用户名: 密码: 验证码:
鄂尔多斯盆地上古生界砂岩储层的成岩作用研究与孔隙成岩演化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用岩心观察、铸体薄片鉴定、X—射线衍射分析、粒度分析、阴极发光、扫描电镜、毛管压力、包裹体测温及成分分析等分析测试手段,系统研究储层的成岩作用特征、孔隙结构特征,结合盆地埋藏—热演化史研究孔隙成岩演化历史不仅具有重要的理论价值,而且对油气勘探部署和有利勘探目标的选择具有实际指导意义。
     本文通过对鄂尔多斯盆地上古生界主要含气层位上二叠统盒8、山1段储层成岩作用、孔隙结构特征、物性特征等方面的综合研究认为:
     储层经历的成岩作用类型主要有压实和压溶作用、胶结作用、交代蚀变作用、重结晶作用和溶解作用。成岩演化阶段主要为晚成岩的B期至C期。储集空间多以各类孔隙的复合形式出现,以次生溶孔和高岭石晶间微孔为主,原生粒间孔隙在孔隙构成中居于次要地位。渗透率的变化主要与孔隙发育程度以及孔喉大小、孔喉之间的连通程度有关。压实作用和胶结作用是造成本区储层物性降低的主要原因。由于埋藏条件的差异,研究区东、西部成岩孔隙演化特征明显不同。西部地区石英砂岩、岩屑石英砂岩、岩屑砂岩的原始孔隙度均值分别为35.1%、34.1%和33.6%,在经历了早成岩A至晚成岩B—C期的演化过程后,现今的孔隙度均值分别为9.2%,10.6%和9.7%;东部地区岩屑石英砂岩、岩屑砂岩的原始孔隙度均值分别为34.3%和33.6%,演化至今分别为9.8%和9.3%。砂岩次生孔隙主要是成岩晚期阶段的碳酸以及有机酸对长石等硅酸盐矿物、凝灰质填隙物以及碳酸盐矿物的溶蚀造成的,油气侵位及构造热事件对原生孔隙的保存及次生孔隙的形成起到了积极作用。研究区在中侏罗世末—早白垩世末期间经历了两期明显的烃类流体的充注。两期烃类充注分别以较低温度(80~110℃)的低—中等成熟度的烃类和较高温度(120~140℃)的高成熟度的烃类充注为特征。砂岩优质储层主要受物源及源区母岩性质、成岩作用与成岩相等因素的共同控制。石英砂岩是最有利于孔隙形成和保存的岩石类型,其次为岩屑石英砂岩。位于致密相之间的绿泥石薄膜石英弱加大胶结混合孔隙相、粘土杂基混合充填溶蚀相以及自生高岭石胶结晶间孔相是发育优质储层的良好成岩相带。微裂缝一方面使砂岩中的各种孔隙连通,提高了砂岩的储集性能,另一方面充当了天然气运移的输导管的作用。
It is of important theoretical value and guiding significance of exploration arrangement for oil and natural gas, the choice of the favorable exploration targets to study diagenesis characteristics and pore structures based upon detailed description and observation of drilling cores, and various analytical and measurement methods including identification and quantitative statistics of thin sections under microscope, grain size analysis, analyses of X-ray diffraction (XRD), electron scan microscope (ESM), capillary pressure, cathodeluminescence, and measurement of homogeneous temperature for inclusions, and study pores diagenetic evolution history combined with burial and thermal evolution history of the Ordos Basin.
     After the comprehensive research of the diagenesis characteristics, pore structure characteristics, physical properties characteristics of the main gas bearing strata H 8 and Shan 1 reservoir of the upper palaeozoic formation, Ordos Basin, holds that:
     This study is Research shows that quartzrenite, sublitharenite and litharenite predominate in reservoir rocks. Diagenesis types include compaction, cementation, metasomatism and alteration, recrystallization and dissolution. The sandstones have experienced a diagenetic evolution from early diagenetic phase to later diagenetic phase. Pore spaces always occur as the combination form, and are mainly of secondary dissolution pores and kaolinite intercrystalline micopores. The primary intergranular pore takes a second place.
     The changes of the permeability are controlled by the development of the pores, and have a relationship to the size of pore throat and the connecting degree between pores and troats. Mechanical compaction and cementation were the main factor caused the loss of primary pores.
