用户名: 密码: 验证码:
Fe~(3+)溶液及微生物脱硫技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国急需研究开发适合本国国情的脱硫新技术以解决越来越严重的SO_2污染问题。含Fe~(3+)的细菌菌液脱硫技术结合了无机化学与微生物学原理,能够有效控制大气污染。
     本文进行了酸性水溶液脱除SO_2、含Fe~(3+)的酸液脱除SO_2和细菌菌液脱除SO_2的对比实验。实验结果表明:酸性水溶液脱除SO_2,即使氧气大大过量,脱硫过程也仅为物理吸收。含Fe~(3+)的酸液脱除SO_2,由于Fe~(3+)的加入使脱硫效果增强。Fe~(3+)具有较强的催化氧化SO_2的能力,这种能力与其浓度有关且受pH值的影响较大。在Fe~(3+)浓度1.5g/L、初始pH值2.0条件下,脱硫时间近170min时,脱硫率仍高达85%。细菌菌液脱除SO_2时,由于Fe~(3+)和氧化亚铁硫杆菌的共同作用,脱硫效果增加10~20%。氧化亚铁硫杆菌具有快速氧化Fe~(2+)的能力,这种氧化能力在pH值1.5时最强。工艺条件实验结果表明:氧化亚铁硫杆菌菌液脱硫在一定的细菌浓度(10~7个/mL)下,Fe~(3+)浓度为1.5g/L,初始pH值1.5~2.0时可保证较高的脱硫率(>90%)。
     本文还在pH值1.5~2.0、温度10~40℃范围内对含Fe~(3+)的细菌菌液脱除SO_2的动力学进行了研究。结果表明:Fe~(3+)浓度对反应速率影响最大,影响因素与反应速率r之间的关系为:
     式中,反应活化能E=80.15KJ/mol,频率因子k_0=3.74×10~(15)(L·mol~(-1)·min~(-1))。该条件下的反应主要受化学反应控制,其速率控制步骤为Fe~(2+)的氧化。氧化亚铁硫杆菌的浓度对反应速率的影响通过氧化Fe~(2+)为Fe~(3+)来体现,其关系为:其中k_4、k_5是与细菌浓度有关的反应速率常数。
As the environment gets worse, developing new desulfurization technologies is more and more urgent to fit the Chinese pollution control policy. The desulfurization with a ferric-microbial solution was studied by combining the principle of both inorganic chemistry and microbiology. This new method was shown to be effective to control the air pollution.
    Comparative experiments for SO2 removal from flue gas stream was carried out with dilute sulfuric acid solutions, acidic ferric solutions or microbial solutions. In the dilute sulfuric acid solution, SO2 is removed from the flue gas by physical absorption even if O2 is excessive. The desulfurization rate was greatly enhanced by introducing ferric ion in to the acidic solution. The Fe3+ serves as a catalyst to convert to SO2 to SO3. As the result, it increases the driving force of mass transfer for SO2 from gas to liquid. The concentration of ferric and pH significantly influence the ability of desulfurization. The desulfurization degree is up to 85% when the concentration of ferric ion is 1.5g/L and pH is 2.0 in 170min. In the microbial solution, both ferric ion and Thiobacillus ferrooxidans were used, while the rate of desulfurization increase 10~20%. Thiobacillus ferrooxidans can oxidize to ferric ion to accelerate the redox cycle. The optimal reaction condition for the bio-desufurization locates at pH=1.5. A high desulfurization degree(>90%) was obtained at the concentration of Thiobacillus ferrooxidans 107 cells/mL, ferric ion 1.5g/L and pH 1.5-2.0.
    Kinetics of desulfurization in ferric-microbial solution was conducted at pH 1.5-2.0 and temperature 10~40@. It shows that ferric ion is a dominant factor affecting the reaction rate. The relationship can be expressed following,
    
    
    
    Here the activation energy E is 80.15kJ/mol and the frequency factor ko is 3.74 X 1015 L-mol-1-min-1. The oxidation of Fe2+ is suggested to be the rate-limited step of the rate-limited step of the desulfurization reaction. Thiobacillus ferrooxidans affect the reaction rate by enhancing the oxidation of Fe2+. The concentration of Fe3+ can be calculated with the following equation:
    
