functional inequality constrained optimization problems. Automatica,1990,26(2):371~375
    [58]Liu Y.,Teo K. L.,Jennings L. S.,et al.On a class of optimal control problems with state jump. Journal of Optimization Theory and Applications,1998,98(1):
    65~82
    [59]Li R.,Feng Z.G.,Teo K. L., et al.Optimal piecewise state feedback control for impulsive switched systems. Mathematical and Computer Modelling,2008,48(4): 468~479
    [60]Li R.,Teo K. L., Wong K. H.,et al.Control parameterization enhancing transform for optimal control of switched systems. Mathematical and Computer Modelling, 2006,43(12):1393~1403
    [61]Teo K. L.,Lee W. R.,Jennings L.S.,et al.Numerical solution of an optimal control problem with variable time points in the objective function. ANZIAM Journal,2002,43(4):463~478
    [62]Martin R. B.Optimal control drug scheduling of cancer chemotherapy. Automatica,1992,28(6):1113~1123
    [63]Loxton R. C.,Teo K. L.,Rehbock V. Optimal control problems with multiple characteristic time points in the objective and constraints.Automatica,2008, 44(11):2923~2929
    [64]Jennings L.S.,Teo K. L.,Wang F. Y.,et al.Optimal protein separation. Computers and Chemical Engineering,1995,19(5):567~573
    [65]Yiu K. F. C.,Mak K. L.,Teo K. L.Airfoil design via optimal control theory. Journal of Industrial and Management Optimization,2005,1(1):133~148
    [66]Teo K. L.,Wong K. H.,Clements D.J. Optimal control computation for linear time-lag systems with linear terminal constraints. Journal of Optimization Theory and Applications,1984,44(3):509~526
    [67]Wong K. H.,Clements D.J., Teo K. L. Optimal control computation for nonlinear time-lag systems. Journal of Optimization Theory and Applications,1985,47(1): 91~107
    [68]Kaji K.,Wong K. H. Nonlinearly constrained time-delayed optimal control problems. Journal of Optimization Theory and Applications,1994,82(2): 295~313
    [69]Wu C.,Teo K. L.,Li R.,et al.Optimal control of switched systems with time delay. Applied Mathematics Letters,2006,19(10):1062~1067
    [70]Wu C.Z.,Teo K. L.,Zhao Y. Numerical method for a class of optimal control problems subject to nonsmooth functional constraints. Journal of Computational and Applied Mathematics,2008,217(2):311~325
    [71]梅光贵.湿法炼锌学.长沙:中南大学出版社,2001
    [72]株洲冶炼厂.锌的湿法冶炼.长沙:湖南人民出版社,1973
    [73]朱炳辰.化学反应工程.北京:化学工业出版社,2001
    [74]戴军.用锑砷混合添加剂从硫酸锌溶液中除钻的研究:[硕士学位论文].沈阳:东北大学,2002
    [75]唐朝波.锑盐净化除钻工艺的研究:[硕士学位论文].长沙:中南大学,1999
    [76]Mishra P. K.,Das R. P. Kinetics of zinc and cobalt sulphide precipitation and its application in hydrometallurgical separation. Hydrometallurgy,1992,28(3): 373~379
    [77]王文录.湿法炼锌工艺除钴的实践.湖南有色金属,2003,19(3):24-26
    [78]Rashkov S.,Dobrev T.,Noncheva Z, et al.Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes.Hydrometallurgy,1999,52(3):223~230
    [79]曹为民.砷盐和锑盐净化除钴的探讨.湖南有色金属,2001,17(增刊):17-22
    [80]Kruus P.,Robertson D. A., McMillen L.A. Effects of ultrasound on the cementation of cobalt on zinc. Ultrasonics,1991,29 (5):30~37
    [81]Zeng Guisheng, Xie Gang, Yang Dajin, Wang Dajian. Oxidation resistivity of boride coating of graphite anode sample. Materials Chemistry and Physics,2006, 95(1):183~187
    [82]张林.株冶三段逆锑盐连续净化试生产实践之我见.株冶科技,1997,25(4):17-20
    [83]Karavasteva M. The effect of certain surfactants on the acid and neutral leaching of zinc calcine obtained by roasting of sphalerite concentrates.Hydrometallurgy, 2001,62(3):151~156
    [84]Muresan L.,Maurin G,Oniciu L.,et al.Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy,1996,43(3):345~354
    [85]马春来.Pb-Zn合金锌粉用于电解锌净化除钻的研究.有色矿冶,2006,22(3):30-33
    [86]Boyanov B., Konareva V.,Kolev N.Removal of cobalt and nickel from zinc sulphate solutions using activated cementation.Journal of Mining and Metallurgy, 2004,40(1):41~55
    [87]韩锋.硫酸锌溶液锑盐净化存在的问题及改进措施.有色冶炼,1998,27(5):34-36
    [88]杨春梅,万柏坤,丁北生.数据预处理和初始化方法对K-均值聚类的影响.仪器仪表学报,2003,24(4):189-192
    [89]Gui W.,Wang L.,Yang C.,et al.Intelligent prediction model of matte grade in
    copper flash smelting process. Transactions of Nonferrous Metals Society of China,2007,17(10):1075~1081 [90] Yang C.,Deconinck G.,Gui W.,et al.An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity. IEEE Transactions on Neural Networks,2002,13(1): 229~236 [91]Yang C.,Deconinck G.,Gui W. An optimal power-dispatching control system for the electrochemical process of zinc based on backpropagation and hopfield neural networks. IEEE Transactions on Industrial Electronics,2003,50(5):953~961
    [92]Vapnik V. N. An overview of statistical learning theory. IEEE Transactions on Neural Networks,1999,10(5):988~999