     Due to the buried condition differences between the east and west area, that the pore evolution characteristics under the diagenesis history are obviously different. The primary porosity of quartzrenite, sublitharenite and litharenite of western area are respectively 35.1%, 34.1% and 33.6%, when experienced a diagenetic evolution from early diagenetic phase A to later diagenetic phase B and C, their present porosity are respectively 9.2%, 10.6% and 9.7%. The primary porosity of sublitharenite and litharenite of eastern area are respectively 34.3% and 33.6%, and nowadays are 9.8% and 9.3%.
     The secondary pores of the sandstones were formed by the dissolution of the aluminosilicate, tuffaceous interstitial material and carbonate minerals effect by the carbonic acid and organic acid produced in late diagenesis stage. Hydrocarbon emplacement and tectonic thermal event act a positive role in the preservation of the primary pore and the formation of the secondary pores.
     There were two stages of hydrocarbon fluid injection between terminal middle jurassic and Late Early Cretaceous. Which characteristics separately as low temperature (80-110℃) low- middle matured hydrocarbon and higher temperature (120-140℃) high matured hydrocarbon.
     High -quality sandstone reservoirs are common controlled by material source and mother rock properties, diagenesis and diagenetical facies. Quartz sandstone was the sandstone type that benefit to the pore to be reserved and formation. The quartz overgrowth cementation mixture pores diagenetic facies, authigenic kaolinite cementation inter-crystal pores diagenetic facies, and clay matrix filling dissolution facies that distributing between the dense diagenetic facies are the most profitable diagenetic zones for developing high-quality reservoirs. Micro-fractures on one hand make the pores connect, improve the reservoir quality of the sandstones. On the other hand, act as the role that transporting petroleum.
引文
[1]Al-Shaieb Z.and Shelton J.W.Migration of hydrocarbons and secondary porosity in sandstones[J].AAPG Bulletin,Nov 1981,65:2433-2436.
    [2]Andersen T.Detrtal zircons as tracer of sedimentary provenance:limiting conditions from statistics and numerical simulation[J].Chemical Geology,2005,216:249-276.
    [3]Axel G,Armin Z.Combined U-Pb and Hf isotope LA-(MS-)ICP-MS analyses of detrital zircons:comparision with SHRIMP and new constrains for the provenance and age of an Armorican metasediment in Central Germany[J].Earth and Planetary Science Letters,2006,249:47-61.
    [4]Barth T.and Bjφrlykke K.Organic acids from source rock maturation:generation potentials,transport mechanism and relevance for mineral diagenesis[J].Applied Geochemistry,1993,8:325-337.
    [5]Bjorlykke K.,Nedkvitne T.,Ramm M.,et al.Diagenetic processes in the Brent Group(MiddleJurassic)reservoirs of the NorthSea:anoverview[J].Geological Society Special Publications,1992,61:263-287.
    [6]Bloch S.,Lander R.H.and Bonnell L.Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs:Origin and Predictability[J].AAPG Bulletin,February 2002,86(2):301-328.
    [7]Chen Honghan,Wang Jiahao,Xie Yuhong,et al.Genthermometry and Geobarometry of Overpressured Environments in Qiongdongnan Basin,South China Sea[J].Geofluids,2003,3:177-187.
    [8]Cuadros J.Modeling of smectite illitization in burial diagenesis environments[J].Genchimica et Cosmochimica Acta,2006,70:4181-4195.
    [9]Cullers R L,Basu A,Suttner L J.Geochemical signature of provenance in sand-mixed material in soils and stream sediments near the Tobucco Root Botholith,Montana,USA[J].Chem.Geol,1988,70:335-348.
    [10]Davis D W,Williams I S,Krough T E.Historical development of zircon geochronology[J].Reviews in Mineralogy and Geochemistry,2003,53:145-173.
    [11]De Ros L.F.Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian- Devonian Furnas Formation of the Parana Basin,southern Brazil[J].Sedimentary Geology,1998,119:99-128.
    [12]Ehrenberg S.N.,Aagaard P.,Wilson M.J.,Fraser,A.R.,Duthie,D.M.L.,1993.Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf[J].Clay Minerals 28,225-352.
    [13]Eynatten H,Gaupp R.Provenance of Cretaceous synorogenic sandstones in the Eastern Alps:constrains from framework petrography,heavy mineral analysis and mineral chemistry[J].Sedimentary Geology,1999,124:81-111.
    [14]Fagel N.et al.Sources of Labrador Sea sediments since the last glacial maximum referred from Nd-Pb isotope[J].Geochimica et Cosmochimica Acta,2002,66(14):2569-2581.