    Here k4 and ks are reaction rate constants relying on the concentration of Thiobacillus ferrooxidans.
引文
[1] Wieckowska J. Catal. Today. 1995, 24: 405~465.
    [2] 王义兴.中国酸雨现状及发展趋势.科学通报,1997,42(2):169~173.
    [3] 雷震东,吴创之等.我国燃煤二氧化硫的控制技术及其应用.煤炭转化,1998,21(4):7~11.
    [4] 郝吉明.燃煤二氧化硫污染控制技术现状及综合评价(一).环境保护,1998,4:4~6.
    [5] 安恩科.湿法脱硫问题的探讨.环境工程,2001,19(4):25~26.
    [6] 马双忱.液相催化氧化脱除烟道气中SO_2和NO_x的研究.中国环境科学,2001,21(1):33~37.
    [7] 于媛媛等.燃煤锅炉烟气脱硫技术及其应用现状与对策.环境与开发,2000,15(2):21~23.
    [8] 钱海燕等.燃煤电厂烟气脱硫技术发展现状.环境导报,1999,6:11~14.
    [9] Brandt C et al. Kinetics and Mechanism of the Iron (Ⅲ)Catalyzed Autoxidation of Sulfur(Ⅳ) Oxides in Aqueous Solution. Inorg. Chem., 1994, 33(4): 687~701.
    [10] Brandt C et al. Transition Metal-Catalyzed Oxidation of Sulfur(Ⅳ) Oxides Atmospheric-Revenant Processes and Mechanism. Chem. Rev., 1995, 95(1): 119~190.
    [11] Martin B L et al. Catalyzed Oxidation of Sulfur Dioxide in Solution: the Iron-Manganese Synergism. Atmos. Environ., 1991, 25(10): 2395~2399.
    [12] Sandro Fuzzi. Study of Iron(Ⅲ) Catalyzed Sulfur Dioxide Oxidation in Aqueous Solution over a Wide Range of pH. Atmospheric Environment, 1978, 12: 1439~1442.
    [13] Eung ha cho. Removal of SO_2 with Oxygen in the Presence of Fe(Ⅲ). Metallurgical Transitions B, 1986, 17B: 745~753.
    [14] Bruce C.. Sunlight-Initiated Partial Inhibition of the Dissolved Iron(Ⅲ)-Catalyzed Oxidation of S(Ⅳ) Species by Molecular Oxygen in Aqueous Solution. Atmospheric Environment, 1994, 28(4): 745~748.
    [15] L. Robbin Martin. Catalyzed Oxidation of Sulfur Dioxide in Solution: The Iron-Manganese Synergism. Atmospheric Environment, 1991, 25(10): 2395~2399.
    [16] Punjai T. Selvaraj. Biodesulfurization of Flue Gases and Other Sulfate/Sulfite Waste Streams Using Immobilized Mixed Sulfate-Reducing Bacteria. Biotechnol. Prog., 1997, 13: 583~589.
    
    
    [17] V. R. Bravo. The Influence of Temperature and Concentration of MnSO_4 on the Simultaneous Absorption and Reaction of Mixtures of SO_2 and O_2. The Canadian Journal of Chemical Engineering, 1996, 74: 104~109.
    [18] The Rate of Equation for SO_2 Autoxidation in Aqueous MnSO_4 Solutions Containing H_2SO_4. Chemical Engineering Science, 1980, 36: 215~219.
    [19] 童志权等.工业废气污染控制与利用.化学工业出版社,1989:337~340.
    [20] 姚小红等.酸性条件下Fe~(3+)氧化SO_2的脱硫机理.环境科学,1998,19(5):15~17.
    [21] 范貌宏等.FeSO_4水溶液吸收脱硫及其影响因素的研究.环境科学,1998,19(1):5~8.
    [22] Philippe Behra. Evidence for Redox Cycling of Iron in Atmospheric Water Droplets. Nature, 1990, 344(29): 419~421.
    [23] Richard K.. Enhanced Oxygen Absorption into Bisulphite Solutions Containing Transition Metal Ion Catalysts. Chemical Engineering Science, 1986, 41 (8): 2183~2191.
    [24] Gaoshun Zhuang. Link Between Iron and Sulphur Cycles Suggested by Detection of Fe(Ⅱ) in Remote Marine Aerosols. Nature, 1992, 355(6): 537~539.
    [25] B. L. Tiwari. Oxidation Ferrous Sulfate in Acid Solution by a Mixture of Sulfur Dioxide and Oxygen. Metallurgical Transactions B, 1979, 10B: 607~612.
    [26] Wensheng Zhang. Iron(Ⅱ) Oxidation by SO_2/O_2 in Acidic Media: Part Ⅰ. Kinetics and Mechhanism. Hydrometallurgy, 2000, 55: 229~245.
    [27] Amedeo Lancia. Model of Oxygen Absorption into Calcium Sulfite Solutions. Chemical Engineering Journal, 1997, 66: 123~129.
    [28] 陆永琪等.飞灰浆液脱硫特性的初步研究.环境科学,1999,20(1):15~18.
    [29] Blazquez M L et al.. Coal Biodesulfudzation. A Review., Biorecovery, 1993, 2: 155~177.
    [30] Liu M S et al..The Effect of Ferrous Iron, Dissolved Oxygen, and Solids Concentration on the Growth of Thiobacillus Ferrooxidans. Can. J. Chem. Eng., 1988, 66(6): 445~451.
    [31] 胡岳华等.氧化亚铁硫杆菌的细菌学描述.湿法冶金,1996,4:36-40.
    [32] 邱冠周等.氧化亚铁硫杆菌生长过程铁的行为.中南工业大学学报,1998,29(3):26~28.
    [33] 张在海等.氧化亚铁硫杆菌遗传选育方法初探.湿法冶金,1999,72(4):28~31.
    [34] 刘晶等.氧化亚铁硫杆菌脱硫能力的遗传背景初探.云南大学学报(自然科学版),1998,20(3):206~207.
    [34] 张传福等.氧化亚铁硫杆菌生长延迟期的影响因素.中南工业大学学报,1999,30(5):
    