    [93]Ma J.,Theiler J.,Perkins S.Accurate on-line support vector regression. Neural Computation,2003,15(11):2683~2703
    [94]Cauwenberghs G.,Poggio T. Incremental and decremental support vector machine learning. Machine Learning,2001,44(13):409~415
    [95]Omitaomu O. A.,Jeong M. K.,Badiru A. B.,et al.Online support vector regression approach for the monitoring of motor shaft misalignment and feedwater flow rate.IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews,2007,37(5):962~970
    [96]刁翔,李奇.基于加权支持向量回归的在线训练算法及应用.系统仿真学报,2007,19(17):3970-3973
    [97]汪辉,皮道映,孙优贤.支持向量机在线训练算法及其应用.浙江大学学报(工学版),2004,38(12):1642-1649
    [98]Wu C.,Ho J.,Lee D.T. Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems,2004,5(4):276~281
    [99]王凌云,桂卫华,刘梅花,等.基于改进在线支持向量回归的离子浓度预测模型.控制与决策,2009,24(4):537-541
    [100]中国有色金属学会.锌冶金.长沙:中南大学出版社,2005
    [101]蒋汉瀛.湿法冶金过程物理化学.北京:冶金工业出版社,1984
    [102]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987
    [103]Lynch E. B.,Ramirez W. F. Real-time time-optimal control of a stirred tank reactor using Kalman filtering for a state estimation. AIChE Journal,1975,21(4): 799~804
    [104]Budman H. M.,Knapp T. D. Broderick G.Stability analysis of nonlinear
    processes using empirical state affine models and LMIs. Journal of Process Control,2001,11(4):375~386
    [105]Cebuhar W. A.,Costanza V.Nonlinear control of CSTR's.Chemical Engineering Science,1984,39(12):1715~1722
    [106]朱炳辰.化学反应工程.北京:化学工业出版社,2001
    [107]张秋芳,张宇光,郭亚会.硫酸锌溶液净化除钴锌粉粒度对单耗的影响.有色冶炼,1999,28(6):30-31
    [108]Wilson R. B.A simplical method for convex programming:[Ph.D Thesis]. Cambridge:Harvard University,1963
    [109]Han S.P. Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Mathematical Programming,1976,11(3): 263~282
    [110]Han S.P. A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications,1977,22(3):297~309
    [111]Schittkowski K. The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function. Part 1:Convergence analysis. Numerische Mathematik,1981,38(1):83~114
    [112]Schittkowski K. The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function. Part 2:An efficient implementation with linear least squares subproblems. Numerische Mathematik, 1981,38(1):115~127
    [113]Schittkowski K. NLPQL:A fortran subroutine solving constrained nonlinear programming problems. Annals of Operations Research,1986,5(4):485~500
    [114]Schittkowski K. Zillober C.,Zotemantel R. Numerical comparison of nonlinear programming algorithm for structural optimization. Structural Optimization,1994, 7(1):1~19
    [115]Schittkowski K. On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Mathematische Operationsforschung und Statistik, Series Optimization,1983,14(2):197~216
    [116]Schittkowski K. Solving nonlinear programming problems with very many constraints. Optimization,1992,25(2):179~196
    [117]Schittkowski K. Parameter estimation in systems of nonlinear equations. Numerische Mathematik,1994,68(1):129~142
    [118]Sirisena H.R. Computation of optimal controls using a piecewise polynomial
    parameterization. IEEE Transactions on Automatic Control,1973,18(4):409~411
    [119]Sirisena H. R.,Chou F. S.An efficient algorithm for solving optimal control problems with linear terminal constraints. IEEE Transactions on Automatic Control,1976,21(2):275~277
    [120]Sirisena H.R.,Chou F. S.Convergence of the control parameterization Ritz method for nonlinear optimal control problems. Journal of Optimization Theory and Applications,1979,29(3):369~382
    [121]Sirisena H. R.,Tan K. S.Computation of constrained optimal controls using parameterization techniques.IEEE Transactions on Automatic Control,1974, 19(4):431~433
    [122]Teo K. L.,Jennings L. S.Nonlinear optimal control problems with continuous state inequality constraints. Journal of Optimization Theory and Applications. 1989,63(1):1-22
    [123]Wenz H.Interpolation of curve data by blended generalized circles. Computer Aided Geometric Design,1996,13(8):673~680
    [124]Truong T. K.,Wang L. J.,Reed I. S.,et al. Image data compression using cubic convolution spline interpolation. IEEE Transactions on Image Processing,2000, 9(11):1988~1995
    [125]Rehbock V.,Teo K. L.,Jennings L. S.Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete and Continuous Dynamical Systems,1995,1(2):223~236
    [126]Wu Z.Y.,Bai F. S.,Lee H. W. J.,et al.A filled function method for constrained global optimization. Journal of Global Optimization,2007,39(4):495~507
    [127]Wu C. Z.,Teo K. L. Global impulsive optimal control computation. Journal of Industrial and Management Optimization,2006,2(4):435~450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700