    [15]Fedo C M,Sircombe KN,Rainbird R H.Detrital zircon analysis of the sedimentary record[J].Reviews in Mineralogy and Geochemistry,2003,53:277-298.
    [16]Franca A.B.,Araujo L.M,Maynard J.B.,and Potter P.E.Secondary porosity formed by deep meteoric leaching:Botocatu eolianite,southern South America[J].AAPG Bulletin,Jul 2003;87:1073-1082.
    [17]Friedman I.,O'Neil J.R.Composition of stable isotopic fractionation factors of geochemical interest.In:Fleisher,M.(Ed.),Data of Geochemistry,6th U.S[J].Geological Survey:Professional Paper,1977,440:1-12.
    [18]Gilg H.A.,Weber B.,Kasbohm J.,and Frei.R.Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits,Saxony,Germany[J].Clay Minerals,Mar 2003,38:95-112.
    [19]Gong Xiu mei,Zeng Jian-hui,Jin Zhi-jun,Chen Li-xin.Experimental simulation on oil-water-rock interaction in deep zones[J].Journal of Geochemical Exploration,2006,89:133-137.
    [20]Guoneng Chen.Geochemical field of elements and its geological implications[J].Journal of Geosciences of China,1999,1(1):1-7.
    [21] Hayes M. J, Boles J. R. Volumetric relations between dis2solved plagioclase and kaolinite in sandstones: implications for aluminum mass transfer in the San Joaquin basin, California [J]. Special Publication Society of Economic Paleontologists and Mineralogists, 1992,47: 111-123.
    [22] Horton B K, Hassanzadeh J, Stickli D F., et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronolstratigraphiy and collisional tectonics [J]. Tectonophysics, 2008, 10: 1010-1016.
    [23] Hurst A. and Nadeau P. H. Clay microporosity in reservoir sandstones: an application of quantitative electron microscopy in petrophysical evaluation [J]. AAPG Bulletin, 1995, 79(4): 563-573.
    [24] Innocent C., Fagel N., and Hillaire-Marcel C. Sm-Nd isotope systematics in deep sea sediments: clay size versus coarser fractions [J]. Marine Geology, 2000,168: 79-87.
    [25] Ireland T R, Williams I S. Consideration in zircon geochronology by SIMS [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 215- 227.
    [26] Jones G. D., Xiao Yitian. Geothermal convection in the Tengiz carbonate platform, Kazakhstan: Reactive transport models of diagenesis and reservoir quality [J]. AAPG Bulletin; August 2006,90(8): 1251-1272.
    [27] Kachel H. G., Krouse H. R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction [J]. Applied Geochemistry, 1995, 10: 373-389.
    [28] Ketzer J.M., Holz M., Morad S., Al-Aasm S. Sequence stratigraphic distribution of diagenetic alterations in coal bearing, paralic sandstones: evidence from the Rio Bonito Formation (early Permian), southern Brazil [J]. Sedimentology, 2003, 50, 855- 877.
    [29] Kharaka Y. K, Lungedard P. D, Ambats G., et al. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crudeoils [J]. Applied Geochemistry, 1993, 8: 317-324.
    [30] Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon [J]. Reviews in Mineralogy and Geochemistry, 2003, 53:327-341.
    [31] Kosler J, Sylvester P J. Present trends and the future of zircon in geochronology: Laser Ablation ICPMS [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 243-275.
    [32] Lei Shao, et al. Sandstone petrology and geochemistry of the Turpan basin (NW China): implications for a tectonic evolution of a continental basin [J]. Journal of Sedimentary Research, 2001,70(1): 37-49.
    [33] Ludwig K R. A Geochronological Toolkit for Microsoft Excel-User's Manual for Isoplot 3.00 [J]. Berkeley Geochronology Center Special Publication, 2003,4:1-41.
    [34] Makowitz A, Lander R. H. and Milliken K. L. Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction [J]. AAPG Bulletin, June 2006,90(6): 873-885.
    [35] McArthur J. M., Burnett J., Hancock J. M. Strontium isotopes at K/T boundary; discussion [J]. Nature (London), 1992, 355(6355): 28.
    [36] McKay J. L., Longstaffe F. J. Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation.Western Interior Basin[J]. Sedimentary Geology, 2003,157, 175-195.
    [37] McIennan S M, Hemming S, McDaniel M J, et al. Geochemical approaches to sedimentation, provenance and tectonics, in: Jonhanson M J, ed. Processes controlling the composition of clastic sediments [J]. Boulder, Colorado: Geological Society of America Special Paper, 1993,284: 21-40.