    489~492.
    [35] Satoru Asai. Kinetic Model for Batch Bacterial Dissolution of Pyrite Particles by Thiobacillus Ferrooxidans. Appl. And Environ. Microbiol., 20(1): 133~139.
    [36] 马鲁铭等.污水生化处理出水吸收二氧化硫.中国环境科学,1998,18(1):64~67.
    [37] Jan Gasiorek. Microbial Removal of Sulfur Dioxide from a Gas Stream. Fuel Processing Technology, 1994, 40: 129~138.
    [38] 艾同娟等.金属化学分析指南.贵州人民出版社,1992,284.
    [39] 于正然等.湿法烟气测试实用技术.中国环境出版社,1990:148-153.
    [40] 华东化工学院分析化学教研室,成都科技大学分析化学教研室.分析化学.高等教育出版社,1982.
    [41] 颜科等.铁(Ⅲ)-邻菲哕啉溶液体系的光化学还原在分析化学上的应用.分析化学,1987,11(15):1019~1021.
    [42] 姚群峰等.邻菲哕啉分光光度法测定铁的价态.中国卫生检查杂志,2000,10(1):3~5.
    [43] 姚文锐等.铁(Ⅲ)-邻菲哕啉体系中化学振荡及铁(Ⅱ)测定的研究.分析化学研究简报,1992,20(6):684~687.
    [44] 江淑芙等.铁(Ⅲ)-4,7-二苯基-邻菲啰啉络合物光还原的研究及其应用.分析化学, 1992,20(7):831~833.
    [45] 段群章.铁的价态分析.分析化学,1980,10(4):229~232.
    [46] 张永奎等.微生物处理含SO_2气体的实验研究.重庆环境科学,1999,17(2):45~48.
    [47] 张昭等.SO_2-H_2O系的热力学及其应用.重庆环境科学,1990,12(3):12~17.
    [48] Wanda Pasiuk-bronikowska. Kinetics of Aqueous SO_2 Oxidation at Different Rate Controlling Steps. Chemical Engineering Science, 1989, 44(4): 915~920.
    [49] A. Lancia. SO_2 Absorption in Bubbling Reactor Using Limestone Suspensions. Chemical Engineering Science, 1994, 49(24A): 4523~4532.
    [50] Charles H. Barron. Reaction Kinetics of Sodium Sulfite Oxidation by the Rapid-mixing Methed. Chemical Engineering Science, 1966, 21: 397~404.
    [51] Amedeo Lancia. Uncatalyzed Heterogeneous Oxidation of Calcium Bisulfite. Chemical Engineering Science, 1996, 51(16): 3889~3896.
    [52] E. Alper. Kinetics of Absorption of Oxygen into Aqueous Sodium Sulfite: Order in Oxygen. AICHE Journal, 1988, 34(8): 1384~1386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700