    [38] Mclennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, in: Lipin B R and Mckay G R, eds. Geochemistry and mineralogy of rare earth elements [J]. Reviews in Mineralogy, 1989, 21: 169-200.
    [39] Meshri I. D. and Walker J. M. A study of rock-water interaction and simulation of diagenesis in the upper Almond Sandstones of the Red Desert and Washakie basins, Wyoming (in Prediction of reservoir quality through chemical modeling) [J]. AAPG Memoir, 1990,49: 55-70.
    [40] Milliken K. L. Diagenetic Heterogeneity in Sandstone at the Outcrop Scale, Breathitt Formation (Pennsylvanian), Eastern Kentucky [J]. AAPG Bulletin, May 2001, 85(5): 795-815.
    [41] Morad S. Carbonate cementation in sandstones; distribution patterns and geochemical evolution [J]: International Association of Sedimentologiest (Special Publication), 1998, 26: 1-26.
    [42] Morad S., Ketzer J. M., De Ros F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins [J]. Sedimentology, 2000,47: 95-120.
    [43] Moraes M. A. S., De Ros L. F. Infiltrated clay in fluvial Jurassic sandstones of Reconcavo Basin, northeastern Brazil [J]. Journal of Sedimentary Petrology, 1990,60: 809-819.
    [44] Morton A C, Hallsworth C R. Processes of controlling composition of heavy mineral assemblage in sandstones [J]. Sedimentary Geology, 1999, 124: 3-29.
    [45] Mowers T. T and Budd D. A. Quantification of porosity and permeability reduction due to calcite cementation using computer-assisted petrographic image analysis techniques [J]. AAPG Bulletin, 1996, 80(3): 309-322.
    [46] Nebel-Jacobsen Y, Scherer E E, Munker C, et al. Seperation of U, Pb, Lu and Hf from single zircons for combined U-Pb daring and Hf isotope measurements by TIMS and MS-ICPMS [J]. Chemical Geology, 2005,220: 105-120.
    [47] Nedkvitne T, Bjorlykke K. Secondary porosity in the Brent Group (Middle Jurassic), Huldra Field, North Sea; implication for predicting lateral continuity of sandstones? [J] Journal of Sedimentary Research, January 1992, 62(1): 23-34.
    [48] Nemchin A A, Cawwood P A. Discordance of the U-Pb system in detrital zircons: Implication for provenance studied of the sedimentary rocks [J]. Sedimentary Geology, 2005,182: 143-162.
    [49] Okudaira T. et al. Sm-Nd and Rb-Sr dating of amphibolite from the Nellore-Khammam schist belt, SE India: constrains on the collision of the Eastern Ghats terrane and Dharwar-Basta craton[J]. Geological Magazine. 2001, 138(4): 495-498.
    [50] Osbome M. J., Swarbrick R. E. Diagenesis in North Sea HPHT clastic reservoirs consequences for porosity and overpressure prediction [J]. Marine and Petroleum Geology, 1999,16: 337-353.
    [51] Paul W O, Trevor R. Rare earth element chemistry of zircon and its use as a provenance indicator [J]. Geology, 2000, 28(7): 627-630.
    [52] Prosser D. J, Daws J. A, Fallick A. E. and Williams B. P. J. The occurrence and δ~(34)S orauthigenic pyrite in Middle Jurassic Brent Group sediments [J]. Journal of Petroleum Geology, 1994,17(4): 407-428.
    [53] Rogers S. M. Deposition and Diagenesis of Mississippian Chat Reservoirs, North-Central Oklahoma[J]. AAPG Bulletin, January 2001, 85(1): 115-129.
    [54] Saigal G. C, Bjorlykke K., Larter S. The effects of oil emplacements on diagenetic processes-samples from the fu- lmar reservoir sandstones, central northsea [J]. AAPG Bulletin, 1992,76(7): 1024-1033.
    [55] Stoessell R. K., Pittman E. D. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions letin [J]. AAPG Bulletin, 1990,74(12): 1795-1805.
    [56] Surdam R. C, Crossey L. J, Hangen E. S. and Heasler H. P. Organic-inorganic interaction and sandstone diagenisis [J]. AAPG Bulletin, 1989, 73(1): 1-23.
    [57] Surdam R. C, Boese S. W., Crossey L. J. The chemistry of secondary porosity (in Clastic Diagenesis) [J]. AAPG Memoir, 1984,37:127-149.
    [58] Surdam R. C, Crossey L. J., MacGowoan. Redox reaction involving hydrocarbons and mineral oxidants: a mechanism for significant porosity enhancement in sandstones [J]. AAPG Bulletin, 1993, 77(9): 1509-1818.
    [59] Wilkinson M., Darby D., Haszeldine R. S. and Couples G. D. Secondary porosity generation during deep burial associated with overpressure leak-off: Fulmar Formation, United Kingdom Central Graben[J]. American Association of Petroleum Geologists Bulletin, 1997, 81: 803-813.
    [60] Worden R. H, Morad S. Clay minerals in sandstones: Control on formation, distribution and evolution [J]. Special Publication of the International Association of Sedimentologists, 2003, 34: 3-41.
    [61]Xiaoping Xia,Min Sun,Guochun Zhao,et al.U-Pb and Hf isotopic study of detritai zircons from the Wulashan khondalites:constraints on the evolution of the Ordos terrene,Western Block of the Noeth China Craton[J].Earth and Planetary Science Letters,2006,241:581-593.
    [62]Yang W.,Spencer R.J.,and Krouse H.R.Stable isotope and major element compositions of fluid inclusions in Devonian and Cambrian dolomite cements,western Canada[J].Geochimica et Cosmochimica Acta,1995,59(15):3159-3172.
    [63]Yuan H Y,Gao S,Dai M N,et al.Simultaneous determinations of U-Pb age,Hf isotopes and trace element compositions of zircon by eximer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology,2008,247:100-118.
    [64]Zhiming Li,Jiajun Liu,Ruizhong Hu,et al.Tectonic setting and nature of the provenance of sedimentary rocks in Lanping Mesozoic-Cenozoic Basin:evidence from geochemistry of sandstones[J].Chinese Journal of Geochemistry,2003,22(4):352-362.
    [65]Rollinson H.R.著.杨学明等译.岩石地球化学[M].合肥:中国科学技术大学出版社,2000
    [66]包洪平,杨奕华,王晓方,等.同沉积期火山作用对鄂尔多斯盆地上古生界砂岩储层形成的意义[J].古地理学报,2007,9(4):397-406
    [67]蔡春芳.流体地球化学:成因、流动和流体-岩石相互作用及塔里木盆地实例研究[D].中科院地质与地球物理研究所,2000
    [68]曹寅等主编.石油地质样品分析测试技术及应用[M].石油工业出版社,2006
    [69]陈建平,查明,周瑶琪.有机包裹体在油气运移研究中的应用综述[J].地质科技情报,2000,19(1):61-64.
    [70]陈庆强,李从先,丛友滋.沉积物磁组构与其动力沉积特征对应关系研究[J].科学通报.1998,43(1):1106-1109.
    [71]陈全红,鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D].西北大学博士论文,2007
    [72]陈衍景,杨忠芳,赵太平等.沉积物微量元素示踪物源区和地壳成分的方法和现状[J].地质地球科学,1996,(3),7-11
    [73]陈彦华,刘莺.成岩相-储集体预测的新途径[J].石油实验地质,1994,16(3):274-1280
    [74]丛友滋,臧启运,李培英等.用磁组构研究底层流流向的初步探讨[J].海洋学报.1990,12(3):347-351.
    [75]达江,宋岩,胡咏,等.异常高压与油气藏的关系探讨[J].中国西部油气地质,2006,2(1):72-75
    [76]代金友,张一伟,熊琦华,等.成岩作用对储集层物性贡献比率研究[J].石油勘探与开发,2003,30(4):54-55,71
    [77]戴金星,陈践发,钟宁宁等.中国大气田及其气源[M].北京:科学出版社,2003
    [78]丁晓琪,张哨楠,周文,等.鄂尔多斯盆地北部上古生界致密砂岩储层特征及其成因探讨[J].石油与天然气地质,28(4):491-496
    [79]范代读,邱桂强,李从先,丛友滋,杨积增.东营三角洲的古流向研究[J].石油学报.2000,21(1):29-33.
    [80]付金华,段晓文,姜英昆.鄂尔多斯盆地上古生界天然气成藏地质特征及勘探方法[J].中国石油勘探,2001,6(4)):68-75
    [81]付金华,段晓文,席胜利.鄂尔多斯盆地上古生界气藏特征[J].天然气工业,2000,20(6):16-19
    [82]付金华.鄂尔多斯盆地上古生界天然气成藏条件及富集规律[D].西北大学博士学位论文,2004
    [83]高胜利,任战利.鄂尔多斯盆地剥蚀厚度恢复及其对上古生界烃源岩热演化程度的影响[J].石油与天然气地质,2006,27(2):180-186
    [84]何东博,应凤祥,郑竣茂等.碎屑岩成岩作用数值模拟及其应用[J].石油勘探与开发,2004,31(6):66-68
    [85]何自新,费安琦,王同和.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003
    [86]候洪斌,牟泽辉,朱宏权.鄂尔多斯盆地北部上古生界天然气成藏条件与勘探方向[M].北京:石油工业出版社,2004,126-128
    [87]胡宗全.鄂尔多斯盆地上古生界砂岩储层方解石胶结物特征[J].石油学报,2003,24(4):40-43
    [88]黄宝春,王永成,朱日祥.吐鲁番山间盆地早白垩世岩石的磁组构和古地磁新结果[J].中国科学(D 辑),2003,33(4):362-372.
    [89]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用-以鄂尔多斯盆地三叠系延长组为例[J].地球科学 -中国地质大学学报,2003,28(4):419-424
    [90]黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17
    [91]惠宽洋,张哨楠,李德敏.鄂尔多斯盆地北部下石盒子组-山西组储层岩石学和成岩作用[J].成都理工学院学报,2002,29(3)272-278
    [92]纪友亮.东濮凹陷地层流体的热循环对流与成岩圈闭的形成[J].石油实验地质,1995,17(1):8-16
    [93]贾炳义,武永强.内蒙古大青山晚古生代煤系中火山事件层的物质来源及地层意义[J].华北地质矿产杂志,1995,10(2):203-213
    [94]贾进斗,何国琦,李茂松,等.鄂尔多斯盆地基底结构特征及其对古生界天然气的控制[J].高校地质学报,1997,3(2):144-153
    [95]李道品等著.低渗透砂岩油田开发,中国油田开发丛书[M].北京:石油工业出版社,1997
    [96]李会军,吴泰然,马宗晋,等.苏里格气田优质储层的控制因素[J].天然气工业,2004,24(8):12-13,16
    [97]李剑,罗霞,单秀琴,等.鄂尔多斯盆地上古生界天然气成藏特征[J].石油勘探与开发,2005,32(4):54-59
    [98]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS的精确测定[J].地球化学,2003,32(1):86-90.
    [99]李向博,王建伟.煤系地层中砂岩火山尘填隙物的成岩作用特征-以鄂尔多斯盆地天然气储层为例[J].岩石矿物学杂志,2007,26(1):42-48
    [100]梁细荣,李献华,刘永康,等.激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U-Pb定年[J].地球化学,2000,29(1):1-5.
    [101]刘宝珺,张锦泉.沉积成岩作用[M].科学出版社,1992
    [102]刘斌.流体包裹体热力学[M].地质出版社,1999
    [103]刘成林.鄂尔多斯盆地苏里格气田天然气储层与输导体系研究[D].石油大学博士学位论文,2004
    [104]刘建清,赖兴运,于炳松等.成岩作用的研究现状及展望[J].石油实验地质,2006,28(1):65-72,77
    [105]刘建章,陈红汉,李剑,等.运用流体包裹体确定鄂尔多斯盆地上古生界油气成藏期次和时期[J].地质科技情报,2005,25(24)4:60-66
    [106]刘立,于均民,孙晓明,杨庆杰.热对流成岩作用的基本特征与研究意义[J].地球科学进展,2000,15(5):583-585
    [107]刘锐娥,黄月明,卫孝峰,等.鄂尔多斯盆地北部晚古生代物源区分析及其地质意义[J].矿物岩石,2003,3(3):82-86
    [108]刘锐娥,孙粉锦,拜文华,等.苏里格庙盒8气层次生孔隙成因及孔隙演化模式探讨[J].石油勘探与开发,2002,29(4):47-49
    [109]刘锐娥.鄂尔多斯盆地北部上古生界碎屑岩储层形成机理及主控因素研究[D].西北大学博士论文,2004
    [110]刘锐娥,卫孝峰,王亚丽,等.泥质岩稀土元素地球化学特征在物源分析中的意义-以鄂尔多斯盆地上古生界为例[J].天然气地球科学,2005,16(6):788-791.
    [111]刘小洪,罗静兰,张三,林潼.榆林-神木地区上古生界盒8段及山2段气层的成岩作用和成岩相[J].石油与天然气地质,2006,27(2):200-208
    [112]刘新社.鄂尔多斯盆地上古生界盆地分析模拟[D].西北大学硕士学位论文,2005
    [113]柳益群,冯乔,杨仁超,等.鄂尔多斯盆地东胜地区砂岩型铀矿成因探讨[J].地质学报,2006,80(5):761-767
    [114]陆永潮,向才富,陈平等.层序地层学在碎屑岩成岩作用研究中的应用--以YA13-1气田下第三系为例[J].石油实验地质,1999,20(2):100-118
    [115]卢焕章,范宏瑞,倪培等.流体包裹体[M].科学出版社,2004
    [116]罗静兰,刘小洪,林潼,张三,李博.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-673
    [117]罗静兰,史成恩,李博,等.鄂尔多斯盆地周缘及西峰地区延长组长8、长6沉积物源-来自岩石地球化学的证据[J].中国科学D辑:地球科学,2007,37(增刊):62-72
    [118]罗静兰,张成立.乌审召地区盒8、山1段优质储层控制因素研究[R].长庆油田分公司勘探开发研究院/西北大学,2007
    [119]罗孝俊,杨卫东,李荣西.PH值对长石溶解度及次生孔隙发育的影响[J].矿物岩石地球化学通报,2001,20(2):103-107
    [120]宁宁,陈孟晋,刘锐娥.鄂尔多斯盆地东部上古生界石英砂岩储层成岩及孔隙演化[J].天然气地球科学,2007,18(3):334-338
    [121]潘爱芳,郝英,黎荣剑,等.鄂尔多斯盆地基底断裂与能源矿产成藏成矿的关系[J].大地构造与成矿学,2005,29(4):459-464
    [122]潘爱芳,马润勇,黎荣剑.鄂尔多斯盆地深部流体地球化学研究[M].石油工业出版社,2006
    [123]潘长春,周中毅,解启来.油气和含油气包裹体在油气地质地球化学研究中的意义[J].沉积学报,1996,14(4):15-23
    [124]邱隆伟,姜在兴,操应长等.泌阳凹陷碱性成岩作用及其对储层的影响[J].中国科学D辑,2001,31(9):752-759
    [125]邱隆伟,姜在兴,陈文学,等.一种新的储层孔隙类型--石英溶解次生孔隙[J].沉积学报,2002,20(4):621-627
    [126]邱隆伟.陆源碎屑岩的碱性成岩作用[M].地质出版社,2006
    [127]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1994
    [128]任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学D辑:地球科学,2007,37(增刊):23-32
    [129]任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J].地质学报,2006,80(5):674-684
    [130]任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999
    [131]邵磊,StatteggerK,李文厚.从砂岩地球化学探讨盆地构造背景.科学通报,1998,43(9):985-88
    [132]邵磊,刘志伟,朱伟林.陆源碎屑岩地球化学在盆地分析中的应用.地学前缘,2000,7(9):297-304
    [133]寿建峰等.砂岩动力成岩作用[M].石油工业出版社,2005
    [134]宋成辉,李晓,陈剑等.储层成岩-储集相划分方法[J].天然气工业,2004,24(10):27-29
    [135]覃建雄,田景春,等.陕甘宁盆地中部马五41气层成岩相与有利储集区预测.中国海上油气(地质),2000,14(1):38-41
    [136]汪泽成,赵文智,门相勇,等.基底断裂“隐性活动”对鄂尔多斯盆地上古生界天然气成藏的作用[J].石油勘探与开发,2005,32(1):9-13
    [137]王大锐.稳定同位素在储层分析中的应用.石油科技专辑(4)[C].中国石油天然气总公司科技发展部,1990
    [138]王琪,史基安,薛莲花,陈国俊.碎屑储集岩成岩演化过程中流体-岩石相互作用特征--以塔里木盆地西南坳陷地区为例[J].沉积学报,1999,17(4):584-590
    [139]王琪,张晓宝,肖立新等.塔西南坳陷碎屑储集岩成岩环境及成岩作用类型[J].新疆地质,1999,17(1):33-40
    [140]王同和.太行山以东沉积盆地与油气分布规律[J].华北地质矿产杂志.1995,10(3):399-414
    [141]王晓方,苏里格气田上古生界优质储层成岩作用研究[D].西北大学硕士学位论文,2005
    [142]汪正江,陈洪德,张锦泉,等.物源分析的研究与展望[J].沉积与特提斯地质,2000,20(4):104-110
    [143]吴汉宁,岳乐平.古地磁学在油气勘探中的应用.北京:地震出版社,1996,91-95.
    [144]吴世敏,陈汉宗等.沉积物物源分析的现状[J].海洋科学.1999,(2),35-37
    [145]吴胜和,熊琦华编著.油气储层地质学[M].北京:石油工业出版社,1998
    [146]伍友佳,蔡正旗主编.油藏地质学[M].石油工业出版社,2000
    [147]席胜利,刘新社.鄂尔多斯盆地天然气资源现状与发展前景(陈新发主编,西部石油天然气资源及发展战略,中国科协2005年学术年会论文集).石油工业出版社,2006
    [148]杨斌谊,龚建军,陈建军.确定油田钻井岩芯方位的古地磁学方法探讨.西北地质,2003,36(4):79-83.
    [149]杨斌谊,吴汉宁,李学森,吕建军等.南泥湾油田钻井岩芯古地磁学初步研究.石油与天然气地质.2002,12.
    [150]杨华,席胜利,魏新善,等.苏里格地区天然气勘探潜力分析[J].天然气工业,2006,26(12):45-48
    [151]杨华,杨奕华,石小虎.鄂尔多斯盆地周缘晚古生代火山活动对盆内砂岩储层的影响[J].沉积学报,2007,25(4):526-534
    [152]杨俊杰,李克勤,张东生,等.长庆油田,中国石油地质志(卷十二)[M].北京:石油工业出版社,1992:62-78
    [153]杨俊杰,裴锡古主编.中国天然气地质学(卷四),鄂尔多斯盆地[M].北京:石油工业出版社,1996
    [154]杨守业,李从先.REE示踪沉积物物源研究进展[J].地球科学进展,1999,14(2):164-167
    [155]杨奕华,王晓方.盆地周缘晚古生代火山活动对苏里格气田砂岩的影响.长庆油田分公司勘探开发研究院(内部资料),2002
    [156]应凤祥,罗平,何东博等著.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M].石油工业出版社,2004
    [157]岳乐平,王建琪,邸世祥,等.油气田钻井岩心及岩心裂缝方位确定的古地磁原理与方法.地球物理学进展,1997,12(3):71-76.
    [158]张福礼等著.鄂尔多斯盆地天然气地质[M].地质出版社,1994
    [159]张金亮,常象春,张金功.鄂尔多斯盆地上古生界深盆气藏研究[J].石油勘探与开发,2000,27(4):30-36
    [160]张金亮,常象春.深盆气地质理论及应用[M].地质出版社,2002
    [161]张铭,邓宏文,崔宝琛,等.陕甘宁盆地乌审旗气田上古生界高产控制因素研究[J].石油实验地质,2002,24:(2):115-125
    [162]赵国泉,李凯明,赵海玲,等.鄂尔多斯盆地上古生界天然气储集层长石的溶蚀与次生孔隙的形成[J].石油勘探与开发,2005,32(1):53-55,75
    [163]赵红格,刘池洋.物源分析方法及研究进展[M].沉积学报.2003,21(3):409-415
    [164]赵伦,赵澄林,涂强.酒东盆地营尔凹陷碎屑岩储层成岩作用特征研究.江汉石油学院学报,1998,20(4):12-16
    [165]赵文智,汪泽成,陈孟晋,等.鄂尔多斯盆地上古生界天然气优质储层形成机理探讨[J].地质学报,2005,79(6):833
    [166]郑浚茂,庞明编著.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989
    [167]钟玉芳,马昌前,佘振兵.锆石地球化学特征及地质应用研究综述.地质科技情报,2006,25(1):27-40.
    [168]周安朝,贾炳文,马美玲,等.华北板块北缘晚古生代火山事件沉积的全序列及其主要特征[J].地质论评,2001,47(2):175-183
    [169]朱宏权,徐宏节.鄂尔多斯盆地北部上古生界储层物性影响因素[J].成都理工大学学报(自然科学版),2005,32(2):133-137
    [170]朱宏权,张哨楠.鄂尔多斯盆地北部上古生界储层成岩作用[M].天然气工业,2004,24(2):29-32
    [171]朱扬明,郑霞,刘新社,等.储层自生方解石碳同位素值应用于油气运移示踪[J].天然气工业,2007,29:(9):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700